
THE DARK SIDE OF WEBASSEMBLY  LONKAR & CHANDRAYAN

1VIRUS BULLETIN CONFERENCE OCTOBER 2018

THE DARK SIDE OF 
WEBASSEMBLY

Aishwarya Lonkar & Siddhesh Chandrayan
Symantec, India

{aishwarya_lonkar, siddhesh_chandrayan}@
symantec.com

ABSTRACT
The WebAssembly (Wasm) format is a way to run code, 
compiled in native languages such as C/C++, on web browsers. 
WebAssembly has better performance when running native code 
than other variations of compiled JavaScript such as asm.js 
(Assembly JS). WebAssembly is often used in developing web 
games. Recent versions of all popular browsers including 
Chrome, Firefox and Microsoft Edge support WebAssembly 
execution.

Though Wasm has been around for a few years, it rose to 
prominence more recently when it was used for cryptocurrency 
mining in browsers. This opened a Pandora’s box of potential 
malicious uses of Wasm.

In this paper we will walk through some of the instances in 
which Wasm can be used maliciously, such as:

• Tech support scams: with the decline of exploit kits we have 
seen an uptick in tech support scams delivered in various 
ways including compromised websites, malvertisements 
(malicious advertisements), etc. These scams make 
extensive use of JavaScript with little or no obfuscation, 
making their detection relatively easy. In this paper we will 
describe how Wasm may be used in tech support scams to 
render them harder to detect by security products.

• Browser exploits: browser exploits written in JavaScript can 
be tailored to use Wasm for browser exploitation and 
subsequent malware download.

• Script-based keyloggers: Wasm can also be used to steal 
information entered into web forms. Currently, such 
information stealing is done via JavaScript.

To add the cherry to the top of the cake, detection of Wasm is 
difficult as it is a compiled file, making string-based detection 
almost impossible. We will discuss some of the areas in which 
we expect the above methods to be used.

INTRODUCTION

JavaScript

JavaScript [1] is a general-purpose programming language. It’s a 
simple language with a huge ecosystem, and it is tightly 
integrated in the web. There is no way of moving away from 
JavaScript without breaking all of the existing web applications, 
which is not a situation any browser vendor wants. Furthermore, 
all browser technologies and security constraints are designed 
specifically for JavaScript.

Current JavaScript is quite fast, but there are a few mechanisms 
in JavaScript engines that limit its speed [2]:

• Boxing: Floating point numbers are boxed, they have 
wrappers that allow them to co-exist with other values such 
as objects.

• Just-in-time (JIT) compilation and runtime type checks: 
Most JavaScript engines compile code in two stages. 
Initially, a format is used that can be compiled to quickly, 
but that runs slowly. The execution of that format is 
observed. If it runs more often, assumptions can be made 
about the types of its parameters etc., and it can be compiled 
to a format that runs faster. If one of the assumptions turns 
out to be wrong, the faster format can’t be used anymore 
and the engine has to go back to the slower format. The 
faster format is always slowed down by having to check 
whether the assumptions still hold.

• Automated garbage collection: this can be slow.

• Flexible memory layout: JavaScript’s data structures are 
very flexible, but they also make memory management 
slower.

Asm.js

Asm.js [3] is a subset of JavaScript, defined with the goal of 
being easily optimizable and used primarily as a compiler target 
from languages like C and C++. Asm.js code can produce 
executables that exhibit none of the drawbacks listed above. 
They can be compiled ‘ahead of time’ and are faster than 
JIT-compiled ones.

The web is not controlled by any single vendor, so every change 
must be a joint effort. It was a group of hardcore developers at 
Mozilla that developed asm.js. Meanwhile, Google developers 
worked on Native Client (NaCl) and Portable Native Client 
(PNaCl), a binary format for the web based on the LLVM 
compiler project. Although each of these solutions worked to 
some degree, they did not provide a satisfactory answer to all the 
above problems. It was from this experience that WebAssembly 
was born: a joint effort aimed at providing a cross-browser 
compiler target. 

The continued evolution of asm.js is WebAssembly [4]. 
WebAssembly is intended to fill a role that JavaScript has been 
forced to occupy up to now: a low-level code representation that 
can serve as a compiler target.

WebAssembly provides a unified compilation target for 
languages such as C and C++ that do not map easily to 
JavaScript [5].

WebAssembly
WebAssembly (Wasm) is a new type of code that can be run in 
modern web browsers and provides new features and major gains 
in performance. It is considered as a new binary format for the 
web [6, 7]. Generally, performance-critical functions can be 
implemented in Wasm and can be imported like a library into 
JavaScript.

Wasm was not created as a replacement for JavaScript, rather to 
complement and work alongside it. With the introduction of 



THE DARK SIDE OF WEBASSEMBLY  LONKAR & CHANDRAYAN

2 VIRUS BULLETIN CONFERENCE OCTOBER 2018

WebAssembly, the modern web browser’s virtual machine is 
expected to run both JavaScript and Wasm.

All major browsers support Wasm. The benefits of 
WebAssembly include:

• Fast, efficient and portable: WebAssembly code can be 
executed at near-native speed across different platforms

• Readable and debuggable: WebAssembly is a low-level 
assembly language, but it has a human-readable text format

• Secure: WebAssembly is specified to be run in a safe, 
sandboxed execution environment.

How is WebAssembly generated?

Tools like Emscripten [8, 9] can be used to compile code written 
in C/C++ into WebAssembly:

• Take a copy of the following simple C example, and save it 
in a file called ‘hello.c’ in a new directory on your local 
drive:

Figure 2: Save a copy of this C example in a file called ‘hello.c’ 
in a new directory on your local drive.

• Navigate to the same directory as your hello.c file, and run 
the following command:

 emcc hello.c -s WASM=1 -o hello.html

 The options in the command are as follows:

 -s WASM=1 – specifies that we want Wasm output. If we 
don’t specify this, Emscripten will just output asm.js, as it 
does by default.

 -o hello.html – specifies that we want Emscripten to 
generate an HTML page in which to run our code (and a 

filename to use), as well as the Wasm module and the 
JavaScript ‘glue’ code to compile and instantiate the Wasm 
so it can be used in the web environment.

Figure 3: Compiling code into WebAssembly.

There are future plans to get rid of the above JavaScript glue 
code to allow WebAssembly modules to be loaded like 
JavaScripts (<script type=‘module’>).

WebAssembly’s date with malware

With the performance benefits and features that WebAssembly 
provides, it was only a matter of time until malware authors 
took notice. WebAssembly found its place in browser-based 
miners wherein it was used to mine cryptocurrency using the 
victim’s computer resources (basically CPU cycles). The 
WebAssembly code used was developed using C 
implementation of the Cryptonight mining algorithm. The 
mining process occurred, mostly unknown to the victim. 

The flow of the mining process is shown in Figure 4.

With knowledge of the above-mentioned technique, which is 
already in the wild, let’s discuss other ways in which 
WebAssembly can be used maliciously.

CASE 1: TECH SUPPORT SCAMS

What is a tech support scam?

A technical support scam (often abbreviated to tech support 
scam) refers to telephone fraud in which scammers claim to be 
providing a legitimate technical support service. It may begin 
with a cold call, usually from a legitimate-sounding third party 
like ‘Microsoft’ or ‘Windows’. Remote desktop software is used 

Figure 1: WebAssembly: a joint effort aimed at providing a cross-browser compiler target.



THE DARK SIDE OF WEBASSEMBLY  LONKAR & CHANDRAYAN

3VIRUS BULLETIN CONFERENCE OCTOBER 2018

to connect to the victim’s computer, and the scammer then uses 
a variety of confidence tricks that employ various Windows 
components and utilities (such as the Event Viewer), third-party 
utilities (such as rogue security software), and reference sites 
like Wikipedia or summaries written by security companies to 
make the victim believe that the computer has issues that need 
to be fixed, before asking the victim to pay for ‘support’. These 
scams usually target users, such as senior citizens, who are 
unfamiliar with the tools used in the process, especially when 
taken by surprise by a cold call. 

In other cases, the scam is initiated with a browser pop-up that 
‘alerts’ the victim to an apparent infection on their machine and 
urges them to call a tech support number. An example of a tech 
support scam browser pop-up can be seen in Figure 5.

The attacker wants victims to see the alerts in the browser and 
continues to bombard them with pop-ups about the apparent 
infection. When the victim calls the tech support number, the 
scammers either ask for money to address the ‘problem’ or 
simply install some software/backdoor on the victim’s machine.

Tech support scam sources

Sources of tech support scams may include the following:

• Unsuspecting user searching for commercial technical 
support via a popular search engine such as Bing or 
Google.

• Legitimate but compromised websites which redirect to 
these scams. Website compromise is usually achieved via 

Figure 4: Mining process.

Figure 5: Tech support scam browser pop-up.



THE DARK SIDE OF WEBASSEMBLY  LONKAR & CHANDRAYAN

4 VIRUS BULLETIN CONFERENCE OCTOBER 2018

Figure 6: As tech support scams emerged as a major force in the threat landscape, new anti-detection features were added.

Figure 7: Proof of concept: snippet of C code which executes JavaScript code.



THE DARK SIDE OF WEBASSEMBLY  LONKAR & CHANDRAYAN

5VIRUS BULLETIN CONFERENCE OCTOBER 2018

exploiting vulnerabilities in CMS (Content Management 
Systems) such as WordPress, Joomla, Drupal, etc.

• Malicious advertisements which redirect to these scams. 
This mechanism makes use of fingerprinting techniques 
such as geolocation checks, browser information, etc. to 
avoid detection and avoid showing the same scam to a 
single user.

Tech support scams on the rise

For a long time, exploit kits were the preferred malware delivery 
vehicle for malware authors. However, the non-availability of 
newer browser and plug-in exploits coupled with hardening of 
operating systems, meant that exploit kits became increasingly 
less viable and malware authors were met with reduced 
infection rates. To keep the money flowing, redirection 
campaigns associated with exploit kits gradually shifted to 
delivering tech support scams to victims. This led to a heavy 
influx in tech support scams. Evidence of this can be found in 
reports presented by Microsoft [10] and the FBI’s Internet 
Crime Complaint Center (IC3) [11].

Tech support scams getting murkier

When tech support scams first arrived on the scene, all the 
malicious and annoying web page behaviour was achieved 
through the use of JavaScript, which was unobfuscated and 
could easily be detected. However, as tech support scams began 
to emerge as a major force in the threat landscape, new anti-
detection features were added. These started with the use of 
light obfuscation such as hex encoding, and went all the way to 
the use of packed encoding and even encryption algorithms like 
AES (Advanced Encryption Standard) [12, 13] (see Figure 6).

What’s next: use of WebAssembly

Now we have discussed both WebAssembly and tech support 
scams, let’s take a dive into their fusion.

Tech support scams rely on JavaScript to achieve almost all of 
their objectives. WebAssembly allows the execution of 
JavaScript in its compiled binary form with fewer detection 
avenues. Thus, a combination of the two achieves the 
underlying objective of scaring the victim by presenting a scam 
which is entirely built on WebAssembly, leaving no traces.

A proof of concept for this combination can be found in 
Figure 7, which shows a snippet of C code which executes 
JavaScript code.

The Emscripten compiler provides a way to call JavaScript from 
C using EM_ASM() [14].

Code within the EM_ASM() tag will run as if it appeared 
directly in the generated code. That is, the JavaScript code is 
executed like a normal piece of JavaScript which is usually 
found on the web.

Walking through the JavaScript code, a pop-up warning the user 
that the system is infected is shown first, along with an image, 
as shown in Figure 8.

Moving forward, the scam checks for the following key  
presses:

Keycode Key

13 ENTER

27 ESC

18 ALT

123 F12

85 u

9 TAB

115 F4

116 F5

112 F1

114 F3

17 CTRL

Figure 8: A popup warns the user that the system is infected.



THE DARK SIDE OF WEBASSEMBLY  LONKAR & CHANDRAYAN

6 VIRUS BULLETIN CONFERENCE OCTOBER 2018

This prevents the user from escaping the scam by pressing keys 
like ESC or the CTRL+ALT+DELETE combination, or others 
as shown in the table.

The code also monitors mouse clicks and pops up the malicious 
alert each time the mouse is clicked.

In this scenario, only the code within the ‘document.write()’ tag is 
rendered in the browser, while the JavaScript code is loaded on 
the fly. The only visible trace of the C code is a Wasm file, seen in 
the browser cache, the content of which is shown in Figure 9. 
Thus, security products will only see the compiled Wasm file 
rather than the JavaScript source code. This is similar to seeing an 
executable file in a text editor, thus making detection difficult.

CASE 2: WEBSITE KEYLOGGERS

What are keyloggers?

Keystroke logging, often referred to as keylogging or keyboard 
capturing, is the action of logging the keys struck on 
a keyboard, typically covertly, so that the person using the 
keyboard is unaware that their actions are being monitored. 
Data can then be retrieved by the person operating the logging 
program, better known as the keylogger [15].

Keyloggers are most often used for stealing passwords and other 
confidential information. 

Keyloggers come in various forms including executable files, 
script files, etc., but the end objective is always to steal 
confidential data such as passwords, credit card details, etc. 

Executable keylogger files land on the system via a variety of 
sources such as spam mails, social engineering scams, 
vulnerability exploitation, etc. Executable keyloggers can 
monitor keystrokes regardless of the running application – that 
is, keystrokes can be monitored whether the user is filling in a 
website form, typing in a Notepad file or any other actions 
carried out through the keyboard.

Script keyloggers are typically written in JavaScript, VB Script, 
etc. Script keyloggers are injected into compromised websites to 
steal passwords and other confidential information from website 
visitors. In the majority of cases, website owners and visitors 
are unaware of this keylogging activity. Script loggers are 
restricted to the website into which they are injected.

In this paper, we will discuss script keyloggers combined with 
WebAssembly. Since this kind of keylogger is written entirely 
in JavaScript, it is prone to string-based detection. With the 
following proof of concept, we will see how these detections 
can be bypassed.

Figure 9: Content of the WASM file, seen in the browser cache.



THE DARK SIDE OF WEBASSEMBLY  LONKAR & CHANDRAYAN

7VIRUS BULLETIN CONFERENCE OCTOBER 2018

Figure 10: Proof of concept code.



THE DARK SIDE OF WEBASSEMBLY  LONKAR & CHANDRAYAN

8 VIRUS BULLETIN CONFERENCE OCTOBER 2018

In the code shown in Figure 10, there are four main functions:

• myFunction0() – stores the entered username.

• myFunction1() – stores the entered password.

• display() – in this function we display the captured 
credentials which we obtained in the above two functions.

• onkeypress – this function listens to the keys pressed by 
the user and stores the result.

In lines 43 and 57, we can see the ‘change’ eventListener being 
attached to the text fields for username and password. This event 
is fired when the user has finished entering the username/
password. When this event is fired, the code in myFunction0() 
or myFunction1() is called respectively, thus capturing the 
credentials. 

The rest of the code just builds the HTML front end for the user 
input form.

In this scenario, security products will only see the compiled 
Wasm file rather than the JavaScript source code, thus making 
detection difficult.

The output of the proof of concept can been seen in Figure 11.

This example shows that WebAssembly can be used in phishing 
campaigns to capture confidential information without leaving 
many traces for detection purposes.

WEBASSEMBLY – EXPLORING NEW 
FRONTIERS
As we have witnessed, WebAssembly can be used in a variety 
of ways to achieve nefarious goals. However, this is just the 
beginning. We firmly believe that, in the future, WebAssembly 
will leave its footprint in one or more of the following domains:

Figure 11: Output of the proof of concept.

• Browser exploits – Going through some of the publicly 
available recent browser exploits, we see that they involve 
JavaScript. Thus, WebAssembly can play an important role 
in browser exploitation by obfuscating the exploit code.

• Malicious redirections – We usually encounter malicious 
redirections from compromised websites to tech support 
scams, browser miners, etc. Instead of doing redirection 
through JavaScript, the redirection can be achieved using 
WebAssembly. The code snippet below shows redirection 
to our keylogger POC.

Thus, we can build a long redirection chain using 
WebAssembly: the compromised website loads the above 
Wasm, which leads to the custom phishing page where we steal 
confidential information using WebAssembly.

REFERENCES
[1]  https://www.quora.com/in/Will-WebAssembly-make-

JavaScript-skills-more-or-less-valuable-in-the-future-
WebAssembly-will-allow-performance-critical-stuff-to-
be-done-using-WASM-while-all-the-rest-will-still-
make-sense-to-be-done-in-Javascript.



THE DARK SIDE OF WEBASSEMBLY  LONKAR & CHANDRAYAN

9VIRUS BULLETIN CONFERENCE OCTOBER 2018

[2]  http://2ality.com/2013/02/asm-js.html.

[3]  https://medium.com/javascript-scene/why-we-need-
webassembly-an-interview-with-brendan-eich-
7fb2a60b0723.

[4]  https://brendaneich.com/2015/06/from-asm-js-to-
webassembly/.

[5]  https://auth0.com/blog/7-things-you-should-know-
about-web-assembly/.

[6]  https://webassembly.org/.

[7]  https://developer.mozilla.org/en-US/docs/
WebAssembly.

[8]  https://developer.mozilla.org/en-US/docs/Mozilla/
Projects/Emscripten.

[9]  http://kripken.github.io/emscripten-site/.

[10]  https://cloudblogs.microsoft.com/
microsoftsecure/2018/04/20/teaming-up-in-the-war-on-
tech-support-scams/.

[11]  https://www.ic3.gov/media/2018/180328.aspx.

[12]  https://www.symantec.com/connect/blogs/tech-support-
scams-increasing-complexity.

[13]  https://www.symantec.com/blogs/threat-intelligence/
tech-support-scams-aes.

[14]  https://kripken.github.io/emscripten-site/docs/porting/
connecting_cpp_and_javascript/Interacting-with-code.
html#interacting-with-code-call-javascript-from-native.

[15]  https://en.wikipedia.org/wiki/Keystroke_logging.


