
VIRUS BULLETIN www.virusbtn.com

1JULY 2014

Covering the
global threat landscape

OBFUSCATION IN ANDROID
MALWARE, AND HOW TO FIGHT
BACK
Axelle Apvrille & Ruchna Nigam
Fortinet, France

Malware authors are certainly creative when it comes to
hiding their payloads from analysts’ eyes, using methods such
as emulator detection, application icon hiding, refl ection etc.
This paper focuses on obfuscation techniques encountered
while analysing Android malware. We present fi ve off-
the-shelf products (ProGuard, DexGuard, APK Protect,
HoseDex2Jar and Bangcle) and make suggestions as to how
researchers can detect when they have been used in malware,
and some techniques to help with their reversing. We also list
some custom obfuscation techniques we have encountered in
malware: loading native libraries, hiding exploits in package
assets, truncating URLs, using encryption etc. We provide
examples and supply the sha256 hash in each case. Finally,
we reveal a few new obfuscation techniques of which we
are aware, which might be used by malware authors in the
future. There are techniques for injecting malicious bytecode,
manipulating the DEX fi le format to hide methods, and
customizing the output of encryption to hide an APK. We
provide the current state of play as regards ongoing research
to detect and mitigate against these mechanisms.

1. INTRODUCTION
While obfuscation is not reprehensible, it has always been
particularly popular with malware authors. Numerous
Windows malware families use packers, obfuscation and
anti-debugging techniques to hide their devious intentions
from end-users and security researchers alike.

‘The use of ProGuard or a similar program to obfuscate
your code is strongly recommended for all applications
that use Google Play Licensing.’ [1]

In this paper, our aim is to assist security researchers and
anti-virus analysts in their reverse engineering of Android
malware. We provide tips to detect specifi c obfuscators, as
well as techniques for reversing them and accessing the real
payload.

2. DETECTING AND REVERSING OFF-THE-
SHELF ANDROID OBFUSCATION TOOLS
ProGuard is the most well known of all the Android
obfuscators, as it is integrated into the Android build

framework itself. It is also often encountered in malware1.
However, other tools, such as DexGuard – the extended
commercial version of ProGuard – and APK Protect also
exist.

2.1 ProGuard

By default, ProGuard renames paths, class names, methods
and variables using the alphabet. Thus, spotting strings
such as ‘a/a/a;->a’ in the smali code is a strong indication
that the sample has been obfuscated using ProGuard.
Of course, this simplistic method of detection is not
infallible because ProGuard can be confi gured to use
any replacement dictionary you wish using the options
-obfuscationdictionary, -classobfuscationdictionary and
-packageobfuscationdictionary. For instance,
Android/GinMaster.L uses a custom dictionary, where the
strings were probably generated randomly using something
like http://www.random.org/strings.

The replacement of path names, class names, methods and
variables cannot be undone. However, usually the reversing
of ProGuard-ed samples isn’t too diffi cult because the strings
and code layout are not modifi ed. The work is very similar to
reversing an application coded by a beginner (poor choice of
variable names etc.).

2.2 DexGuard

Working on DexGuard-ed samples is much more diffi cult.
[2] lists the obfuscator’s features. The main reason why
DexGuard-obfuscated samples are more diffi cult to work
with is because the class and method names are replaced
with non-ASCII characters and strings are encrypted. Tools
such as JD-GUI [3] and Androguard [4] are more diffi cult to
use (e.g. diffi cult to get name completion). It is as if reverse
engineers have had their senses dulled: text strings and even
some familiar function calls and patterns no longer exist to
guide the analyst to the more interesting parts of the code.

Fortunately, no obfuscator is perfect. [5] clarifi es parts
of how DexGuard works. Meanwhile, we provide a code
snippet that can be used to detect it, and three different ways
to help with the reversing of DexGuard-ed samples.

First, its detection – i.e. identifying the use of DexGuard
on a sample – is usually fairly visual: the repetitive use of
non-ASCII characters gives it away. The code snippet below
lists non-ASCII smali fi les in smali disassembled code.

$ fi nd . -type f -name “*.smali” -print | perl -ne
‘print if /[$^$ [:ascii:]]/’

1 In a partial database of 460,493 samples, we spotted it in 15% of
samples.

VIRUS BULLETIN www.virusbtn.com

JULY 20142

Second, its reversing can be made easier by using the
following tools or techniques:

• DexGuard decryption python script. [6] provides a
script template that can be applied to each DexGuard-ed
sample. The script decrypts encrypted strings, which
makes reversing easier. However, this tool only works
with samples that use old versions of DexGuard, not the
more recent ones.

• Logging. A reverse engineer can disassemble the
sample with baksmali [7], insert calls to Android logging
functions (see below), recompile the application (smali),
and run it.

invoke-static {v1, v2}, Landroid/util/Log;->e(Ljava/
lang/String;Ljava/lang/String;)I

 This displays corresponding strings in Android logs. It is
an archaic, but simple and useful debugging technique.
Nevertheless, this technique requires modifi cation of
the malicious sample – a practice anti-virus analysts are
usually not authorized (or willing) to perform for ethical
and security reasons.

• String renaming. To work around the problems caused
by non-ASCII characters, all strings can automatically
be renamed to a dummy ASCII string. To do this, we
enhanced Hidex [8]. Originally, this tool was created to
demonstrate the feasibility of hiding methods in a DEX
fi le (see Section 4 and [9]). However, progressively, it
has evolved into a small DEX utility tool that can be
used for the following:

- To list strings (option --show-strings).

- To automatically rename non-ASCII strings (option
--rename-strings). This is what we use, for instance,
in the case of DexGuard. Each string that contains
non-ASCII characters is replaced automatically by a
unique string generated only with ASCII characters
and which is the same size as the original string2. The
replacement string must meet the aforementioned
requirements of uniqueness and size, to conform to
the DEX fi le format. For proper replacement, note that
string size (UTF16 size fi eld of string data item) is in
UTF16 code units, not in bytes. Please refer to [10].

 There is one constraint that Hidex does not currently
handle: the ordering of strings. In DEX fi les, strings
must be ordered alphabetically. Renaming the strings
usually breaks the correct ordering. Consequently,
Android will refuse to load the modifi ed classes.dex
fi le. In the case of reverse engineering malware, this
is not a real problem (perhaps it is even more secure/

2 In theory, there are cases where we should fall short of replacement
strings and thus fail to do the renaming. For example, if a sample has
more strings of a single character than possible ASCII characters, the
replacement is impossible. In practice, we have never encountered this
limitation.

ethically correct) because Android reversing tools
such as baksmali, apktool, dex2jar and Androguard
do not enforce correct ordering of strings either.
Thus, they are able to disassemble the modifi ed
classes.dex without any problem.

- To parse DEX headers and detect headers hiding
additional information (see Section 2.4).

- To detect potential hidden methods (option --detect).

2.3 APK Protect

APK Protect [11] is another advanced off-the-shelf
obfuscation product. The fi rst time we spotted it being used in
Android malware was in Android/SmsSend.ND!tr in March
2014. It is easy to identify its use in malware, because the
string ‘APKProtected’ is present in the DEX. Like DexGuard,
its reversing is diffi cult. In particular, we worked out its string
encryption process, which is illustrated in Figure 1.

Figure 1: String encryption process used in APK Protect-ed
malware.

To decrypt an encrypted string, one must:

1. Swap the fi rst and last two bytes.

2. Base64 decode the string. Actually, the code of the APK
Protect-ed sample hides the call to Base64 decoding
methods. It does not call the method directly but via Java
refl ection. The path for Base64 (android.util.Base64) is
decoded from a XOR-encrypted string, and the method
name (decode) is created by picking up the appropriate
characters in the path name.

3. XOR the decoded string.

4. Decrypt the result using the hard-coded key ‘#safeguar’.

Knowing this, it is possible to implement one’s own string
decryptor. The implementation must be adapted to each
sample as XOR keys change.

$ java SmsDecrypt

Processing string: ==aFgIDU0oPWgoK...

d64xor: 96500db3f2242a4b2ac920e4...

Decrypting: ybbc[CENSORED]icp.cc

 VIRUS BULLETIN www.virusbtn.com

JULY 2014 3

An alternative to this labour-intensive method (which has to
be repeated for every single sample) is to send the sample for
analysis by Andrubis [12]. As shown in Figure 2, Andrubis
does the work for us, showing the URLs the malware
contacts and the decryption key.

Figure 2: Andrubis analysis results showing the decryption
key and output.

2.4 HoseDex2Jar

HoseDex2Jar is a packer that was released a year ago. It is
quite simple, and thus easy to circumvent. It is based on the
premise that, normally, DEX headers are exactly 0x70 bytes
long. However, it was found that Android does not strictly
enforce the header size, so one can add data at the end of
the header.

This is precisely what HoseDex2Jar does:

1. Encrypts the DEX.

2. Creates a new DEX for the packed app.

3. Puts the encrypted DEX into the new DEX header (e.g.
end).

4. Sets the DEX header size.

This is easy to spot: look for DEX fi les with header size
greater than 0x70 (= 112). This can be done using Hidex,
which displays a warning:

$ ~/dev/hideandseek/hidex/hidex.pl --input classes.
dex-hosed

WARNING: strange header size: 136080

DEX Header of fi le:

Magic : 6465780a30333500

To reverse hosed applications, Tim Strazzere released a de-
hoser [13]. We have not encountered any hosed malware yet.

2.5 Bangcle

Bangcle [14] is an online service for packing Android
executables. The process is the following:

1. Register on Bangcle to get a user account.

2. Download the Bangcle Assistant tool.

3. Use the tool to upload your package. At this point,
Bangcle servers do check that the package is not
malicious, but they can be fooled.

4. Retrieve the protected app (for a signed version of
the protected app, a keystore must be uploaded by the
user).

The packing process modifi es the structure of the original
APK quite extensively:

• The name of the application is changed (always) to
com.secapk.wrapper.ApplicationWrapper.

• There are new assets and new native libraries.

• The manifest is modifi ed.

• The classes.dex fi le is completely modifi ed. The original
activity no longer exists and is replaced by a generic
placeholder.

There are several ways to detect the use of Bangcle:
the application’s name ‘com.secapk.wrapper.
ApplicationWrapper’, the presence of an asset named
‘bangcle classes.jar’, the presence of native libraries named
‘libsecexe’ and ‘libsecmain’, and class names such as
‘FirstApplication’ or ‘ACall’.

The diffi culty lies in reversing samples that are protected with
Bangcle. Though this has yet to be confi rmed, [15] claims that
‘a growing percentage of malware, such as bank Zeus, SMS
Sender, and re-packaged applications, are packed by [the
Bangcle] service’. We spotted Bangcle in Android/Feejar.B.

Bangcle is particularly resistant to reverse engineering
because:

• Functions exported by native libraries have obfuscated
names.

• Several libc functions, like mmap2, munmap, open,
read, write, close and msync, are hooked. It is likely
that ptrace is hooked too, as debuggers have diffi culty
attaching to certain Bangcle processes.

• The libraries are compiled with stack protection enabled
(stack chk guard).

• The real application is encrypted, and only decrypted in
memory at runtime. In particular, the RC4 algorithm is
used [16].

Interesting analyses can be found in [17, 18] (in Chinese).

The solution we used in order to gain a better understanding
of packed malware consists of using IDA Pro’s ARM remote
debugger. The remote debugger server is on the Android
platform, while it communicates with IDA Pro on a remote
host. We attach to the thread of a process that loads libsecmain
and dump the memory when it is decrypted (see Figure 3).

3. CUSTOM OBFUSCATION
Malware authors have been very active in designing their
own obfuscation techniques. Some of the techniques are
basic, and others are more complicated:

VIRUS BULLETIN www.virusbtn.com

JULY 20144

• Using very long class names to defeat tools. This
technique has been mentioned in [19] and seen in the
wild in Android/Mseg.A!tr.spy (sha256 hash: cc42f8a1fc
6805a9deeaae198fb4580b304b51489dec4209929a09b9c
3868aee).

• Using nops to modify the bytecode fl ow. This was
mentioned in [20], and is extremely common.

Figure 3: Decrypted memory of a protected application.

Android malware name Year of discovery Obfuscation

SmsSend.N

66699d5c55f442203d5b933e87339d3c2f7f256037b45d6ad3ba9e00a6500851

2012 ProGuard-ed

Plankton.B!tr

6600fdf4e758bfab3b73ab26270dd9f4c02847f144e28c255919aee7d91a0f11

2011 ProGuard-ed
parts

DroidKungFu.D!tr

938efb5bdc96d353b28af57da2021b6a3c5a64452067059bf50d7fb7c7a66426

2011 ProGuard-ed
parts

Dendroid.A!tr

0b8ba0c6cebe5695639bf1b282b52f126dba733f3c204e37615a3ba5f7dd6fe8

2014 DexGuard-ed

Rmspy.A!tr

57e37d4cfc9e0ea9287ba72185c12bb4ccf4e1a56041f3c3d12c31be1aaf5506

2013 DexGuard-ed

0bad.A

b65c352d44fa1c73841c929757b3ae808522aa2ee3fd0a3591d4ab67598d17

2013 DexGuard-ed

SmsSend.ND

3aee81db24540fb6b3666a38683259fd32713187ec6e0b421da9b91bd216205f

2014 APK Protect-ed

Feejar.B

0000350c0792f61ee513f40bd9a42d09144cc6a3c4f2171f812ef415a9a51640

2014 Bangcle

Table 1: Examples of malware using off-the-shelf obfuscation tools.

• Path obfuscation. For example, in an Android/Plankton
sample, the normal Airpush SDK path is replaced by
com/OajgOKqg/FYmaEVCV92392.

• Path phishing. This consists of using a well known
(legitimate) path and hijacking it for illegitimate
purposes. For example, in Android/RuSMS.AO,
com.adobe.air (normally used by Adobe AIR) is used to

 VIRUS BULLETIN www.virusbtn.com

JULY 2014 5

hide the malicious functionality. Path phishing is very
common too.

• Hiding packages, JARs etc. in raw resources or
assets. Table 2 lists some examples of malware samples
that hide malicious packages in resource fi les. For
example, Android/SmsZombie.A!tr hides a malicious
package in a JPG named ‘a33.jpg’ in the assets directory.
Android/Gamex.A!tr hides an encrypted malicious
package in an asset named ‘logos.png’. This is close to
what is referred to as a polyglot fi le [21], i.e. a fi le which
is valid and meaningful for different formats. In Gamex,
the asset ‘logos.png’ is not a valid PNG (thus not really
a polyglot), but a ZIP. However, it has the peculiarity of
being a valid ZIP fi le as such, and also another valid ZIP
fi le when XOR’ed with the right key (18).

• Hiding bytecode. (For instance, abusing linear
sweep disassemblers [22].) According to [16], this
is encountered in up to 30% of obfuscated samples.
For example, we fi nd it in Android/Agent.SZ!tr.
This technique can be detected by looking for Dalvik

Android malware name Year of discovery Obfuscation

Gamex.A!tr

ae7a20692250f85d7a2ed205994f2d26f2d695aef15a9356938454bccbbbd069

2013 Assets contain a fi le named
‘logos.png’. This is not a
PNG, but a ZIP, and it unzips
to different valid outputs
depending on whether
XOR’ed with key (18) or not.

SmsZombie.A!tr

45099416acd51a4517bd8f6fb994ee0bb9408bdd80dd906183a3cdb4b39c4791

2012 Hides malicious package in
‘a33.jpg’.

DroidCoupon.A!tr

94112b350d0fece0a788fb042706cb623a55b559ab4697cb10ca6200ea7714

2011 The Rage Against the Cage
exploit is hidden in a PNG fi le
in raw resources.

Table 2: Examples of samples hiding malicious packages in resource fi les.

bytecode that does a goto followed by fi ll-array-data
opcode (see Figure 4). Reverse engineers can use the
script androdis.py released with Androguard [4].

• String table. Android/GinMaster.L (sha256 hash: e8646
7622b8faf903edcebe0a57b85c036aa59b1820694ef326b
50062dfdc910) builds its own string table as a char array
(see below array named ‘OGqHAYq8N6Y6tswt8g’).

package Eg9Vk5Jan;

 class x18nAzukp {

 fi nal private static char[][] OGqHAYq8N6Y6tswt8g;

 static x18nAzukp()

 {

 v0 = new char[][48];

 v1 = new char[49];

 v1 = {97, 0, 110, 0, 100, 0, 114, 0, 111, ...

 v0[0] = v1;

 v2 = new char[56];

 v2 = {... 110, 0, 97, 0, 103, 0, 101, 0, 114, 0};

 v0[1] = v2;

 ...

 }

protected static String rLGAEh9JeCgGn73A(int p2) {

 return new String(

Eg9Vk5Jan.x18nAzukp.OGqHAYq8N6Y6tswt8g[p2]);

}

...

new StringBuilder(x18nAzukp.rLGAEh9JeCgGn73A(43))

 The rest of the code references the strings in that char
array. So you never see the strings directly, but instead
indirect calls like rLGAEh9JeCgGn73A(43) etc.

• Naïve encoding or encryption. Many samples use
Base64 (e.g. Android/Stels), XOR (Android/FakeInst),
Caesar (Android/Pincer), or simply chop the data into
several chunks (e.g. Android/RuSMS.AO below).

String.valueOf(“http”) + “://” + “ap” + “iad” + “ver”
+ “t.ru”);

Figure 4: Bytecode is hidden in the array of fi ll-array-data
and invisible to Dalvik disassemblers, which use linear

sweep.

VIRUS BULLETIN www.virusbtn.com

JULY 20146

 Some other samples are more creative:
Android/Vdloader encrypts characters by
subtracting their position in the string (fi rst character
minus 0, second character minus 1, etc.), while
Android/Tascudap uses its own algorithm. Table 3 lists
a few examples of samples that use their own custom
techniques.

• Encryption. Malware authors use encryption for
various reasons [23]: to conceal strings and exploits, to
encrypt communication with the C&C server, to send

encrypted emails, and so on. Recent statistical analysis
of our Android malware database showed that 27% of
malware samples use encryption3. For example,
Android/Geinimi uses DES, Android/SmsSpy.HW!tr
uses Blowfi sh, and Android/RootSmart uses AES. Also
note that Android’s License Verifi cation Library (LVL)
uses AES-based obfuscation:

3 This percentage should be understood as an approximate maximum, as
some pieces of malware use encryption but in the ‘legitimate’ parts of
their code, not for malicious intent. This has been computed over a set of
460,493 Android samples.

Android malware name Year of
discovery

Obfuscation

Agent.SZ!tr

1673f18d7f5778dc4875f10dc507fc9d59be82eaf5060dfc4bfa7a7d6007f7df

2014 Hides bytecode using [22].

RuSMS.AO

768cfe8f5ca52c13508b113875f04a68174387e44321d68c132e2a7b6e0cbe0a

2014 Strings are cut into several parts so
as not to be spotted. Uses Adobe’s
AIR namespace so as not to look
suspicious.

Stels.A!tr

03c1b44c94c86c3137862c20f9f745e0f89ce2cdb778dc6466a06a65b7a591ae

2013 Custom base64 to decode the URL.

Pincer.A!tr.spy

fee013fcbbd30ef37c99eab56aa550d27e00e69150f342b80b08d689a98ccefe

2013 Caesar shift to read C&C URL and
phone number.

Tascudap.A!tr

0be2a4b3a0e68769fa5b3c9cd737e0e87abd6cddb29a7e1fdf326f407a658b54

2013 ProGuard-ed. URL is generated
from custom encryption. Malware
also uses AES with a key which is
built from a hard-coded seed.

SaurFtp.A!tr.spy

e769fdf8f2e1a5311ef089c422a7c0cb360d77082d7d1ef139a95c9321ec40

2013 C&C URL is XOR encrypted.

FakeInst.A!tr.dial

ac118892190417c39a9ccbc81ce740cf4777fde1

2012 SMS text bodies and phone numbers
are hidden in a text chunk inside a
PNG and ‘encrypted’ using XOR.

Vdloader.A!tr

c17ca0937891974d852f619d3b7be5defc79c6d7bf6f3beeebb991e684563902

2012 Custom encryption: decrypted =
char - pos.

Temai.A!tr

14354ddd2a9d63b3b5c5db94fd717953572f1293f291e26bc7a4725be4b0b3b8

2012 Downloads another password-
protected ZIP fi le. This ZIP fi le
is decrypted with a hard-coded
password, and is a script that opens a
backdoor on the phone.

LuckyCat.A!tr

5d2b0d143f09f31bf52f0a0810c66f94660490945a4ee679ea80f709aae3bd

2012 XOR encryption of traffi c sent to
attacker.

Pjapps.A!tr

02329dc3aa91b5175461b3c298b411fe9d35c8425a5fa485c3a3c4daa12c7d2a

2011 URL to contact is ‘encrypted’ with
a simple algorithm where you only
keep one character in every two.

Table 3: A non-exhaustive list of malicious Android samples using custom obfuscation techniques.

 VIRUS BULLETIN www.virusbtn.com

JULY 2014 7

1. A hard-coded prefi x (‘com.android.vending.
licensing.AESObfuscator-1|’) is added to the string
to be obfuscated.

2. The string is encrypted using AES in CBC mode and
PKCS5 padding. The key and IV are hard coded.

3. The encrypted result is encoded with Base64.

package com.android.vending.licensing;

...

public class AESObfuscator implements Obfuscator {

...

 private static fi nal String CIPHER_ALGORITHM =

 “AES/CBC/PKCS5Padding”;

 private static fi nal byte[] IV = { 16, 74, 71, -80...

 private static fi nal String header =

 “com.android.vending.licensing.AESObfuscator-1|”;

 LVL’s obfuscation is used in some samples of
Android/Plankton.

 In most cases, the encryption is hard coded. However,
some malware do not actually hard code it, but regenerate
the key from a random number generator seeded with a
hard-coded seed. For instance, this technique is used by
Android/RootSmart and Android/Fjcon.

 Table 4 lists a few examples of samples that use
encryption as an obfuscation technique.

 The reversing of samples using cryptography usually
means copy-pasting the decompiled Java code that
handles the decryption (perhaps with slight adaptation)
and running it independently on the data to decrypt.
Python comes in handy for writing quick decryption
code as there are many decryption libraries. For example,
we decrypt an encrypted XML confi guration fi le of
Android/SmsSpy.HW!tr using the following code:

import Crypto

from Crypto.Cipher import Blowfi sh

def PKCS5Padding(string):

 byteNum = len(string)

 packingLength = 8 - byteNum % 8

 appendage = chr(packingLength) * packingLength

 return string + appendage

def DoDecrypt(string):

 key = ‘tisWsx2xivgQXRxq’

 c1 = Blowfi sh.new(key, Blowfi sh.MODE_ECB)

 packedString = PKCS5Padding(string)

 return c1.decrypt(packedString)

• Loading non-Dalvik code. For instance,
Android/DroidKungFu.G loads an ELF executable
which holds the payload. Android/FakePlay.B!tr holds
a malicious JavaScript that implements click fraud. On
Windows Mobile, we have seen WinCE/Redoc loading

Basic via Basic4PPC. Basic4Android exists, but we
haven’t seen any malicious samples using it yet. Flash
code could hold malicious payloads too.

4. OBFUSCATION IN THE FUTURE
As we have seen in the previous sections, malware authors are
interested in obfuscating their code, and if Android’s crime
scene continues to follow the evolution of Windows malware
(as it has done until now), then we are only at the beginning
of the story. In particular, packers are likely to normalize as
UPX (and others) did for Windows. In this section, we prepare
for techniques malware authors might use in the near future.

In [24], Bremer demonstrates that it is possible to inject
bytecode into nearly any class, with only minor modifi cation.
The class needs to have at least a virtual function, and the
injection code must read the bytecode to inject as a string and
replace the address of that virtual method with the address of
the string. An attacker could use this technique for evil:

• Create a genuine application which acts as a bytecode
loader.

• Read (possibly decrypt) bytecode to inject from a
resource, or a remote host.

• Inject that bytecode into the genuine application and
have it perform a malicious action.

Fortunately, for now, Bremer’s technique is limited to returning
integers (see Figure 5). However, there is no doubt that it
can (and perhaps will) be extended in the future. Anti-virus
analysts may try to detect the bytecode loading code, which is
based on the iput-quick and invoke-virtual opcodes, however a
generic signature will be diffi cult to design as there are several
possible variations and potential false positives.

Figure 5: Injecting constant 0x07de = 2014 bytecode in
Bremer’s proof of concept.

In [9], we demonstrated that it is possible to hide methods
from disassemblers. This is potentially interesting to attackers

VIRUS BULLETIN www.virusbtn.com

JULY 20148

Android malware name Year of
discovery

Obfuscation

SmsSpy.HW!tr.spy

69cb8163e959e60b0e024457449c4c8d2586ed3cf2e46351fdedec8ef64a7a
79

2014 Contains an asset, ‘data.xml’,
which is encrypted using
Blowfi sh ECB and a hard-coded
key.

Agent.BH!tr.spy

5c89b1b008efee0c3a6294d0a02c77845cd91d1faad5df6bf7b6d54a5f3cd0
d3

2014 Sends emails using SMTP with
TLS authentication.

GMaster.B

18ad4064750a0e4733a828794f76e6d5b4e60b0fc79c54ba1d8955db82e48
9d2

2013 Uses Triple DES EDE, CBC with
PKCS7 padding to send JSON
object containing IMSI, IMEI and
various OS parameters.

FakeDefend.A!tr

5ad411cdcbf68f8f449c470b514ed4ee31cafdf2997c3cd0e6af032750edca58

2013 List of fake infections to display
on the device is encrypted with
AES.

NotCompatible.A!tr.bdr

2c5e656af90044cf5cc694519a42477cb18bd4b2722b1474cdead4a8748d3
f70

2012 C&C URLs located in a raw
resources fi le are encrypted
using AES in ECB mode. The
encryption key is the sha256 hash
of a hard-coded value.

Fjcon.A!tr

39f64285207b8184c4940252e2fadf7e903ea0a611bc1bebc84d33a8b692b
ada

2012 URLs are encrypted using AES.
The encryption key is generated
using a SHA-1-based PRNG,
seeded with value 125.

RootSmart.A!tr.dldr

ccdfe44762c1c3492f0ca4135afdc258fa7b39ecb9c156a6f0f15e9d05a3ac7e

2012 Domain name is encrypted using
AES. The encryption key is
generated using a SHA-1-based
PRNG.

BaseBridge.A!tr

07e1349dfc31e9e6251a2920521e453f71ce296352861902b99734a8a7b7f
554

2011 Uses variable and string
obfuscation. Uses AES
encryption.

Hongtoutou.A!tr

4ae1c0faa06ee4dfb6c96b6537d027e90c870d7d3ddcfd5fcde680be9dc51c69

2011 Encrypts phone info sent to
attacker, using DES.

SndApp.A!tr.spy

7e057d3133639374195da6c9805fd7f0edb818047d49955c3f5291f01b94

2011 Uses AES in CBC mode.

JSmsHider.A!tr

0ea2d931ebb55668ecb101304f316725f6fa1574dbb191dc2d647c65b3aebf

2011 Encrypts its communication with
the C&C using DES.

Geinimi.A!tr

2e998614b17adbafeb55b5fb9820f63aec5ce8b4

2011 Communication with the C&C
is encrypted, so are commands
and strings inside the binary. The
algorithm is DES, and the key is
hard coded.

Table 4: Examples of malicious samples using cryptography as an obfuscation technique.

 VIRUS BULLETIN www.virusbtn.com

JULY 2014 9

if they locate their malicious code in those hidden parts.
Fortunately, the technique was published along with the
Hidex detection tool [8]. (For more information, please see
slides from Insomni’hack 2014 [9].)

Ange Albertini has released a Python script [25, 26] that is
able to manipulate the encrypted output of AES or DES so
that it looks like a customizable PNG, JPG or sound fi le. A
malware author might be interested in using this technique
to hide an APK in assets or resources. He/she would create
an application which looks fairly genuine, with a seemingly
innocent PNG as an asset. The code would load the asset and
decrypt it with a hard-coded key to reveal the real, evil APK.
The malicious APK would then be installed on the device.
The attack is feasible, and such an APK can be created using
AngeCryption. However, a few hacks are necessary: the
End Of Central Directory (EOCD), which marks the end of
the ZIP fi le, must be duplicated and padded to 16 bytes (for
encryption with AES). We are currently working on a proof
of concept and detection tool.

5. CONCLUSION
We have seen Android malware authors use plenty of
different techniques to obfuscate their code. With new
tools like Bangcle, APK Protect and DexGuard, we fear
that mobile malware will become increasingly diffi cult to
reverse in the near future – not to mention techniques such
as bytecode injection, method hiding or AngeCryption which
haven’t been seen on the malware scene, yet.

In this paper, we have shown that we are not totally helpless
in the face of obfuscation. A few simple, but well chosen
Unix fi nd/grep commands are useful for understanding what
is happening. And in most cases, we have managed to reverse
samples with known existing tools such as baksmali, apktool
and Androguard – these tools usually work adequately (or
nearly), it is more a matter of looking at the right location.
Moreover, encryption, which sounds frightening at fi rst, does
not turn out to be so diffi cult to reverse in practice: we just
have to write a few lines of code to decrypt the ciphertext.
For situations in which reversing remains diffi cult, we have
provided a few enhancements to Hidex, a Perl script which
assists reverse engineers in detecting some situations, and

helps with the renaming of non-ASCII strings used by some
obfuscators.

So we are not helpless, but if we want to keep pace with
the techniques malware authors are likely to use in the near
future, we had better focus on tools and research in this area
as soon as possible.

ACKNOWLEDGEMENTS
We thank Ange Albertini, Jurriaan Bremer, Anthony Desnos,
Robert Lipovsky and Miroslav Legen for their help.

REFERENCES
[1] Implementing an Obfuscator. https://developer.

android.com/google/play/licensing/adding-licensing.
html#impl-Obfuscator.

[2] DexGuard. http://www.saikoa.com/dexguard/.

[3] JD-GUI. http://jd.benow.ca/.

[4] Androguard. https://code.google.com/p/androguard/.

[5] Nihilus. Reversing DexGuard 5.x. version 1.

[6] Fallière, N. A look inside DexGuard.
http://www.android-decompiler.com/
blog/2013/04/02/a-look-inside-dexguard/.

[7] Smali. https://code.google.com/p/smali/.

[8] Hidex. https://github.com/cryptax/dextools/tree/
master/hidex.

[9] Apvrille, A. Playing Hide and Seek with Dalvik
Executables. In Hack.Lu, October 2013.
http://www.fortiguard.com/uploads/general/hidex_
insomni.pdf.

[10] Android. Dalvik Executable Format.
http://source.android.com/devices/tech/dalvik/
dex-format.html.

[11] APK Protect. http://www.apkprotect.com/.

[12] Andrubis. http://anubis.iseclab.org/.

[13] Dehoser. https://github.com/strazzere/dehoser/.

[14] Bangcle. http://www.bangcle.com/.

Android malware name Year of
discovery

Obfuscation

FakePlay.B!tr

4bde46accfeb2c85fe75c6dd57bba898fbb3316f7c4be788bc18676451b54561

2013 The malicious payload is in the
JavaScript.

DroidKungFu.G!tr

b03a8fc6d508e16652b07fb0c3418ce04bd9a3c8e47a3b134615c339e6e66bf7

2012 Asset named ‘mylogo.jpg’
is a valid JPG fi le, but it also
contains an ELF.

Table 5: Examples of samples loading non-Dalvik malicious code.

VIRUS BULLETIN www.virusbtn.com

JULY 201410

[15] Yu, R. Android packer: facing the challenges,
building solutions. In Proceedings of the 24th Virus
Bulletin International Conference (VB2014). (To be
published.)

[16] Lipovsky, R. Obfuzzcation issues. In CARO
Workshop, May 2014.

[17] Jia, J. Android APK. May 2013. http://blog.csdn.net/
androidsecurity/ (in Chinese).

[18] Pan, B. Bangcle and crack the encryption method.
December 2013. http: //pandazheng.blog.163.com/
blog/static/1768172092013119311705/ (in Chinese).

[19] Strazzere, T. Dex Education: Practicing Safe Dex.
BlackHat USA, July 2012. http://www.strazzere.
com/papers/DexEducation-PracticingSafeDex.pdf.

[20] Mody, S. ‘I am not the D’r.0,1d you are looking for’:
an Analysis of Android Malware Obfuscation. In
Proceedings of the 23rd Virus Bulletin International
Conference, pp.105–113, October 2013.

[21] Albertini, A. This PDF is a JPEG; or This Proof of
Concept is a Picture of Cats. Journal of PoC – GTFO,
3, 2014.

[22] Schulz, P. Dalvik Bytecode Obfuscation on Android,
July 2012.

[23] Apvrille, A. Cryptography for Mobile Malware
Obfuscation. In RSA Europe Conference, 2011.
http://www.fortiguard.com/fi les/NMS-305-Apvrille-
Revised.pdf.

[24] Bremer, J. Abusing Dalvik Beyond Recognition,
October 2013. Hack.lu.

[25] Albertini, A. When AES(*)=*, April 2014.
https://corkami.googlecode.com/svn/trunk/ src/
angecryption/slides/AngeCryption.pdf.

[26] Angecrypt.py. http://corkami.googlecode.com/svn/
trunk/src/angecryption/angecrypt.py.

Editor: Martijn Grooten

Chief of Operations: John Hawes

Security Test Engineers: Scott James, Tony Oliveira

Sales Executive: Allison Sketchley

Editorial Assistant: Helen Martin

Perl Developer: Tom Gracey

Consultant Technical Editors: Dr Morton Swimmer, Ian Whalley

© 2014 Virus Bulletin Ltd, The Pentagon, Abingdon Science
Park, Abingdon, Oxfordshire OX14 3YP, England.
Tel: +44 (0)1235 555139. Fax: +44 (0)1865 543153
Email: editorial@virusbtn.com
Web: http://www.virusbtn.com/

