
1PAPER PRESENTED AT VB2018 MONTREAL

2018
3 – 5 October 2018
MONTREALWWW.VIRUSBULLETIN.COM/CONFERENCE

WHO WASN’T RESPONSIBLE FOR
OLYMPIC DESTROYER
Paul Rascagnères & Warren Mercer

Cisco Talos, USA

{prascagn, wamercer}@cisco.com

ABSTRACT
This year’s Winter Olympic Games took place in Pyeongchang,
South Korea. Several media outlets reported that technical
issues – believed to be caused by a cyber attack – had occurred
during the opening ceremony. In this paper we will present the
malware that we have identified – with moderate confidence –
as having been used in the attack. First, we will describe the
malware’s propagation techniques and its destructive
capabilities. The second part of the paper will be about
attribution and how, in this particular case, the attacker included
several false flags in order to point to other well-known threat
actors. We will conclude by opening a discussion about how
hard attribution can be, and presenting our view concerning the
future of this discipline.

INTRODUCTION
In February 2018, the Olympic Games in Pyeongchang, South
Korea were disrupted by a cyber attack. Reportedly, the attack
resulted in the official Olympic Games website being taken
offline, meaning that spectators could not print their tickets.
Media reporting at the opening ceremony of the Games was
also impaired due to the Wi-Fi failing within the Olympic
Media Centre. On 12 February, Talos published a blog post [1]
detailing the functionality of the malware that we had identified
with high confidence as having been used in the attack. We
named the malware Olympic Destroyer.

This attack gained traction through the press, and several
different media outlets published conflicting stories in relation
to attribution.

In the first part of this paper we will provide technical details of
Olympic Destroyer, the wiper involved in the case, and in the
second part we will discuss the attribution. Indeed, the malware
did not write itself, the incident did not happen by accident, but
who was responsible?

PART ONE: TECHNICAL ANALYSIS

Initial sample

The initial sample (edb1ff2521fb4bf748111f92786d260d40407a
2e8463dcd24bb09f908ee13eb9) is a binary that, when executed,
drops multiple files onto the victim host. These files are
embedded as obfuscated resources within the binary. The
embedded files have randomly generated file names, however
we found during our analysis that, when written to disk, the
hashes of these files were the same on multiple instances. As a
binary file, the initial sample could have been delivered in a
multitude of ways – the most likely is via a spear phished email
with Olympic Destroyer as a malicious attachment.

Two of the dropped files (the stealing modules) are executed
with two arguments: 123 and a named pipe. The named pipe is
used as a communication channel between the initial stage and
the dropped executable. The same technique was used in
BadRabbit and Nyetya.

The initial stage is responsible for propagation. Network
discovery is performed using two techniques:

• Checking the ARP table with the Windows GetIPNetTable
API

• Using WMI (using WQL) with the request: SELECT ds_cn
FROM ds_computer. This request attempts to list all the
systems within the current environment/directory.

The network propagation is performed using PsExec and WMI
(via the Win32_Process class). Figure 2 shows the code
executed remotely.

Figure 2: Code executed remotely.

Figure 1: Different media outlets published conflicting stories in
relation to attribution.

2 PAPER PRESENTED AT VB2018 MONTREAL

2018
3 – 5 October 2018
MONTREAL WWW.VIRUSBULLETIN.COM/CONFERENCE

This code is responsible for leveraging cmd.exe to copy
the initial stage to a remote system in
%ProgramData%\%COMPUTERNAME%.exe and executing it
via a VBScript.

Lateral movement within an environment is achieved in a
number of ways. Generally speaking, there will either be one or
more exploits used to allow remote code execution without
credentials or we will see credentials/tokens being used within a
piece of malware. These credentials/tokens may either already
be known or they may be harvested during infection. With
Olympic Destroyer we see the use of on-the-fly patching for
credentials. Olympic Destroyer obtains these credentials from
the infected systems, both previously compromised and
currently compromised, to hard code a set of credentials into the
binary to allow lateral movement. The binary contains 32k bytes
of space, located from offset 0x26F1A to offset 0x2EF1A, to
allow for the patching of these credentials. Talos identified 44
unique credentials within the samples analysed relating to
Olympic Destroyer.

Figure 3: Talos identified 44 unique credentials within the
samples analysed.

The burning question is: how did Olympic Destroyer obtain
those credentials? The embedded resources mentioned earlier
contain a couple of different credential-stealing modules.

Credential harvesting

To obtain the credentials Olympic Destroyer uses a browser
stealer and a system stealer. This means that Olympic Destroyer
attempts to harvest both from the browsers and from the
operating system on the victim machine.

Olympic Destroyer drops a browser credential stealer with the
final payload embedded in an obfuscated resource. As mentioned
previously, the sample must have two arguments to be executed.
The stealer supports Internet Explorer, Firefox and Chrome. The
malware parses the registry and queries the sqlite file in order to
retrieve stored credentials. SQLite is embedded in the sample.

Figure 4: SQLite is embedded in the sample.

In addition to the browser credential stealer, Olympic Destroyer
drops and executes a system stealer. The system stealer attempts
to obtain credentials from LSASS with a technique similar to
that used by Mimikatz. Figure 5 shows the output format parsed
by the initial stage.

Using these two methods the malware is able to obtain
additional credentials to support further lateral movement within
the environment.

Destruction
The initial execution of the malware results in multiple files
being written to disk, as discussed. Following this, the malware

Figure 5: Output format parsed by the initial stage.

3PAPER PRESENTED AT VB2018 MONTREAL

2018
3 – 5 October 2018
MONTREALWWW.VIRUSBULLETIN.COM/CONFERENCE

begins its destruction element. By leveraging cmd.exe from the
host the malware first deletes all possible shadow copies on the
system using vssadmin:

C:\Windows\system32\cmd.exe /c c:\Windows\system32\
vssadmin.exe delete shadows /all /quiet

Next, once again leveraging cmd.exe on the host, we see the
author using wbadmin.exe. For those not familiar with
wbadmin, this is the replacement for ntbackup on modern
operating systems:

C:\Windows\system32\cmd.exe /c wbadmin.exe delete
catalog -quiet

This step is carried out to ensure that file recovery is not trivial
– WBAdmin can be used to recover individual files, folders and
even whole drives so this would be a very convenient tool for a
sysadmin to use to aid recovery.

The next step the attacker takes in this destructive path is once
again to leverage cmd.exe, but this time using bcdedit, a tool
used for boot config data information, to ensure that the
Windows recovery console does not attempt to repair anything
on the host:

C:\Windows\system32\cmd.exe /c bcdedit.exe /set
{default} bootstatuspolicy ignoreallfailures & bcdedit
/set {default} recoveryenabled no

The attacker has now attempted to make recovery extremely
difficult for any impacted hosts. To further cover the malware’s
tracks and make analysis more difficult, the System & Security
Windows event log is deleted:

C:\Windows\system32\cmd.exe /c wevtutil.exe cl System

C:\Windows\system32\cmd.exe /c wevtutil.exe cl
Security

Wiping all available methods of recovery shows that this
attacker had no intention of leaving the infected machine
useable. The purpose of this malware is to perform destruction
of the host, leave the computer system offline, and wipe remote
data. We can see these functions within the Olympic Destroyer
sample in Figure 6.

To finish its destructive phase Olympic Destroyer then disables
all available Windows services.

The malware uses the ChangeServiceConfigW API to change
the start type to 4 which means: ‘Disabled: Specifies that the
service should not be started’ (see Figure 7).

Additionally, the malware lists mapped file shares and for each
share, it will wipe the writable files (using either uninitialized
data or 0x00 depending on the file size). The purpose is to
destroy the files as quickly as possible. With this method, the
malware can cause as much disruption in as little time as
possible.

Figure 6: The purpose of this malware is to perform destruction of the host, leave the computer system offline, and wipe remote data.

Figure 7: The malware uses the ChangeServiceConfigW API to
change the start type to 4.

4 PAPER PRESENTED AT VB2018 MONTREAL

2018
3 – 5 October 2018
MONTREAL WWW.VIRUSBULLETIN.COM/CONFERENCE

Finally, after modifying all the system configuration, the
destroyer shuts down the compromised system.

Legitimate file

Olympic Destroyer also drops the legitimate, digitally signed,
PsExec file in order to perform lateral movement. The use of
this legitimate tool from Microsoft is an example of an attacker
leveraging legitimate tools within their arsenal. Using legitimate
tools like PsExec will save the adversary time by eliminating the
need to write their own tooling. A free alternative they can wrap
up within their malware is a much easier option in this instance.

Global workflow

Figure 8 presents a summary of the global workflow of the
malware, starting with the initial stage (Winlogon.exe) and the
different modules.

PART TWO: ATTRIBUTION, OR WHO WASN’T
RESPONSIBLE
Attributing attacks to specific malware writers or threat actor
groups is neither simple nor an exact science. Many parameters
must be considered, analysed and compared with previous
attacks in order to identify similarities. As with any crime,
cybercriminals have preferred techniques, and tend to leave
behind traces, akin to digital fingerprints, which can be found
and linked to other crimes.

In terms of cybersecurity incidents, analysts would look for
similarities or attributes such as:

• Tactics, techniques and procedures (TTPs) (how the
attacker conducted the attack)

• Victimology (the profile of the victim)

• Infrastructure (the platforms used as part of the attack)

• Indicators of Compromise (IOCs) (identifiable artifacts left
behind during an attack)

• Malware samples (the malware used as part of the attack)

One of the great things about software engineering is the ability
to share code, to build applications on top of libraries written by

others, and to learn from the successes and failures of other
software engineers. The same is true for threat actors. Two
different threat actors may use code from the same source in
their attacks, meaning that their attacks would display
similarities, despite being conducted by different groups.
Sometimes threat actors choose to include features from another
group in order to frustrate analysts and try to lead them to make
a false attribution.

In the case of Olympic Destroyer, what is the evidence, and
what conclusions can we draw regarding attribution?

Without contributions from traditional intelligence capacities,
the available evidence linking the Olympic Destroyer malware
to a specific threat actor group is contradictory, and does not
allow for unambiguous attribution. The threat actor responsible
for the attack has purposefully included evidence to frustrate
analysts and lead researchers to false attribution flags.
Attribution, while headline grabbing, is difficult. This must
force one to question attribution that is purely software based.

Olympic Destroyer lineup of suspects

The Lazarus group

The Lazarus group, also referred to as Group 77, is a
sophisticated threat actor that has been associated with a number
of attacks. Notably, a spinoff of Lazarus, referred to as the
Bluenoroff group, has been identified as having conducted attacks
against the SWIFT infrastructure in a bank located in Bangladesh.

The filename convention used in the SWIFT malware, as
described by BAE Systems [2], was: evtdiag.exe, evtsys.exe and
evtchk.bat.

The Olympic Destroyer malware checks for the existence of the
following file: %programdata%\evtchk.txt.

There is a clear similarity in the two cases. This is nowhere near
proof, but it is a clue, albeit a weak one.

Further clues are found in similarities between Olympic
Destroyer and the wiper malware associated with Bluenoroff,
again described by BAE Systems [3]. In the example shown in
Figure 9, the Bluenoroff wiper is on the left, and the Olympic
Destroyer wiper on the right.

Figure 8: Summary of the global workflow.

5PAPER PRESENTED AT VB2018 MONTREAL

2018
3 – 5 October 2018
MONTREALWWW.VIRUSBULLETIN.COM/CONFERENCE

Figure 9: Left: Bluenoroff wiper; right: Olympic Destroyer wiper.

6 PAPER PRESENTED AT VB2018 MONTREAL

2018
3 – 5 October 2018
MONTREAL WWW.VIRUSBULLETIN.COM/CONFERENCE

Clearly, the code is not identical, but the very specific logic of
wiping only the first 0x1000 bytes of large files is identical and
unique to the two cases. This is stronger evidence than the file
name check.

However, both the file names used by Bluenoroff and the wiper
function are documented and available to anyone. The real
culprits could have added the file name check and mimicked the
wiper function simply in order to implicate the Lazarus group
and potentially distract from their true identity.

Olympic Destroyer sample:
23e5bb2369080a47df8284e666cac7cafc207f3472474a9149f8
8c1a4fd7a9b0

Bluenoroff sample #1:
ae086350239380f56470c19d6a200f7d251c7422c7bc5ce74730
ee8bab8e6283

Bluenoroff sample #2:
5b7c970fee7ebe08d50665f278d47d0e34c04acc19a91838de6a
3fc63a8e5630

Kaspersky Lab identified [4] another link between Olympic
Destroyer and samples used for the SWIFT attacks. This link is
located in the header of the samples. More specifically in the Rich
header. Indeed, the Rich header of the Olympic Destroyer sample
and Bluenoroff sample #1 are identical. The checksum (and XOR
key) located after the ‘Rich’ magic value is exactly the same (see
Figures 10 and 11).

Figure 10: Olympic Destroyer.
ae9a4e244a9b3c77d489dee8aeaf35a7c3ba31b210e76d81ef2e

91790f052c85.

Figure 11: Bluenoroff.
ae086350239380f56470c19d6a200f7d251c7422c7bc5ce7473

0ee8bab8e6283.

If we look at the information stored in this header, we can see
that the compiler is Visual Studio 2003. This information is true

concerning the Bluenoroff sample, however if we look closely
at the Olympic Destroyer sample, it’s wrong: based on
Universal C Runtime (CRT) Olympic Destroyer was compiled
with Visual Studio 2010. The author simply copied and pasted
the header from Bluenoroff to Olympic Destroyer. This action is
strange and extremely specific – an actor has gone out of their
way to perform this action. The tools using code similarities
generally ignore the Rich header and only work on the
subsequent code.

APT3 & APT10

Intezer Labs [5] identified code sharing between Olympic
Destroyer and malware used in attacks attributed to the APT3
and APT10 groups.

Intezer Labs discovered that Olympic Destroyer shares 18.5%
of its code with a tool used by APT3 to steal credentials from
memory. Potentially, this is a very strong clue. However, the
APT3 tool is, in turn, based on the open-source tool Mimikatz.
Since Mimikatz is available for download by anyone, it is
entirely possible that the author of Olympic Destroyer used
code derived from Mimikatz, knowing that it had been used by
other malware writers.

Intezer Labs also spotted similarities in the function used by
Olympic Destroyer to generate AES keys and that used by
APT10. According to Intezer Labs, this particular function has
only ever been used by APT10. Maybe the malware writer has
let slip a possible vital clue to their identity.

Nyetya

The use of code derived from Mimikatz to steal credentials was
also seen in the Nyetya [6] (NotPetya) malware of June 2017.
Like Nyetya, Olympic Destroyer spread laterally by abusing the
legitimate functions of PsExec and WMI. Like Nyetya, Olympic
Destroyer uses a named pipe to send stolen credentials to the
main module.

Unlike Nyetya, Olympic Destroyer didn’t use the EternalBlue
and EternalRomance exploits for propagation. However, the
perpetrator has left artifacts within the Olympic Destroyer
source code to insinuate the presence of SMB exploits.

Olympic Destroyer includes the definition of these four
structures, as shown in Figure 12, that can also be found in the
public EternalBlue proof of concept [7], as shown in Figure 13.

These structures are loaded during runtime, when Olympic
Destroyer is executed, but remain unused. Clearly, the author
knew of the EternalBlue PoC, but the reason why these
structures are present is unclear. It’s likely the author wanted to
lay a trap for security analysts to provoke a false attribution.
Alternatively, we could be seeing the traces of functionality
which never made it into the final malware.

CONCLUSION
Attribution is hard. Rarely do analysts reach the level of
evidence that would lead to a conviction in a courtroom. Many
were quick to jump to conclusions, and to attribute Olympic
Destroyer to specific groups. However, the basis for such

7PAPER PRESENTED AT VB2018 MONTREAL

2018
3 – 5 October 2018
MONTREALWWW.VIRUSBULLETIN.COM/CONFERENCE

Figure 12: Olympic Destroyer includes the definition of four structures that are also found in the EternalBlue proof of concept.

Figure 13: Public EternalBlue proof of concept.

accusations are frequently weak. Now that we are seeing
malware authors placing multiple false flags in their code,
attribution based on malware samples alone has become even
more difficult.

For the threat actors considered, and with the evidence which
we have available, there is no clear smoking gun indicating a
guilty party. Other security analysts and investigative bodies
may have further evidence to which we do not have access.
Organizations with additional evidence, such as signal
intelligence or human intelligence sources, which may provide
significant clues to attribution, may be the least likely to share
their insights so as not to betray the nature of their
intelligence-gathering operation.

The attack which we believe Olympic Destroyer to have been
associated with was clearly an audacious one, almost certainly
conducted by a threat actor with a certain level of sophistication
who did not believe that they would easily be identified and held
accountable.

Code sharing between threat actors is to be expected.
Open-source tools are a useful source of functionality, and
adopting techniques from successful attacks conducted by other
groups is likely to be a source of misleading evidence leading to
false attribution.

Equally, we can expect sophisticated threat actors to take
advantage of this, and to integrate ‘evidence’ into their code that
is designed to fool analysts, leading the analysts to attribute the
attacks to other groups. It is likely that, threat actors take
pleasure in reading incorrect information published by security

8 PAPER PRESENTED AT VB2018 MONTREAL

2018
3 – 5 October 2018
MONTREAL WWW.VIRUSBULLETIN.COM/CONFERENCE

analysts. This could even be taken to the extreme of a country
denying an attack based upon evidence presented by an
unwitting third party due to false attribution. Every time there is
misattribution it gives adversaries something to hide behind. In
this heightened era of fake news, attribution is a highly sensitive
issue.

As their skills and techniques evolve, it is likely that we will see
threat actors further adopting ruses to complicate and confuse
the process of attribution. Attribution is already difficult. It is
unlikely to become easier.

REFERENCES
[1] Mercer, W.; Rascagneres, P. Olympic Destroyer Takes

Aim At Winter Olympics. Talos Intelligence blog.
12 February 2018. https://blog.talosintelligence.com/
2018/02/olympic-destroyer.html.

[2] Shevchenko, S. Two bytes to $951M. BAE Systems
Threat Research Blog. 25 April 2016.
https://baesystemsai.blogspot.com/2016/04/two-bytes-
to-951m.html.

[3] Shevchenko, S. Cyber heist attribution. BAE Systems
Threat Research Blog. 13 May 2016.
https://baesystemsai.blogspot.com/2016/05/cyber-heist-
attribution.html.

[4] The devil’s in the Rich header. Kaspersky Lab
SecureList. 8 March 2018. https://securelist.com/
the-devils-in-the-rich-header/84348/.

[5] Rosenberg, J. 2018 Winter Cyber Olympics: Code
Similarities with Cyber Attacks in Pyeongchang.
Intezer Blog Cybersecurity DNA. 12 February 2018.
http://www.intezer.com/2018-winter-cyber-olympics-
code-similarities-cyber-attacks-pyeongchang/.

[6] Chiu, A. New Ransomware Variant “Nyetya”
Compromises Systems Worldwide. Talos Blog. 27 June
2017. https://blog.talosintelligence.com/2017/06/
worldwide-ransomware-variant.html.

[7] GitHub. MS17-010/zzz_exploit.py. https://github.com/
worawit/MS17-010/blob/master/zzz_exploit.py.

