2015-09-02
Abstract
Malware authors are constantly working on new ways to defeat automation systems, for example by packing their samples in order to increase the length of time it takes for their malware to be detected. Ke Zhang recently came across a custom packer that aims to defeat automation systems by combining anti-automation, anti-VM and anti-reverse engineering abilities. Although he was not able to determine the name under which it is being sold on the underground market, he did manage to study it in some depth.
Copyright © 2015 Virus Bulletin
Automation systems are an enormous help to malware analysts, enabling them both to identify malicious files and determine their functionalities quickly. However, malware authors are constantly working on new ways to defeat automation systems, in order to increase the length of time it takes for the malware to be detected. In my recent work, I came across a custom packer combining anti-automation, anti-VM and anti-reverse-engineering abilities. I studied the packer in some depth, although I was not able to determine the name under which it is being sold.
In a normal system, the foreground window changes when the user switches between different tasks. In an automation system, however, there is usually only a single task: running a potentially malicious sample and monitoring its behaviour.
The custom packer makes clever use of this difference between the two types of system. First, it calls GetForegroundWindow() and saves the window handle, then it continuously calls the same function and checks whether the foreground window has changed (see Figure 1). The rest of the code won’t be executed until the window has changed.
(Click here for a larger view of Figure 1.)
It also calls GetModuleFileNameW() and GetUserNameExW() to examine whether the file and user name contain the keywords ‘sample’, ‘sandbox’ or ‘virus’, which are all likely to appear in automation systems.
The packer detects whether it is being run inside a virtual machine by checking registry values, checking for the existence of certain files, a certain process module, and IO control code.
The packer reads the following registry value and checks whether it contains the substrings ‘vmware’, ‘qemu’ or ‘vbox’, which are all used by popular virtual machines:
HKEY_LOCAL_MACHINE\HARDWARE\DEVICEMAP\Scsi\Scsi Port 0\Scsi Bus 0\Target Id 0\LogicIdentifier
It then reads another registry value (shown below) and checks whether it contains the substrings ‘qemu’ or ‘vbox’ – again, the presence of either of these indicates that the machine is running inside a virtual machine.
HARDWARE\Description\System\SystemBiosVersion\SystemBiosVersion
The packer checks for the existence of the following files.
%system32%\drivers\vmmouse.sys
%system32%\drivers\vmhgfs.sys
%system32%\drivers\VBoxMouse.sys
%system32%\drivers\VBoxGuest.sys
The first two are used by VMware; the latter two are used by VirtualBox.
The packer checks whether the process module ‘sbiedll.dll’ is loaded. This DLL is used by the Sandboxie sandbox.
The packer uses a lot of forward and backward unconditional jump instructions to split the sequential code. This makes it difficult for an analyst to get the whole picture, especially when following the code flow in a debugger. Figure 3 demonstrates the packer’s obfuscated strstr() function.
As shown in Figure 4, after all the redundant jumps have been removed, the number of blocks decreases by more than half (from 23 to 10) and the logic looks much simpler.
The techniques discussed here make things difficult for both human and machine analysis. I have tested several well known automation systems against one of the packed samples (sample ‘A’ in the Appendix) and none of them produced any information about its payload (dropping files to the %temp% folder and then running these), as shown in Figure 5, Figure 6, Figure 7, Figure 8 and Figure 9.
However, with the relentless contribution from malware analysts, we expect to see ongoing improvements in those systems.
(Click here for a larger view of Figure 5.)
(Click here for a larger view of Figure 6.)
(Click here for a larger view of Figure 7.)
MD5 | Payload | Notes | |
---|---|---|---|
A | 40D19FBA73C6B011814E2C6920E8792F | Trojan.Dropper drops samples B, C, and D to %temp% folder and executes them. | N/A |
B | FBDEC6F2A565E5B6844A7DE2F785EC88 | Galaxy Logger V3 | Official site: http://galaxysproducts.com |
C | BA2A65C19C961A51739E28DF238FB0EA | Backdoor.Trojan | C&C server: degreat248.no-ip.org:9003 |
D | 9C306303F6656435500A6A3C53793758 | Instant Password Stealer 1.0 | Official site: http://www.nuclearwintercrew.com |
Table 1. MD5 of related samples (all with the identical packer).