Paper: Dexofuzzy: Android malware similarity clustering method using opcode sequence

Posted by   Martijn Grooten on   Nov 5, 2019

The sharp rise in Android malware in recent years has led security researchers to look for efficient ways to cluster related samples, especially since the tools used for Windows malware don't always work well for other platforms.

Today, we publish a paper by Shinho Lee, Wookhyun Jung, Sangwon Kim, Jihyun Lee, Jun-Seob Kim, all researchers from ESTsecurity in South Korea. In it, they propose 'Dexofuzzy', a fuzzy hash based on opcode inside Dex files. As such, the hash is tailored for Android samples.

In their paper, they demonstrate how Dexofuzzy could be used to find 74 clusters in a large dataset of Android malware.

dexofuzzy-fig20.pngClustering malware samples by types of packers.

You can read the paper in both HTML and PDF format. Those interested in fuzzy hashes and their application to clustering of large malware datasets may also want to read a paper published in 2015 in which Brian Wallace looks at ssDeep, the algorithm which forms the basis of Dexofuzzy.

Dexofuzzy-paper.jpg
Dexofuzzy: Android malware similarity clustering method using opcode sequence

Read the paper (HTML)

Download the paper (PDF)

 

twitter.png
fb.png
linkedin.png
hackernews.png
reddit.png

 

Latest posts:

VBSpam tests to be executed under the AMTSO framework

VB is excited to announce that, starting from the Q3 test, all VBSpam tests of email security products will be executed under the AMTSO framework.

In memoriam: Prof. Ross Anderson

We were very sorry to learn of the passing of Professor Ross Anderson a few days ago.

In memoriam: Dr Alan Solomon

We were very sorry to learn of the passing of industry pioneer Dr Alan Solomon earlier this week.

New paper: Nexus Android banking botnet – compromising C&C panels and dissecting mobile AppInjects

In a new paper, researchers Aditya K Sood and Rohit Bansal provide details of a security vulnerability in the Nexus Android botnet C&C panel that was exploited in order to gather threat intelligence, and present a model of mobile AppInjects.

New paper: Collector-stealer: a Russian origin credential and information extractor

In a new paper, F5 researchers Aditya K Sood and Rohit Chaturvedi present a 360 analysis of Collector-stealer, a Russian-origin credential and information extractor.

We have placed cookies on your device in order to improve the functionality of this site, as outlined in our cookies policy. However, you may delete and block all cookies from this site and your use of the site will be unaffected. By continuing to browse this site, you are agreeing to Virus Bulletin's use of data as outlined in our privacy policy.