
VIRUS BULLETIN www.virusbulletin.com

1FEBRUARY 2018

Covering the
global threat landscape

A REVIEW OF THE EVOLUTION OF
ANDROMEDA OVER THE YEARS
BEFORE WE SAY GOODBYE!
Bahare Sabouri & He Xu
Fortinet, Canada

Andromeda, also known as Gamaru and Wauchos, is a
modular and HTTP-based botnet that was discovered in late
2011. From that point on, it managed to survive and continue
hardening by evolving in different ways. In particular, the
complexity of its loader and AV evasion methods increased
repeatedly, and C&C communication changed between the
different versions as well.

We deal with versions of this threat on a daily basis and we
have collected a number of different variants. The botnet fi rst
came onto our tracking radar at version 2.06, and we have
tracked the versions since then. In this paper we will describe
the evolution of Andromeda from version 2.06 to 2.10 and
demonstrate both how it has improved its loader to evade
automatic analysis/detection and how the payload varies
among the different versions.

This article could also be seen as a way to say ‘goodbye’ to
the botnet: a takedown effort, followed by the arrest of the
suspected botnet owner in December 2017, may mean we
have seen the last of the botnet that has plagued Internet users
for more than a decade.

O VERVIEW OF ANDROMEDA
The fi rst Andromeda to be discovered was spotted in the wild
in 2011, and the new 2.06 version followed quickly afterwards
in early 2012. Not much is known about any earlier versions
and it is possible they were never released into the wild.

The campaign continued to develop with versions 2.07, 2.08,
2.09 and 2.10. The latest known version, 2.10, was fi rst seen
in 2015 and may be the fi nal version released: according to
posts on underground forums, the development of the threat
stopped around a year ago. Figure 1 shows a brief history of
Andromeda.

Regardless of the version, Andromeda arrives on the target
machine as a packed sample. Various packers have been used,
from very famous packers such as UPX and SFX RAR to
lesser known and even customized ones which are compiled
in various languages such as Autoit, .Net and C++.

Unpacking the fi rst layer of the sample reveals the loader,
which is small both in terms of size (13KB to 20KB) and in
the number of function calls it contains.

L OADER
In all versions of Andromeda the loader avoids making direct
calls to APIs. Instead, it incorporates hashes to fi nd and call

Figure 1: A brief history of Andromeda.

Figure 2: Version 2.08 passes the hash as an immediate value
to ‘resolveAddress_byHash’.

VIRUS BULLETIN www.virusbulletin.com

FEBRUARY 20182

the APIs via general purpose registers. Versions 2.06, 2.07
and 2.08 pass hash values as immediate values to a function
and thus fi nd the matching API name. Version 2.06 uses
a custom hash function, while versions 2.07 and 2.08 use
CRC32. Versions 2.09 and 2.10 have the same trivial custom
hash function. Figure 3 shows the loader in version 2.09
handling an array of hash values.

Figure 3: In version 2.09, the loader handles an array of
hash values.

Version 2.10 also keeps an array of API hash values.
The hash algorithm is a custom function and, in order to
complicate static analysis further, the author incorporates
opaque predicates, as shown in Figure 4.

MAIN STRUCTURE
The section in the loader that is used to evade virtual
machines and, more generally, analysis, is similar in
versions 2.06, 2.07 and 2.08. In these variants, the loader
enumerates the processes running on the machine and
compares them against a list of unwanted processes. In
order to do this, the loader converts the name of each
process to lowercase and then calculates its hash value.

The hash values are then compared against a hard-coded
list of values. The same algorithm as is used to hash API
names is used here. The hash algorithm in version 2.08
has an extra xor instruction (xor eax, 0E17176Fh). As
shown in Figure 5, the newer versions have longer lists of
unwanted processes.

Next, the bot takes advantage of registry artifacts and checks
the registry value in the following key:

Key: HKLM\system\currentcontrolset\services\disk\enum
ValueName: 0

Version 2.06 parses the value of the subkey for the presence
of the substrings ‘qemu’, ‘vbox’ and ‘wmwa’. Similarly,
versions 2.07 and 2.08 check for ‘qemu’, ‘vbox’ and
‘vmwa’. (It is likely that ‘wmwa’ was a bug in version 2.06
that was patched later.) Upon fi nding any of these strings,
each version takes a different approach to redirect the fl ow
of the code.

Before redirecting the code in versions 2.06 and 2.07,
the sample designates another snippet of code that uses a
technique known as ‘time attack’ in order to prevent further
analysis. The malware acquires the timestamp counter (by
calling rdtsc) twice and calculates the difference between
the two. If the difference is less than 512ms, it proceeds to
resolve imports and decrypt the payload. Otherwise, it leads
to a dummy code, where the loader drops a copy of itself in
%ALLUSERSPROFILE% and renames it to svchost.exe.

Following that, it creates an autorun registry for the dropped
fi le as follows:

Key: HKLM\SOFTWARE\Microsoft\Windows\
CurrentVersion\Run
ValueName: SunJavaUpdateSched

Figure 4: Opaque predicates in the version 2.10 loader make static anaylsis more diffi cult.

 VIRUS BULLETIN www.virusbulletin.com

FEBRUARY 2018 3

Figure 5: From left to right: version 2.06, 2.07 and 2.08 hard-coded hash values correspond to the list of unwanted processes.

2.06 2.07 2.08
0x4CE5FD07: vmwareuser.exe 0x99DD4432: vmwareuser.exe 0x97CA535D: vmwareuser.exe

0x8181326C: vmwareservice.exe 0x2D859DB4: vmwareservice.exe 0x23928ADB: vmwareservice.exe

0x31E233AF: vboxservice.exe 0x64340DCE: vboxservice.exe 0x6A231AA1: vboxservice.exe

0x91D47DF6: vboxtray.exe 0x63C54474: vboxtray.exe 0x6DD2531B: vboxtray.exe

0xE8CDDC54: sandboxiedcomlaunch.exe 0x349C9C8B: sandboxiedcomlaunch.exe 0x3A8B8BE4: sandboxiedcomlaunch.exe

0x8C6D6C: sandboxierpcss.exe 0x3446EBCE: sandboxierpcss.exe 0x3A51FCA1: sandoxierpcss.exe
0x0A8D0BA0E: procmon.exe 0x5BA9B1FE: procmon.exe 0x55BEA691: procmon.exe

0x0A4EF3C0E: wireshark.exe 0x3CE2BEF3: regmon.exe 0x32F5A99C: regmon.exe

0x5CD7BA5E: netmon.exe 0x3D46F02B: fi lemon.exe 0x3351E744: fi lemon.exe

0x77AE10F7: wireshark.exe 0x79B90798: wireshark.exe

0x0F344E95D: netmon.exe 0x0FD53FE32: netmon.exe

0x23A97A00: prl_tools_service.exe

0x0ADC6152B: prl_tools.exe

0x1365FAFE: prl_cc.exe
0x98847CD1: sharedintapp.exe
0x299BC837: vmtoolsd.exe
0x35E8EFEA: vmsrvc.exe
0x632434B6: vmusrvc.exe

Table 1: Corresponding process to each hash.

VIRUS BULLETIN www.virusbulletin.com

FEBRUARY 20184

Eventually, waiting for a command in an infi nite loop, it
sniffs port 8000. A received command will then be run in the
command window.

As part of its evolution, version 2.07 implements
a custom exception handler using a call to
SetUnhandledExceptionFilter. Similarly, version 2.08 calls
RtlAddVectoredExceptionHandler and adds the custom
handler as the fi rst handler into the vectored exception
handler chain (VEH), as shown in Figures 7 and 8.

If the malware fi nds any of the substrings in the retrieved
registry, it runs a function that causes an access violation. The
access violation is created intentionally when the sample tries
to overwrite the DLL characteristics in the PE header which
only has read rights, as shown in Figures 9 and 10.

In this case, if the sample is not being debugged, control
is passed immediately to the custom handler. The custom
exception handler decrypts a piece of code that will be
injected into another process later (Figure 11).

Figure 6: Timestamp analysis to detect the debugger.

Figure 7: Bot creates a custom exception handler in version 2.07.

Figure 8: Bot adds a custom exception handler into VEH in version 2.08.

Figure 9: Overwriting the PE header raises an exception.

Figure 10: The PE header only has read rights.

 VIRUS BULLETIN www.virusbulletin.com

FEBRUARY 2018 5

Versions 2.07 and 2.08 share another feature that controls
whether the loader bypasses anti-VM and anti-debugging
procedures. The loader calls GetVolumeInformationA on the
‘C:\’ drive and acquires the drive name. Next, it calculates
the CRC32 of the drive name and compares it against a
hard-coded value, 0x20C7DD84 (Figure 12). If they match,
it bypasses the anti-forensics checks and proceeds directly
to invoke the exception. The author probably used this
technique to test the bot in his/her virtual machine without
the need to go through the anti-VM/anti-analysis features.

Versions 2.09 and 2.10 evade debugging and analysis by
implementing the same idea as previous versions, but this

time in the payload. Eventually, in all versions, the loader
injects the payload into a remote process using a process
hollowing technique and runs it in memory.

PAYLOAD

As mentioned, the payloads of versions 2.09 and 2.10 start
with some anti-VM tricks, despite the earlier versions having
taken care of this in the loader. Like the older versions, they
check for a list of blacklisted processes in case the machine is
compromised. The number of blacklisted processes in version
2.09 is exactly the same as in 2.08, whereas it increases to

Figure 11: Custom exception handler.

Figure 12: Drive C checksum is calculated and compared to 0x20C7DD84.

VIRUS BULLETIN www.virusbulletin.com

FEBRUARY 20186

21 processes in version 2.10 (see Figure 13). Like versions
2.07 and 2.08, versions 2.09 and 2.10 calculate the CRC32
of the process name. However, instead of implementing the
algorithm, they call RtlComputeCrc32 directly. If the bot
fi nds any of the target processes, it runs a snippet of code
to sleep for one minute in an infi nite loop in order to evade
detection.

If ‘HKLM\software\policies’ contains the registry key
‘is_not_vm’ and the key is VolumeSerialNumber, version
2.10 bypasses these checks. This behaviour is comparable
to that in versions 2.07 and 2.08 where the bot checked the
checksum of the root drive.

EVOLUTIO N OF C&C

The main aim of Andromeda’s payload is to steal the infected
system’s information, talk to the command-and-control
(C&C) server, and download and install additional malware
onto the system. In order to do this, it initiates a sophisticated

Version Action Request Task Report

2.06 id:%lu|bid:%lu|bv:%lu|sv:%lu|pa:%lu|la:%lu|ar:%lu id:%lu|tid:%lu|result:%lu

2.07 id:%lu|bid:%lu|bv:%lu|os:%lu|la:%lu|rg:%lu id:%lu|tid:%lu|res:%lu

2.08 id:%lu|bid:%lu|bv:%lu|os:%lu|la:%lu|rg:%lu id:%lu|tid:%lu|res:%lu

2.09 id:%lu|bid:%lu|os:%lu|la:%lu|rg:%lu id:%lu|tid:%lu|err:%lu|w32:%lu

2.10 {“id”:%lu,“bid”:%lu,“os”:%lu,“la”:%lu,“rg”:%lu}
{“id”:%lu,“bid”:%lu,“os”:%lu,“la”:%lu,“rg”:%lu,“bb”:%lu}

{“id”:%lu,“tid”:%lu,“err”:%lu,“w32”:%lu}

Table 2: Evolution of the message formats.

Action Request Task Report

Tag Information Tag Information

id Volume serial number of victim machine id Volume serial number of victim machine

bid Bot ID, a hard-coded DWORD in payload tid Task ID provided by server

bv Bot version res/result/err Flag indicating if task is successful

pa Flag indicating whether OS is 32-bit or 64-bit w32 System error code, returned by
RtlGetLastWin32Error

la Local IP address acquired from sockaddr structure

ar/rg Flag indicating if the process runs in the
administrator group

sv/os Version of the victim operating system

bb Flag indicating if victim system uses a Russian,
Ukrainian, Belarusian or Kazakh keyboard

Table 3: Defi nition of tags.

Figure 13: The number of blacklisted processes increases in
version 2.10.

 VIRUS BULLETIN www.virusbulletin.com

FEBRUARY 2018 7

command-and-control channel with the server. Each version
of Andromeda uses a different format for the message and the
report that it sends to the server.

As shown in Table 2, each version has two message formats,
both sent as HTTP POST requests: Action Request and Task
Report. Action Request contains the information exfi ltrated
from the compromised system; the bot sends it to the server
after encryption. Task Report, as the name implies, provides a
report about the accomplished task.

The Action Request format shares some essential tags among
all versions, such as ‘id’ and ‘bid’, while some other tags
are version-specifi c, such as ‘ar’ in version 2.06 and ‘bb’ in
version 2.10. It is only the last version of the bot that uses
JSON format to communicate with the C&C server.

Table 3 describes the role of each tag in the format.

We believe that ‘bid’ is used to represent build ID and,
interestingly, in some versions, like 2.06 and 2.10, it indicates
a date in the format YYYYMMDD, as can be seen in
Figure 14. In other instances, this tag represents a hard-coded
random number. The latest observed ‘bid’ in version 2.10 is
22 May 2017, which suggests that development stopped then.

After version 2.08, ‘bv’, which indicates the bot version,
is removed from the request message. However, in the two
latest versions, there remains a clue as to the bot version,
which is a hard-coded xor key. This xor key is used in fi ve
different places in version 2.09 and twice in version 2.10.
In all cases, it xors the ‘id’ and will be further manipulated
to be used as the fi le name or registry value (see Figures 15
and 16).

When the message is prepared for the required information,
in all versions except the most recent one, the string
is encrypted in two steps. The fi rst step uses a 20-byte
hard-coded RC4 key and the second step uses base64
encoding. Version 2.10 encrypts the message only using the
RC4 algorithm. After posting the message to the server, the
bot receives a message from the server. The bot validates the
message by calculating its CRC32 hash excluding the fi rst
DWORD, which serves as a checksum. If the hash equals this
excluded DWORD, it proceeds to decrypt the message using
the ‘id’ value as the RC4 key.

Next, it decodes the base64 string and obtains a plain text
message. Received messages have the following structure:

struct RecvBlock {
 uint8_t cmd_id;
 uint32_t tid;
 char cmd_param[];
};

According to the communicated cmd_id, the bot carries out
a designated command which could be any number from the
following: 1, 2, 3, 4, 5, 6, 9. In versions prior to 2.09, the bot
is capable of performing all seven tasks. But in versions 2.09
and 2.10, it discards commands 4 and 5.

In Table 4 we take a look at each task and describe it further
using static analysis of the code.

It is interesting to note that the cmd_id value changes a little
in versions 2.09 and 2.10. As a result, the bot fi rst downloads
the plug-in and later fi nds three plug-in exports, aStart,

Figure 14: ‘bid’ value in version 2.10.

Figure 15: The bot version is represented as a hard-coded xor key and used as a fi le name.

VIRUS BULLETIN www.virusbulletin.com

FEBRUARY 20188

Figure 16: The bot version is represented as a hard-coded xor key and used in registries.

cmd_id Task type Description

1 Download EXE Using the domain provided in the command_parameter, the bot downloads an exe, saves it in
the temp folder with a random name, and executes it.

2 Install plug-in Using the domain provided in the command_parameter, the bot installs and loads plug-ins.

3 Update bot Using the domain provided in the command_parameter, the bot gets the exe fi le to update
itself. If a fi le named ‘Volume Serial Number’ exists in the registry, the bot drops the update
in the temp folder and gives it a random name. Otherwise, the fi le is dropped in the current
directory.

This task is followed by cmd_id=9, which kills the older bot.

4 Install DLL Using the domain provided in the command_parameter, the bot downloads a DLL into the
%alluserprofi le% folder with a random name and .dat extension.

5 Delete DLLs The DLL loaded in cmd_id=4 is uninstalled.

6 Delete plug-ins The plug-ins loaded in cmd_id=3 are uninstalled.

9 Kill bot All threads are suspended and the bot is uninstalled.

Table 4: The seven command IDs and their tasks.

 VIRUS BULLETIN www.virusbulletin.com

FEBRUARY 2018 9

aUpdate and aReport, using a call to the GetProcAddress API
(Figure 17).

To summarize, Andromeda normally spreads via exploit kits
located on compromised websites. The primary sample is
packed and drops the loader after the unpacking stage. In the
earlier versions of the bot the loader contains anti-VM and
anti-analysis tricks. In all versions, the loader decrypts the
payload and resolves APIs for indirect calls in the payload.
As a result, using an anti-API hooking trick, the loader saves
the fi rst instruction of the API call into memory and jumps to
the second instruction.

In the last two versions of the bot (2.09 and 2.10) the payload
contains anti-VM and anti-analysis features. In version
2.07 and later versions, the payload leverages an inline
hooking technique and hooks selected APIs. For example,
in versions 2.07 and 2.08 the bot hooks GetAddrInfoW,
ZwMapViewOfSection and ZwUnmapViewOfSection; in
version 2.09 it hooks GetAddrInfoW and NtOpenSection;
and in version 2.10 it hooks GetAddrInfoW and
NtMapViewOfSection. In all versions, the bot steals
information from the compromised system, sends the
information to the server (after encryption), and waits for a
command from the server.

Upon receiving a command from the server, the bot acts
accordingly, installing plug-ins and downloading other

malware. Finally, the bot sends a report about its mission to
the server.

SI DE NOTE

It has been a while since the last version of Andromeda was
released. We have been waiting a long time for a new variant
to emerge, but Reuters reported recently:

‘National police in Belarus, working with the U.S. Federal
Bureau of Investigation, said they had arrested a citizen of
Belarus on suspicion of selling malicious software who they
described as administrator of the Andromeda network.’ [3]

Based on that, we can tentatively call this the end of the
Andromeda era, and conclude that there won’t be any further
releases.

CO NCLUSION
From 2011 to 2015, Andromeda kept analysts busy with
its compelling features and functionality, and it remains
among the most prevalent malware families today. Over
the course of four years, fi ve major versions were released,
each new version being more complex than its predecessor.
This guaranteed that Andromeda remained a sophisticated
threat. A fl exible C&C provided a wide range of functionality

Figure 17: The payload also searches for plug-in exports aStart and aUpdate.

Figure 18: Andromeda at a glance.

VIRUS BULLETIN www.virusbulletin.com

FEBRUARY 201810

and effi ciency, increasing the power of the threat by installing
various modules. Meanwhile, it integrated several RC4
keys to encrypt data for C&C communications, thus
making detection a signifi cantly more complex challenge.
Fortunately, however, analysts have become suffi ciently
familiar with Andromeda’s ecosystem over the years to learn
how to navigate all of its challenges.

RE FERENCES
[1] Tan, N. Andromeda 2.7 features. Fortinet blog.

23 April 2014. https://blog.fortinet.com/2014/04/23/
andromeda-2-7-features.

[2] Xu, H. A good look at the Andromeda botnet. Virus
Bulletin. May 2013. https://www.virusbulletin.com/
virusbulletin/2013/05/good-look-andromeda-botnet.

[3] Sterling, T.; Auchard, E. Belarus arrests suspected
ringleader of global cyber crime network. Reuters.
5 December 2017. https://ca.reuters.com/article/
technologyNews/idCAKBN1DZ1VY-OCATC.

[4] Xu, H. Cracked Andromeda 2.06 spreads bitcoinn
miner. Fortinet blog. 7 January 2015.
https://blog.fortinet.com/2015/01/07/cracked-
andromeda-2-06-spreads-bitcoin-miner.

SA MPLE INFORMATION

Version 2.06
MD5: 73564f834fd0f61c8b5d67b1dae19209

SHA256: 4ad4752a0dcaf3bb7dd3d03778a149ef1cf6a8237b2
1abcb525b9176c003ac3a

Fortinet detection name: W32/Kryptik.AFJS!tr

Version 2.07
MD5: d7c00d17e7a36987a359d77db4568df0

SHA256: 44950952892d394e5cbe9dcc7a0db0135a21027a0b
f937ed371bb6b8565ff678

Fortinet detection name: W32/Injector.ZVR!tr

Version 2.08

MD5: b4d37eff59a820d9be2db1ac23fe056e

SHA256: 92d25f2feb6ca7b3e0d921ace8560160e1bfccb0bee
b6b27f914a5930a33e316

Fortinet detection name: W32/Tepfer.ASYP!tr.pws

Version 2.09

MD5: 3f2762d18c1abc67e21a7f9ad4fa67fd

SHA256: 2f44d884c9d358130050a6d4f89248a314b6c02d40
b5c3206e86ddb834e928f6

Fortinet detection name: W32/BLDZ!tr

Editor: Martijn Grooten

Head of Testing: Peter Karsai

Security Test Engineers: Scott James, Tony Oliveira, Adrian Luca,
Ionuţ Răileanu, Chris Stock

Sales Executive: Allison Sketchley

Editorial Assistant: Helen Martin

Developer: Lian Sebe

© 2018 Virus Bulletin Ltd, The Pentagon, Abingdon Science
Park, Abingdon, Oxfordshire OX14 3YP, England
Tel: +44 (0)1235 555139 Email: editor@virusbulletin.com
Web: https://www.virusbulletin.com/

Version 2.10

MD5: fb0a6857c15a1f596494a28c3cf7379d

SHA256: 73802eaa46b603575216fb212bcc18c895f4c03b47c
9706cde85368c0334e0cd

Fortinet detection name: W32/Malicious_Behavior.VEX

