
MAY 2013

CONTENTS IN THIS ISSUE

IS
S

N
 1

74
9-

70
27

Covering the global threat landscape

THE HOLY GRAIL?
Metamorphism seems to be the holy grail for
virus writers in general. The assumption is that it
is more diffi cult for an anti-virus engine to detect
a metamorphic virus than it is to detect a ‘lesser’
virus. As a result, there have been attempts to
implement metamorphism on multiple platforms,
the latest of which is JavaScript. Peter Ferrie has the
details of JS/Transcript.
page 4

FLEXIBLE FOE
The Andromeda bot is fl exible and dynamic.
Its modular structure allows it to enhance its
abilities in different fi elds simply by installing
different modules. He Xu takes a close look at the
Andromeda botnet.
page 10

PERSISTENT COCKTAIL
Strong encryption and sophisticated algorithms
are not necessarily what make a piece of malware
persistent. Rather, it is the use of a cocktail of
techniques that ensures the longevity of malware
in the wild. Raul Alvarez looks at some of the
techniques used by W32/Kolab.
page 16

2 COMMENT

 Botnets of the mind

3 NEWS

 Security fi rms form new EU CERT

 ACLU fi les complaint against mobile carriers

3 MALWARE PREVALENCE TABLE

 MALWARE ANALYSES

4 Read the Transcript

10 A good look at the Andromeda botnet

16 Persistency in the wild

20 TECHNICAL FEATURE

 Cat-and-mouse game in CVE-2012-0158

24 END NOTES & NEWS

2 MAY 2013

COMMENT

Editor: Helen Martin

Technical Editor: Dr Morton Swimmer

Test Team Director: John Hawes

Anti-Spam Test Director: Martijn Grooten

Security Test Engineer: Simon Bates

Sales Executive: Allison Sketchley

Perl Developer: Tom Gracey

Consulting Editors:
Nick FitzGerald, AVG, NZ
Ian Whalley, Google, USA
Dr Richard Ford, Florida Institute of Technology, USA

BOTNETS OF THE MIND
‘…At the very least the mind is a plausible candidate for
infection by something like a computer virus…’1

I imagine that most readers of Virus Bulletin have some
idea of what a botnet is, but bear with me.

A botnet is a virtual network of computers: virtual in that
its members are not connected by physical cabling or
other attachment to the same network segment, but by the
fact that each has software installed (an ‘agent’ or ‘bot’)
that allows a remote machine to access and make use of it.
Not all bots are malicious, but the ones we talk about most
in security circles clearly are. A bot-infected machine
is often called a zombie, and one malicious use for a
network of bot-infected machines is to disseminate spam2.

A lot of money is made by some types of spam, including
those advertising goods (the goods may or may not exist,
but if they do exist, they seldom deliver everything the
buyer is led to expect); social engineering emails that
trick victims into running malicious attachments or
accessing malicious URLs; and out-and-out fraudulent
messages such as phishing scams and 419s.

Chain letters and hoaxes aren’t always considered to
meet a formal defi nition of spam. Nevertheless, they can

1 Dawkins, R. Viruses of the Mind. In Dennett and His Critics:
Demystifying Mind. Ed. Bo Dalhbom (Cambridge, Mass.:
Blackwell, 1993).
2 Harley, D.; Lee, A. Net of the Living Dead: Bots, Botnets and
Zombies. http://www.welivesecurity.com/media_fi les/white-papers/
Net_Living_Dead.pdf.

create serious problems: while they may be deceptive
rather than fraudulent, they are often unequivocally
malicious in intent. Not all hoaxes are chain letters, of
course. Come to that, not all chain letters are hoaxes,
either, but it’s rarely a good idea to forward chain email,
even if it doesn’t include any deceptive elements.

I used to say ‘never’ rather than ‘rarely’, but some
situations do arise where people have an emotional
need to participate actively in an issue (for instance, the
identifi cation of 2004 Tsunami victims or the search for
missing children) and feel that chain emails (or more
often nowadays, Facebook posts and Tweets)3 offer them
a way to do that. (Unfortunately, it’s not a very effi cient
way, since the same message [whether true, false or in
between] is broadcast again and again, long after any
residual usefulness has been squeezed out.)

Fortunately, not all hoaxes pose such ethical and
psychological dilemmas for email administrators,
being the work of hoaxers who glorify themselves by
exploiting the good intentions of others. Some hoaxes
(or semi-hoaxes) arise out of genuine misunderstandings
and misconceptions, or become divorced from the truth
as they spread further across the Internet. However,
many are started by people whose warped self esteem
is boosted each time one of their victims is made to feel
stupid when they realize they’ve been hoaxed.

Botnets, meanwhile, tend to be run by criminals exploiting
bot-infected machines for various profi table activities. So
what’s the connection between bots and hoaxes?

Well, hoaxes and chain messages can be intended in a
very general sense for personal fi nancial gain. Causing
large quantities of emails to be sent out spreading specifi c
kinds of hoax misinformation could provide some form
of fraudulent pay-off for the originator, almost like a
pyramid scam or BHSEO. Since there’s a history in the
hoax-busting business of proof-of-concept examples of
possible hoaxes being plundered to form the basis of a
real hoax, I won’t develop that thought further here.

Hoaxers don’t usually use malicious software to infect
systems so that they can be used to distribute junk
mail, but they do use a form of memetic malware
(‘viruses of the mind’) in order to reprogram system
users so that they send out the hoaxer’s favoured brand
of misinformation4. So before you forward any chain
letters, ask yourself if you really want to be a zombie...

3 Harley, D. Origin of the Specious: the Evolution of
Misinformation. http://go.eset.com/us/resources/white-papers/
VirusHoaxes_Whitepaper.pdf.
4 Harley, D. The E-Mail of the Species: Worms, Chain-Letters,
Spam and other Abuses. http://geekpeninsula.wordpress.com/
2013/04/02/virus-bulletin-conference-papers-2/.

‘Hoaxers ... use a
form of memetic
malware (‘viruses of
the mind’) in order
to reprogram system
users.’
David Harley, ESET

http://www.welivesecurity.com/media_files/white-papers/Net_Living_Dead.pdf
http://go.eset.com/us/resources/white-papers/VirusHoaxes_Whitepaper.pdf
http://geekpeninsula.wordpress.com/2013/04/02/virus-bulletin-conference-papers-2

3MAY 2013

VIRUS BULLETIN www.virusbtn.com

NEWS
SECURITY FIRMS FORM NEW EU CERT
A number of independent European security fi rms have
joined forces to form the largest computer emergency
response team (CERT) provision in Europe.

Founder members of the European Cyber Security Group
(ECSG) include the Danish fi rm CSIS, Dutch fi rm Fox-IT,
French fi rm Lexsi and Spanish fi rm S21sec.

The group will take a collaborative approach to CERT
engagements, drawing on the combined expertise of more
than 600 cybersecurity professionals to respond to incidents
rapidly and effi ciently.

The members of the group will share up-to-the-minute
threat intelligence and information trends amongst each
other as well as with government agencies to further the
efforts of local cybercrime law enforcement. The group
will also advise governments on best practices, policies
and so on, and plans to lobby local and EU lawmakers to
enact legislation that will ease the process of cross-border
information sharing and cooperation.

ACLU FILES COMPLAINT AGAINST
MOBILE CARRIERS
The American Civil Liberties Union (ACLU) has fi led a
complaint with the US Federal Trade Commission (FTC)
against US mobile phone carriers for failing to warn their
users about critical security fl aws in the Android operating
system running on their phones.

The ACLU has asked the FTC to investigate AT&T, Verizon,
Sprint and T-Mobile, whose phones do not receive critical
software security updates, thus exposing consumers and
their private data to cybersecurity-related risks.

Despite the fact that the Android operating system
dominates the smartphone market, the majority of mobile
devices running the software are running out-of-date
versions – often with known critical vulnerabilities.

Although Google fi xes fl aws in the operating system
on a regular basis, patches are not issued to consumers
by the mobile carriers and device manufacturers – the
more profi table route for them being to encourage users
to upgrade to the latest device. As a result, the vast
majority of Android users will not be running the latest
version.

In its complaint, the ACLU argues that the major wireless
carriers have engaged in ‘unfair and deceptive business
practices’ by failing to warn their customers about known,
unpatched security fl aws in their mobile devices.

The full complaint can be read at http://www.aclu.org/
technology-and-liberty/ftc-complaint-smartphone-security.

Prevalence Table – March 2013 [1]

Malware Type %

Java-Exploit Exploit 10.93%

Autorun Worm 8.53%

OneScan Rogue 7.04%

Sirefef Trojan 4.97%

Encrypted/Obfuscated Misc 4.05%

Injector Trojan 3.91%

Heuristic/generic Trojan 3.57%

Crypt/Kryptik Trojan 3.50%

BHO/Toolbar-misc Adware 3.30%

Confi cker/Downadup Worm 2.82%

Dorkbot Worm 2.69%

bProtector Adware 2.54%

LNK-Exploit Exploit 2.40%

Gamarue Worm 2.19%

Ramnit Trojan 2.15%

Iframe-Exploit Exploit 2.09%

Agent Trojan 2.07%

Sality Virus 1.93%

Downloader-misc Trojan 1.87%

Fareit Trojan 1.80%

Brontok/Rontokbro Worm 1.21%

Phishing-misc Phish 1.20%

Somoto Adware 1.08%

Jeefo Worm 1.06%

Adware-misc Adware 1.00%

Qhost Trojan 0.95%

Blacole Exploit 0.89%

Yontoo Adware 0.89%

Zbot Trojan 0.86%

Tracur/Xulcache Trojan 0.84%

Banload Trojan 0.82%

Virut Virus 0.73%

Others [2] 14.10%

Total 100.00%

[1] Figures compiled from desktop-level detections.

[2] Readers are reminded that a complete listing is posted at
http://www.virusbtn.com/Prevalence/.

http://www.aclu.org/technology-and-liberty/ftc-complaint-smartphone-security
http://www.virusbtn.com/Prevalence/

VIRUS BULLETIN www.virusbtn.com

4 MAY 2013

READ THE TRANSCRIPT
Peter Ferrie
Microsoft, USA

Metamorphism seems to be the holy grail for virus writers
in general. It is a step above polymorphism, which is,
in turn, a step above oligomorphism. The assumption is
that it is more diffi cult for an anti-virus engine to detect
a metamorphic virus than it is to detect a ‘lesser’ virus.
As a result, there have been attempts to implement
metamorphism on multiple platforms, the latest one being
JavaScript, in the form of JS/Transcript.

OVERVIEW
There are essentially two ways in which a virus can
implement metamorphism – the fi rst is for the virus to
disassemble itself, gather information about each of the
instructions, discard any garbage instructions, ‘optimize’
itself to the simplest form (which might be impossible,
given certain combinations of modifi cations), and then
perform an alteration.

The second is for the virus to carry a copy of its own
source code (for scripts or binaries), or the simplest form
of its compiled code (for binaries). However, even in the
simplest case, the requirement remains for the virus to
gather information about each line of code (for scripts) or
instructions (for binaries).

JS/Transcript uses a variation of the second method.

The virus carries its own source code described in a
meta-level language, which includes the critical information
about each line of code – specifi cally, the variable
dependencies between lines. The virus ‘compiles’ this
code and then derives the next generation JavaScript code
from there. The derivation is performed in three steps:
pre-processing, code generation and post-processing.
The pre-processing phase includes renaming variables,
permutating line order, and random function creation. The
post-processing phase includes variable placement within
the virus body, which includes the possibility of creating
arrays of variables.

Every meta-level line has the form:

(ident|restr)code

where ident is the identifi er, restr is the set of ‘restrictions’
(that is, a prerequisite or dependency list), and then the code
follows.

The identifi er is a locally unique name which is used as part
of the dependency list for subsequent lines within the same
scope (that is, within the block of code declared by if, while,

or function, or within the main body). The dependency list
specifi es the names of all identifi er lines that must have
executed before this line can execute. It is used primarily
to ensure that required variables have been assigned
meaningful values before they are used.

MEET YOUR REPLACEMENT

The virus begins by creating an array containing the
numbers 0-255. These are used by the value generation
code later. The virus searches for all references to a variable
named $CreateObject$, the intention being to replace
each one randomly with either WScript.CreateObject or
new ActiveXObject. (These two statements are equivalent
ways of creating an instance of an object, and are essential
for the virus to replicate.) However, there aren’t any
variables with such a name, so this code never executes.
This is not a bug, it’s more like an unimplemented feature.
As a result, the virus uses only WScript.CreateObject. It
is possible that the functionality was present in an earlier
version but somehow missed being included in the fi nal
version. That leaves us with only one true bug in the virus
– which, most surprisingly, is not in the metamorphic
engine itself.

The virus makes a copy of the meta-level language version
of the code. It replaces the fi rst reference to)var with)def,
then replaces the fi rst)while(var with)while(, and then the
fi rst)while(with)def in the copy. Then it searches for an
instance of)def in the copy. This replacement allows the
variable name declarations to be located easily. The)var
form is a variable declaration after the dependency list;
the)while(var form is a variable declaration for a while
loop after the dependency list (the virus does not support
do{}while() loops, only while(){} loops). However, it is
not known why the virus uses the double-replacement
for the while form, since all variables are either using the
)while(var form to declare themselves, or using the virus
meta-level $ form for an existing variable, and the virus is
interested only in the)while(var form.

The virus isolates the variable name, and then chooses a
new random string for the replacement name. The string
consists of between six and 15 random-case alphabetic
characters. The virus replaces all occurrences of the old
name in the original code with the new name. The virus
performs the same)def replacement on the next instance,
and then searches for its location. It repeats this action until
all variables have been replaced. The code is not optimized
for speed – which becomes particularly apparent when the
permutation begins (see below).

The virus makes another copy of the meta-level language
version of the code. It searches for a reference to)function

MALWARE ANALYSIS 1

VIRUS BULLETIN www.virusbtn.com

5MAY 2013

in the copy. It isolates the function name, and then
chooses a new random string for the replacement name.
The virus replaces all occurrences of the old name in the
original code with the new name. The names of each of
the function parameters are also replaced with random
strings, along with all references to the parameters within
the function.

FUNCTION CREATION

The virus creates up to 35 functions (75 in the fi rst
generation) that will perform an essential operation. The
virus begins with the function template ‘(SOS)O(SOS)’.
For each ‘S’ in the template, with a 25% chance, the ‘S’
is replaced with ‘(SOS)’. Otherwise, the virus replaces
the ‘S’ with ‘X’. There is no limit to how many times the
‘(SOS)’ might be inserted into the template. While this
could, in theory, lead to heap exhaustion, it is unlikely to
occur in practice.

Once all ‘S’s have been replaced with ‘X’s, the virus
searches within the string for the ‘O’s. For each ‘O’ in
the template, the virus replaces it with a randomly chosen
operator from the set: ‘+’, ‘-’, ‘*’ and ‘%’. Both ‘+’ and ‘-’
have an approximately 33% chance of being chosen, and ‘*’
and ‘%’ each have an approximately 16% chance of being
chosen. The result is a template such as:

(X%X)-(X-X)

or

((X+X)*X)+(X%X)

The virus creates an array of between two and fi ve
random strings. For each ‘X’ in the template, with a 50%
chance, the virus replaces it with a randomly chosen
string from the array of strings. Otherwise, the virus
replaces it with a random number in the range of 0-255.
Once all ‘X’s have been replaced, the virus removes from
the array of random strings any entry that has not been
used. If any entries remain, the virus generates a new
function. The name of the function is a new random string.
The parameters of the function are all of the remaining
entries. For each of the parameters, the virus assigns a
random number in the range 0-255, and then executes
the function. If the result is a value in the range 0-255,
then the virus assigns the function to the corresponding
entry in the array of increasing numbers that it created at
start-up. The virus performs this action 100 times, thus
creating a collection of equation functions that return
particular values. These equation functions can be used
during the code construction whenever a particular value
is needed (see below). If at least one set of parameters

returns a valid value, then the virus saves the function for
use later.

The virus chooses another random string. This one
is assigned to the variable that holds the meta-level
language version of the virus code. All references to
the original variable name are replaced with the new
name. The meta-level language version is a single line
with internal lines delimited by ‘__’. The virus splits the
code into an array of lines, and then passes the array to
the permutator function. Interestingly, the virus makes
improper use of the ‘slice()’ method in several places, by
passing it no parameters. This simply returns the original
array, so it is not really a bug. It is not known what was
intended here.

PERMUTATOR

The virus splits each line of code further into its
component parts of identifi er, dependency list and actual
code. The permutator function is interested in logic blocks
that are declared by if, while and function. It extracts the
contents of the blocks recursively until the keywords are
no longer found. What remains is the functional body
of the block which is to be permutated. The permutator
function chooses a random line order while preserving
the semantics of the dependency list. As a result, lines
can be swapped or separated if they do not depend on
each other, which gives enormous potential freedom for
alteration, but actually there are relatively few lines in the
code that do not depend on those preceding them almost
immediately.

CREATEBLOCKOFCODE (#”)

The virus examines each line of code. It checks whether
the line contains the #” sequence. This is used to declare
a literal string. The virus generates a replacement string
for the content between the #” and “# characters. The
algorithm for the replacement follows:

The virus chooses a random number of up to approximately
one sixth of the length of the string. In the unlikely event
that the chosen number is larger than 1,000 (which would
require an initial string of at least 6,007 characters in
length and it could be that ‘short’ only with a vanishingly
small chance – more realistically, the string would need
to be much longer), the virus chooses a random number
of up to approximately one fi ftieth of the length of the
string. The chosen number is the number of pieces into
which the virus intends to split the string. In preparation
for splitting, the virus inserts two ‘@’ characters at each
place where the string will be split later. The locations are

VIRUS BULLETIN www.virusbtn.com

6 MAY 2013

chosen randomly, and as more ‘@’ characters are inserted,
the chance increases that at least one of the split locations
will match the location of an ‘@’ character. The result of
this will be that when the string is fi nally split, some of the
substrings will be empty. The virus splits the string once all
of the locations have been chosen, and removes the ‘@@’
characters at the same time.

For each of the substrings, with an approximately
38% chance (100% chance in the fi rst generation),
the virus replaces all of the apostrophes with a String.
fromCharCode(39) sequence, but makes no further
alterations.

For the approximately 62% chance remaining, with
approximately 22% chance, the string is passed back
to the function to be split further. The result is assigned
to a variable with a randomly chosen name. With a 4%
chance, the variable is assigned to another variable with
a randomly chosen name. If the reassignment occurs,
then the chance increases to approximately 7% that it
will occur again, and the chance remains constant at that
point.

NUMERIC REPRESENTATION

For the approximately 49% chance remaining if the string
has not been altered yet, the virus converts each character of
the substring to a numeric representation and wraps them in
a String.fromCharCode() statement, separated by commas.
With a 75% chance for each of the characters, the virus uses
one of the equation functions that it generated earlier, if any
exist for the corresponding value. If no equation function
exists for the value, or in all cases for the fi rst generation,
the bare value is used.

For the 25% chance remaining, with approximately 13%
chance each, the virus chooses one operator from the set:
‘+’, ‘-’ and ‘/’, and applies it to a randomly chosen value
acting on the original value. The result is passed back to the
function for potential further modifi cation. The randomly
chosen value is then passed to the same function for the
same reason.

In all cases, there is a 1% chance that the number is
assigned to a variable with a randomly chosen name. If that
occurs, then the chance increases to approximately 7% that
the variable is assigned to another variable with a randomly
chosen name. The chance remains constant at that point that
it will occur again.

Note that the major percentages (38%, 22%, and 49%) are
valid only when building the outer layer. Once the magic
‘victory’ symbol is seen (see below), the 38% chance
block is avoided entirely, the 22% chance is increased

to an approximately 43% chance, and the 49% chance
is increased to an 86% chance. The reason for avoiding
the 38% chance block is to prevent any part of the meta-
level language version of the code from appearing in a
plain-text form.

CREATEBLOCKOFCODE (#n)
The virus checks whether the line contains the #n
sequence. This is used to declare a number. The virus
generates a replacement value for the content between the
#n and n# characters. The number replacement algorithm
is the same as the ‘numeric representation’ algorithm
described in the #” section above, with two exceptions.
The fi rst is that if the original number is larger than
10,000, then the number is not altered further. The second
exception is that if the original number is negative, then
there is a 13% chance that the number is not altered
further.

CREATEBLOCKOFCODE (#O)
The virus checks whether the line contains the #O sequence.
This is used to declare an object. The virus extracts the
name of the object and the name of any method that is
being called. If a method is being called, then with an
approximately 67% chance, the object is not altered.
Otherwise, the virus extracts the name of the object. It
searches for all #x sequences, and erases them and any
corresponding x# sequences. The virus creates a function
with a random name which returns the original object, so
object.method(args) becomes function()->method(args)
where function() returns the object. If the original object
was assigned to a variable, then the variable is passed to the
function. The function parameter is a random string. The
parameter is returned.

CREATEBLOCKOFCODE (#x)
The virus checks whether the line contains the #x
sequence. This is used to declare an execution sequence.
The virus extracts the string from the sequence. With
an approximately 85% chance (89% chance in the fi rst
generation), or approximately 95% if the string contains
eval((96% chance in the fi rst generation), the string is not
altered. Otherwise, if the string contains eval(already, or
with a 40% chance, the virus splits the variable name into
pieces separated by ‘@’, using the algorithm described
above. It uses eval() to reconstruct the name, and appends
the parameters to the result. For the 60% chance remaining,
the virus creates a function with a random name, which
executes the sequence and then returns the result. The virus

VIRUS BULLETIN www.virusbtn.com

7MAY 2013

calls the createexecution function recursively, and passes it
the names of the local variables in the execution sequence,
to transform them, too.

CREATEBLOCKOFCODE (if)
The virus checks whether the line begins with if. This
is used to declare a conditional execution block. If the
operator is ‘==’, then with a 50% chance (a 75% chance
in the fi rst generation), the virus converts the if block to
a switch(), with a case element devoted to the true clause
of the if block, and a default element devoted to the false
clause of the if block, if it exists. Otherwise, the virus uses
if, and else if applicable.

For the if case, the virus separates the components of
the condition. For the left side of the condition, with an
approximately 54% chance, or an approximately 83%
chance if the string contains eval(, the string is not altered.

If the string is chosen to be altered, then with a 20% chance,
or a 40% chance if the string contains eval(, the entire
left side of the condition is assigned to a variable with a
randomly chosen name.

For the 80% chance – 60% chance if the string contains
eval(– remaining, then with a 20% chance, or always if
the string contains eval(, the virus splits the variable name
into pieces separated by ‘@’, using the algorithm described
above. It uses eval() to reconstruct the name, and appends
the parameters to the result. If the string does not contain
eval(, then the virus creates a function with a random name,
which executes the sequence and then returns the result.

If the right side of the condition is a number, then with a 4%
chance (approximately 8% chance in the fi rst generation),
the value is assigned to a variable with a randomly chosen
name. If the reassignment occurs, then the chance increases
to 6% (16% in the fi rst generation) that it will occur again,
and the chance remains constant at that point.

If the right side of the condition is not a number, then with
a 78% chance, or a 92% chance if the string contains eval(
(approximately 54% and 83% chance respectively in the
fi rst generation), the string is not altered.

If the string is chosen to be altered, then with a 20% chance,
or a 40% chance if the string contains eval(, the entire
right side of the condition is assigned to a variable with a
randomly chosen name.

For the 80% chance – 60% if the string contains eval(
– remaining, then with a 20% chance, or always if the
string contains eval(, the virus once again splits the
variable name into pieces separated by ‘@’, using the
algorithm described above. It uses eval() to reconstruct the
name, and appends the parameters to the result. If the string

does not contain eval(, then the virus creates a function
with a random name, which executes the sequence and then
returns the result.

With a 50% chance, the virus emits the left and right sides
in that order. Otherwise, it reverses the order and ‘inverts’
the operator (for example, ‘a<b’ becomes ‘b>a’). The
virus does not have the ability to swap the order of the true
and false clauses. Finally, it uses the createblockofcode
algorithm to further transform the lines in the respective
clauses of the if, or the case and default blocks in the
switch.

CREATEBLOCKOFCODE (while)
The virus checks whether the line begins with while. This
is used to declare a loop (the virus does not accept for
loops, but it can produce them as part of its transformation
process). The implementation is the same as for the
right side of an if block (the equivalent of the left side is
unaltered in all cases because it might contain a variable
declaration, which the virus handles in a different way).
With a 50% chance, the virus emits a while statement. The
virus calls the createblockofcode function recursively, and
passes it the body of the while loop, to further transform
the lines in the block. If there is an ‘action’ to perform (for
example, updating a value in a variable that controls when
to exit the loop), then with a 20% chance (a 60% chance
in the fi rst generation), the virus splits the variable name
into pieces separated by ‘@’, using the algorithm described
above. It uses eval() to reconstruct the name, and appends
the parameters to the result.

If the virus does not emit a while statement, then it emits
a for statement instead. It calls the createblockofcode
function recursively, and passes it the body of the for loop,
to further transform the lines in the block. The for statement
generation makes use of a special variable that controls
the variable declaration. Its presence here has no purpose,
and is probably a left-over from when the logic creation
function was made to be shared between the while and for
loop handling.

CREATEBLOCKOFCODE (c)
The virus checks whether the line begins with c. This is a
special instruction that can perform multiple operations,
such as adding or subtracting numbers, or concatenating
strings. If the right operand is a one (presumably to either
increment or decrement – there are other possibilities, but
what happens next means that the virus does not support
them), then with an approximately 33% chance, the virus
uses the ‘double-operator’ form (that is, ‘++’ for increment,
or ‘--’ for decrement). If it does not use the double-operator

VIRUS BULLETIN www.virusbtn.com

8 MAY 2013

form, then with a 50% chance, the virus uses the ‘operator=’
form (that is, ‘+=’ or ‘-=’), regardless of the value of the
right operand. If it does not use the ‘operator=’ form either,
and if the right operand is an ‘n’, to represent an arbitrary
number, then with a 50% chance, the virus reverses the
order of the parameters – for example, ‘a+b’ becomes
‘b+a’. (Note that for an operator such as subtract, divide or
modulus, this returns the wrong value. This behaviour is
only a potential bug, however, since the virus does not use
the divide or modulus operators, nor the subtraction of an
arbitrary number.) Otherwise, the virus emits the operands
in the original order.

If the operation is the ‘operator=’ form, then with a 45%
chance, or a 90% chance if the string contains eval(, the
string is not altered.

If the string is chosen to be altered, then with a 20% chance,
or a 40% chance if the string contains eval(, the second
variable is assigned to a variable with a randomly chosen
name.

For the 80% chance – 60% chance if the string contains
eval(– remaining, then with a 20% chance, or always if
the string contains eval(, the virus splits the variable name
into pieces separated by ‘@’, using the algorithm described
above. It uses eval() to reconstruct the name, and appends
the parameters to the result. If the string does not contain
eval(, then the virus creates a function with a random name,
which executes the sequence and then returns the result.

If the operation is in neither the ‘double-operator’ nor the
‘operator=’ form, then with an approximately 63% chance,
or an approximately 87% chance if the string contains eval(,
the fi rst variable is assigned to a variable with a randomly
chosen name.

For the 80% chance – 60% chance if the string contains
eval(– remaining, then with a 20% chance, or always if the
string contains eval(, the virus once again splits the variable
name into pieces separated by ‘@’, using the algorithm
described above. It uses eval() to reconstruct the name,
and appends the parameters to the result. If the string does
not contain eval(, then the virus creates a function with a
random name, which executes the sequence and then returns
the result.

This algorithm is applied to the second variable with
identical percentages.

CREATEBLOCKOFCODE (x)
The virus checks whether the line begins with x. This is
used to declare an execution block. With an approximately
38% chance (25% chance in the fi rst generation), the string
is not altered.

With a 25% chance (approximately 38% chance in the
fi rst generation), and if the string does not begin with
return(, the virus splits the variable name into pieces
separated by ‘@’, using the algorithm described above.
It uses eval() to reconstruct the name, and appends the
parameters to the result. If the string contains eval(, then
it is not altered any further. Otherwise, the virus creates
a function with a random name, which executes the
sequence and then returns the result. The virus calls the
x handler function recursively, and passes it the name
of the function for possible further transformation. The
transformation can include creating another function
with a random name that calls the original function. This
function chaining can happen repeatedly. While this
could in theory lead to stack exhaustion, it is unlikely to
occur in practice.

CREATEBLOCKOFCODE (y)

The virus checks whether the line begins with y. This is
used to assign a value to a variable. With a 20% chance
(a 60% chance in the fi rst generation), the virus splits
the variable name into pieces separated by ‘@’, using the
algorithm described above. It uses eval() to reconstruct the
name, and appends the parameters to the result.

CREATEBLOCKOFCODE (def)

The virus checks whether the line begins with def. This is
used to declare a global variable. The implementation is
identical to that of x.

CREATEBLOCKOFCODE (var)

The virus checks whether the line begins with var. This
is used to declare a local variable. The implementation is
identical to that of y.

CREATEBLOCKOFCODE (function)

The virus checks whether the line begins with function.
This is used to declare a function. The virus separates the
components of the function into its name, its parameters,
and its body. It calls the createblockofcode function
recursively, and passes it the body of the function, to further
transform the lines in the block.

CREATEBLOCKOFCODE (victory)

The virus checks whether the line begins with victory. This
is used to defi ne the location where the meta-level language

VIRUS BULLETIN www.virusbtn.com

9MAY 2013

version of the virus code is assigned to a global variable.
With a 75% chance, the virus emits a var statement fi rst.
The virus splits the string into pieces separated by ‘@’,
using the algorithm described above.

POST-PROCESSING

There is a block of code here that is reached in all cases,
even though it is specifi c to only one case (perhaps
something more was intended but not completed). If a
while statement has been used, and if it contains a variable
declaration, then the virus creates a list of candidate
locations for inserting the variable declaration. This can
appear after a semi-colon but not within braces, and it must
appear prior to the fi rst use of the variable. The variable
declaration is placed in a randomly chosen location prior to
the addition of the while statement.

CREATEVARS

For each variable that was assigned a value, the virus
fi nds the fi rst use of the variable. The virus creates a list of
candidate locations for inserting the variable assignment.
This can appear after a semi-colon but not within braces,
and it must appear prior to the fi rst use of the variable.
The variable assignment is placed in a randomly chosen
location. In all generations after the fi rst one, the virus
chooses a random number of up to approximately one
fi fth of the number of variables. This becomes the number
of arrays that the virus creates. A selection of variables
is chosen randomly, and a subset of those are placed into
arrays. A variable is a candidate for inclusion in an array
if it is defi ned and then a value is assigned to it only once.
With a 75% chance, the virus creates an anonymous
function that simply returns the variable, inserts that into
the array, and replaces the variable reference with a function
call that is indexed in the array. Otherwise, the virus creates
a function with a random name, which returns the variable.

For each of the functions, the virus chooses a random
location in the code. This can appear after a semi-colon but
not within braces, but there are no other restrictions, since
all of the functions have global scope so they can even
appear after the fi rst reference to them.

...TO THOSE WHO WAIT (AND WAIT)

Everything up to this point could be considered a highly
polymorphic decryptor for the virus source code. Of
course, the true virus body is altered metamorphically, too.
The virus produces one metamorphic representation of
itself per run, and uses that representation to infect all fi les

that it can fi nd. This makes it a slow metamorph. Each
run can take upwards of fi ve minutes to produce a new
copy – which makes it a very slow metamorph. More to
the point, the host code has not been executed yet, which
makes it an extremely slow metamorph. It is probably safe
to assume that another iteration of the code will avoid
this problem by spawning a copy of itself and passing a
special string so that the host code can be executed fi rst,
using a technique similar to that used by the Lymer [1]
virus.

The virus searches in the current directory (only) for fi les
whose suffi x is ‘.JS’. It opens and reads the entire fi le
each time it fi nds one, no matter how large it is. The virus
checks the length of the read data and skips the fi le if it
is at least 150,000 bytes long. This serves as the infection
marker, and is a very conservative value given that even
the smallest infected fi le is probably over 1MB. If the
fi le is small enough, the virus attempts to open it again
in write mode, then prepend its code to the fi le. If the
fi le has the read-only attribute set, then an exception will
occur here and the virus will be terminated, because it
does not use any exception handling to intercept the error.
This could be considered the one true bug in the virus.
After the enumeration has completed, the virus runs the
host code.

CONCLUSION
The assumption is that detection of a metamorphic virus
is more diffi cult than detection of an ordinary virus for an
anti-virus engine. While this is certainly true, the act of
making a virus metamorphic introduces so much ‘noise’
that, in a sense, detection is not always as diffi cult as the
virus writer intended. Since the resulting code contains so
much obfuscation, it rarely resembles the code of a regular
program. This allows us to fi nd all kinds of artefacts which
attract our attention, and that in turn allows us to spend
more time scanning, with no impact on ordinary users
who tend not to have such samples. We can even take this
further – hundreds of hours of the virus writer’s work
can be undone in a matter of a few hours by an anti-virus
researcher. The existing metamorphic viruses have been
detected in a matter of days (once the time was devoted to
writing a detection, of course), in contrast to the months
of work put in by the virus writer. Given that, you have to
wonder why the virus writers bother.

REFERENCES
[1] Ferrie, P. Like a bat out of hell. Virus Bulletin,

May 2012, p.9. http://www.virusbtn.com/pdf/
magazine/2012/201205.pdf.

http://www.virusbtn.com/pdf/magazine/2012/201205.pdf

VIRUS BULLETIN www.virusbtn.com

10 MAY 2013

A GOOD LOOK AT THE
ANDROMEDA BOTNET
He Xu
Fortinet, Canada

Andromeda is a modular bot. The original bot simply
consists of a loader, which downloads modules and updates
from its C&C server during execution. The loader has both
anti-VM and anti-debug features. It will inject into trusted
processes to hide itself and then delete the original bot. The
bot hibernates for a long time (from several days to months)
between communications with its C&C server. As a result, it
can be diffi cult to obtain information about network traffi c
between the infected system and the C&C.

The latest offi cial build version of the Andromeda bot is
2.06. This version has some new content in the sending
package from the bot itself. In addition, it is capable
of distributing various other botnet variants, as well as
downloading modules and updates.

Figure 1: GeoIP map showing the distribution of
Andromeda.

THE PACKER
The packer contains a lot of redundant code, so the real code
can be hidden amongst it. It calls the GetModuleHandleA
API to get the base address of the bot, examines the MZ tag
and PE signature, and then checks if the number of sections
is six. If there are six sections, the packer will fi rst load the
data from the fourth section and try to decrypt it. It then
verifi es the decrypted MZ tag and PE signature and calls the
CreateProcessW API to reload the original bot, but with the
dwCreationFlags value set to CREATE_SUSPENDED. The
packer will inject the second process with different code,
which is from the decrypted fourth section. After that, the
packer will try to load another PE signature from the fi fth
section using the same method as above.

This powerful packer can embed and execute two different
pieces of malware at the same time. However, the data
in the fourth section is not currently in PE format after
decryption, meaning that the packer can only carry the
Andromeda bot.

THE LOADER

The loader starts by getting the base address of
ntdll.dll from the TEB structure. It uses this address as
a parameter to get ntdll export APIs and to increase the
complexity of analysis. There is no clear string of API
names, only checksum values to identify the different
APIs. The following is a list of the checksums and their
corresponding API names:

5584B067h

5F467D75h

5E639D43h

0AAEB7C1Eh

9ED23A16h

94D07C92h

8C552DB6h

0B4D1BAFAh

99D6DD7Ah

41D27AF6h

OpenMutexA

SetErrorMode

VirtualFree

VirtualAlloc

LoadLibraryA

CloseHandle

Process32Next

Process32First

CreateToolhelp32Snapshot

GetModuleHandleA

Next, the loader checks for the mutex ‘lol’ by calling the
OpenMutexA API to determine whether it should skip the
anti-VM and anti-debug routines.

If no mutex is found, the bot will try to check whether it is
being executed within a virtual machine or debugger:

1. It enumerates the current process list, converts
every process name to lower case, then calculates
the checksum and compares it with an embedded
checksum list which represents a virtual machine
environment (Figure 2).

2. It tries to call the GetModuleHandleA API to load
sbiedll.dll to check for the Sandboxie VM.

3. It queries the following registry entry to get the disk
name string (see Figure 3):

key: HKEY_LOCAL_MACHINE\system\currentcontrolset\
services\disk\enum

valuename: 0

 It skips the fi rst eight bytes, then examines the next
four bytes (Figure 4).

MALWARE ANALYSIS 2

VIRUS BULLETIN www.virusbtn.com

11MAY 2013

Figure 4: Eight bytes are skipped, then the next four are
examined.

 The current loader detected three VMs, as shown in
Figure 4.

4. It calls rdtsc twice to calculate the difference in the
return value. A result larger than 200h indicates that
debugging is in progress (Figure 5).

Figure 5: rdtsc is called twice to calculate the difference in
the return value.

If the bot loader detects any type of abnormal condition,
unlike other botnets which will exit directly, the Andromeda
bot will continue to run a tiny piece of code that I refer to as
‘passive code’. Otherwise, the bot will run the main code to
communicate with the C&C server.

PASSIVE CODE

This tiny piece of simple code copies itself as svchost.exe
into the folder%ALLUSERSPROFILE%, then adds itself to
the registry as follows:

Key:HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\
CurrentVersion\Run

ValueName:SunJavaUpdateSched

Data:%ALLUSERSPROFILE%\\svchost.exe

It will open local port 8000 to sniff. Once it receives a remote
command, it will run cmd.exe to receive and execute it.

Figure 2: Anti-VM.

Figure 3: Querying the registry to get the disk name string.

VIRUS BULLETIN www.virusbtn.com

12 MAY 2013

MAIN CODE INJECTION
It calls the SetEnvironmentVariableW API to save the
original bot’s full path to the environment variable src.

It then calls the ZwQueryInformationProcess API to check
whether the system version is 64-bit or 32-bit. If it is
running under a 32-bit OS, the bot will inject
wuauclt.exe; if it is running under a 64-bit OS, it will inject
svchost.exe. (Our example is running under a 32-bit OS.)

After that, the bot will create a new process, wuauclt.exe,
with dwCreationFlags set to CREATE_SUSPENDED. It
then injects wuauclt.exe by calling various MAP APIs.
It will modify the entry point code of wuauclt.exe to the
following:

push <address of injected code>

retn

Finally, the bot calls the ZwResumeThread API to activate
the injected process wuauclt.exe, and then exits directly.

MAIN CODE LOCAL INITIALIZE
ENVIRONMENT
In the injected code, all information is clear to see. There
are no more encrypted strings or blocks. The bot calls the
SetErrorMode API to disable most error notice windows.

The parameter is 0x8007, which means the following:

SEM_FAILCRITICALERRORS

SEM_NOALIGNMENTFAULTEXCEPT

SEM_NOGPFAULTERRORBOX

SEM_NOOPENFILEERRORBOX

The bot calls the GetEnvironmentVariableW API to
get the original bot’s full path using the environment
variable src, then resets that variable by calling the
SetEnvironmentVariableW API with a null
string parameter.

It will check the security identifi er of
the current process (wuauclt.exe) to see
whether it belongs to an administrator,
then sets up the replication destination and
registry key. After this it uses the current
tick count value to determine the suffi x of
the replicated fi lename.

The bot may copy itself to one of two
destinations:

If the current running user is an
administrator, the tag ‘ar’ will be set to 1.
The bot will set up the registry as follows:

HKEY_LOCAL_MACHINE\software\microsoft\windows\
currentversion\Policies\Explorer\Run

<%lu>

%allusersprofi le%\Local Settings\Temp\ms<%s>.<%s>

Otherwise, the tag ‘ar’ will be set to 0 and the registry will
be set up as follows:
HKEY_LOCAL_MACHINE\software\microsoft\windows nt\
currentversion\windows

Load

%userprofi le%\Local Settings\Temp\ms<%s>.<%s>

The fi lename’s suffi x will be one of the following,
depending on the value of the current tick count: exe, com,
scr, pif, cmd or bat.

The bot will try to create another mutex with a string
generated from the system volume information. If it already
exists, it will delete the original bot sample and then exit
directly. Otherwise, the bot will copy itself to the generated
destination and add itself to the registry so that it will run
automatically at the next system start-up.

Finally, the bot will create two new threads for executing
previously saved modules and DLLs from the registry
(Figure 6). Of course, they are encrypted with the RC4
algorithm and with a fake ZIP header (Figure 7).

In Figures 6 and 7, the value name of the registry is
generated from the CRC32 value in the fake Zip header.

Now that the local initialize operation has fi nished, the bot
will prepare for network operation with the C&C server.

INITIAL NETWORK OPERATION
The bot will create a new thread recurrently, each time
taking at least 23C34600h ms – which means more than
six days each time. As a result, monitoring the network
traffi c over a short period may not be suffi cient to detect the
presence of Andromeda.

Windows Registry Editor Version 5.00

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft]

“07F7FE7B”=hex:50,4b,03,04,00,1a,00,00,f4,0c,00,00,7b,fe,f7,07,96,86,3f,1b,10,\

Figure 6: Two new threads are created for executing previously saved modules and DLLs
from the registry.

Figure 7: The threads are encrypted with RC4 and with a fake ZIP header.

VIRUS BULLETIN www.virusbtn.com

13MAY 2013

The pattern of the fi rst sending package is as follows:

id:%lu|bid:%lu|bv:%lu|sv:%lu|pa:%lu|la:%lu|ar:%lu

• The id value is generated from the local system volume
information.

• The bid value is hard-coded in the bot and may refer to
the build id.

• The bv value is hard-coded in the bot and may mean
build version (currently this is 206h (518)).

• The sv value refers to the victim system version.

• The pa value is the return value of the call to the
ZwQueryInformationProcess API to identify the OS as
32-bit or 64-bit.

• The la value is generated from the IP address of
www.update.microsoft.com.

• The ar value is the return value of the call to the
CheckTokenMembership API to identify whether the
bot is running under an administrator account.

The pa and ar data are new in this version of Andromeda.

An example is shown in Figure 8. Figure 9 shows the same
example after RC4 encryption, and Figure 10 shows the
string after base64 encryption. Finally, Figure 11 shows the
real network stream, and Figure 12 shows a binary view of
the received package.

The fi rst-level structure is simple, as follows:

Struct RecvPack

{

 INT CRC32;

 Char(*) Body;

} *RecvPack;

The C&C server does not use the same RC4 key to encrypt
the reply package, but uses the id value as the RC4 key,
whose length is only 4. So without the sending package
information, we cannot decrypt the received package.

The received package after decryption is shown in Figure 13.

The structure is as follows:

Struct RecvPack_Dec

{

 INT Tag_RecvID;

 Char(*) RecvBlock;

} *RecvPack_Dec;

Struct RecvBlock

{

 Char Cmd;

 INT tid;

 Char(*) DL_Url;

} *RecvBlock;

First, let’s look at the meaning of the Cmd type (‘Task
type’) according to a snapshot from the web panel of the
Andromeda C&C server (Figure 14).

There will be several blocks in the received package (there
are two blocks in Figure 13).

In Figure 13, the fi rst block’s Cmd type is 2, which means
‘install plug-in’. The bot will try to download the module,
as shown in Figure 15.

The module starts with a fake Zip header whose size is
0x10. We have seen an example of this before, which was
saved in the registry (Figure 7) – they are the same.

Figure 11: The real network stream.

Figure 12: The received package binary view.

Figure 13: Received package after decryption.

id:150233784|bid:51519506|bv:518|sv:1281|pa:0|la:3232
235886|ar:1

Figure 8: Example package.

Figure 9: After RC4 encryption.

stpfuh3xGvozqaoFzP4hvt1IkXldTgAKSw9balEG/vxuRnvCmbpbpzz
QGWuM66q68AYkJY7mFpXYaFIk+4sOBg==

Figure 10: String after base64 encryption.

VIRUS BULLETIN www.virusbtn.com

14 MAY 2013

The bot will save the module into the registry after
executing it. Then the bot will give feedback to the C&C
server with the following pattern:

id:%lu|tid:%lu|result:%lu

A real example is as follows:

id:150233784|tid:106|result:1

The id is the same as in the sending package.

The tid is from block offset 04, 106 is equal to 6Ah.

The result will be 1 if execution of the module is successful,
otherwise it is 0.

Figure 16 shows the network traffi c.

Figure 16: Network traffi c.

The other block’s Cmd type is 1, which means ‘download
EXE’ for spreading other malware.

The bot will try to download and drop the EXE as a temp
fi le for execution. The EXE is not encrypted like the module
(Figure 17):

Figure 17: The EXE is not encrypted.

The bot will communicate with the C&C server after
execution.

Figure 18: The bot communicates with the C&C server.

THE MODULES

We have seen one module with the name ‘r.pack’. What
does it do during execution? Are other types of module
installed?

At least two more modules have been observed in the
network traffi c of another variant (see Figure 19).

There are three modules in total, as follows:

Module
fi le name

Underground
module name

Underground description Price

f.pack Formgrabber Without the injector,
http / https, all browsers
including Chrome

$ 500

r.pack Ring3 RootKit $ 300

s.pack Socks4 NA
Complete

NA

Figure 14: Snapshot from the web panel of the Andromeda
C&C server showing the various Cmd types (‘Task type’).

Figure 15: The bot tries to download the module.

VIRUS BULLETIN www.virusbtn.com

15MAY 2013

r.pack
The r.pack module is a ring3 rootkit. It will inject all
running processes, then hook the following APIs to hide the
bot itself:

ZwResumeThread

ZwQueryDirectoryFile

ZwEnumerateValueKey.

f.pack
The f.pack module is a form grabber. It will create a new
thread to initialize and monitor a named pipe. Once data
enters the pipe, the thread will parse it and communicate
with the C&C server via a different URL link (Figure 20).

Figure 20: The thread communicates with the C&C server.

The thread will replace the default C&C server gate
image.php with fg.php, and then add a parameter id, which
is the same as in the fi rst sending package.

The content of the sending package is also base64 encrypted
(as in the previous sending package). After decryption, the
data should be the following string:

confi g

The C&C server will reply with the pattern data – the
algorithm is the same as in the previously received package,
but in this case the related RC4 key is not taken from the
id, instead the same RC4 key is used as was used by the
sending package.

The pattern after decryption is:

facebook\.com.+pass=

Next, it injects all running processes, just like r.pack, and
hooks the ZwResumeThread API. After that it will check
the process name. Once it fi nds the following four types of
web browser, it will hook the corresponding APIs to grab
information:

iexplore.exe WINNET.dll

HttpSendRequestW

HttpSendRequestA

opera.exe RtlFreeHeap

fi refox.exe nspr4.dll

PR_Write

chrome.exe ZwReadFile

All the data blocks beginning with the string POST will
be checked and sent to the named pipe if they meet all the
conditions.

The thread that was mentioned before for monitoring the
same named pipe will continue to verify the grabbed data
according to the pattern and send it to the C&C server.

s.pack
The s.pack module acts as a local proxy, it has an export
function, Report, that can show its information (Figure 21).

Figure 21: Export function Report.

This module will open local port 0438h (1080) and wait
for a remote connection – as such, it will be useless if the
compromised system is behind a fi rewall. The forward
destination IP and port are in the received package.

ANOTHER SPECIAL VARIANT
One more example of a received package from another
variant of Andromeda is shown in Figure 22.

Figure 19: Two more modules have been observed.

VIRUS BULLETIN www.virusbtn.com

16 MAY 2013

Figure 22: Received package after decryption.

We can see that there is no Cmd type 2, only Cmd type 1 for
‘install EXE’ and Cmd type 3 for ‘update bot’. So, in this
case the bot is only used to distribute other malware (e.g.
ZeroAccess, Kelihos, FakeAV, etc.).

CONCLUSION
We have seen some changes in the Andromeda bot. It
is very fl exible and dynamic. It can enhance its abilities
in different fi elds by installing different modules. It can
distribute other malware very effi ciently. It uses several
RC4 keys to encrypt data for communications with C&C
servers to make tracing it much more diffi cult.

Furthermore, different botnets have combined forces to
spread themselves, so infected machines and victims are
exposed to greater risks and damage. This has created a
very serious problem for detecting and cleaning infected
machines effectively.

The cat-and-mouse game is certainly ongoing. The mouse is
becoming much smarter and more dynamic, but what about
the cat?

REFERENCES
[1] System Error Codes (0-499). http://msdn.microsoft.

com/library/windows/desktop/ms681382.

[2] ZwQueryInformationProcess function.
http://msdn.microsoft.com/library/windows/
desktop/ms687420.

[3] SetErrorMode function. http://msdn.microsoft.com/
library/windows/desktop/ms680621.

[4] CheckTokenMembership function.
http://msdn.microsoft.com/library/windows/
desktop/aa376389.

[5] Well-known security identifi ers in Windows
operating systems. http://support.microsoft.com/
kb/243330.

[6] Inside Andromeda Bot v2.06 Webpanel / AKA
Gamarue – Botnet Control Panel.
http://malware.dontneedcoffee.com/2012/07/inside-
andromeda-bot-v206-webpanel-aka.html.

PERSISTENCY IN THE WILD
Raul Alvarez
Fortinet, Canada

Strong encryption and sophisticated algorithms are not
necessarily what make a piece of malware persistent.
Instead, it is the use of a cocktail of techniques that ensures
the longevity of malware in the wild.

In this article we look at an example of a piece of persistent
malware, W32/Kolab, and some of the techniques it uses.

OBFUSCATION

The strength of a lot of malware lies in its encryption and
decryption algorithms. However, Kolab uses a simple
decryption algorithm, which is not its strong suit. The
following is the code listing of the algorithm:

1: mov dl, byte ptr ds:[esi+eax]

 add ebx,1

 sub dl, byte ptr ds:[ebx+559c7f]

 and byte ptr ds:[eax+ecx],00

 or byte ptr ds:[eax+ecx],dl

 sub ebx,1

 jz short 2

 cmp ebx,ebx

 jz short 3

2: sub ebx,ebx

3: inc eax

 cmp eax,edi

 jb short 1

After decrypting 44,160 bytes of code, Kolab transfers
control to the newly decrypted code, which has been placed
in previously allocated memory.

Initially, the malware parses the TIB (Thread Information
Block) and then the PEB (Process Environment Block) to
acquire the image bases of kernel32.dll and ntdll.dll.

This is followed by rearranging the API names. Each letter
of each API name is collected using the instruction ‘MOV
BYTE PTR SS:[EBP+xxx],(letter),’ – an equivalent of seven
bytes per letter. The malware uses this simple form of API
obfuscation to avoid detection by anti-virus software that
relies on API heuristic detection.

API RESOLUTION
From the image base acquired earlier, the malware
traverses the export table of kernel32 from the very

MALWARE ANALYSIS 3

http://msdn.microsoft.com/library/windows/desktop/ms681382
http://msdn.microsoft.com/library/windows/desktop/ms687420
http://msdn.microsoft.com/library/windows/desktop/ms680621
http://msdn.microsoft.com/library/windows/desktop/aa376389
http://support.microsoft.com/kb/243330
http://malware.dontneedcoffee.com/2012/07/inside-andromeda-bot-v206-webpanel-aka.html

VIRUS BULLETIN www.virusbtn.com

17MAY 2013

fi rst API names and searches for a match for the string
‘GetModuleHandleA’. It will keep traversing the export
table until it fi nds a match and grabs the equivalent API
address.

Once the GetModuleHandleA API has been resolved, it
uses this API to get the kernel32.dll image base. This action
is not strictly necessary, since Kolab already has the image
base of kernel32.dll. Nevertheless, the GetModuleHandleA
API is used to make sure that the right image base is
acquired.

Afterwards, the same process of traversing the API names
is performed to get the address of the GetProcAddress API;
the rest of the API addresses the malware needs are then
easily acquired using this API.

COMPRESSION
File or data compression is a process of reducing the
size of a given piece of data by eliminating redundant
bytes. It is a similar technique to packing and archiving,
but using a different data manipulation algorithm.
Examples of available compression algorithms include:
Huffman encoding, run-length encoding and Lempel-Ziv
encoding.

Lempel-Ziv, also known as LZ, is an algorithm for lossless
data compression. The compressed data is a minimized
version of the original data.

Kolab uses COMPRESSION_FORMAT_LZNT1, a
variation of Lempel-Ziv compression, to compress
part of its code and later decompresses it using the
RTLDecompressBuffer API. Once the buffer is
decompressed, the malware places the code carefully in the
current module’s virtual space by computing the alignment
of its sections. Chunks of malware code are copied to each
properly aligned section.

The fi rst (0x400) 1,024 bytes of the decompressed image,
including the MZ/PE header, are copied, byte by byte, to the
original image located at 0x400000, the original module’s
image base. This is followed by copying the rest of the
decompressed code to the original image and arranging it in
the appropriate sections.

The fi nal image is the unpacked and decompressed version
of the malware.

DROPPED FILE
After getting the module handle and module name
of the malware, the Windows directory is acquired
by using the ExpandEnvironmentStringsA API with
the %windir% parameter. Kolab uses a hard-coded

fi lename for its dropped fi le: csdrive32.exe. The
malware skips the fi le dropping routine if the current
module is already csdrive32.exe running from the
Windows directory. Otherwise, it will copy the current
module to the Windows directory using the CopyFileA
API and change its properties to hidden using the
SetFileAttributesA API.

This is followed by the creation of two registry keys to
ensure the malware is executed during start-up:

Key: HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\
Run

Value: Microsoft Driver Setup

Data: %windir%\csdrive32.exe

Key: HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\
policies\Explorer\Run

Value: Microsoft Driver Setup

Data: %windir%\csdrive32.exe

CONFIGURING THE FIREWALL

Controlling the fi rewall settings of the victim operating
system is an activity that is often seen in malware, and
Kolab is no exception. As a COM object, the fi rewall can
be controlled by accessing the CLSID, {304CE942-6E39-
40D8-943A-B913C40C9CD4}, that is referencing it. Using
the CoCreateInstance API, Kolab successfully takes control
of the fi rewall manager.

After loading the fi rewall COM object, Kolab disables the
fi rewall by setting up the following registry entry:

Key: HKLM\SYSTEM\CurrentControlSet\Services\
SharedAccess\Parameters\FirewallPolicy\StandardProfi le

Value: EnableFirewall

Data: 0

The dropped fi le, csdrive32.exe, is also added as an
authorized application by setting up the following registry
entry:

Key: HKLM\SYSTEM\CurrentControlSet\Services\
SharedAccess\Parameters\FirewallPolicy\
StandardProfi le\AuthorizedApplications\List

Value: [original path]\[original kolab fi lename]

Data: [original path]\[original kolab
fi lename]:*:%windir%\csdrive32.exe

Kolab disables the fi rewall using the fi rst registry entry,
and the second one acts as a back-up, in case the user
turns the fi rewall on. However, there is a missing piece of
information in the second registry entry, without which the
registry entry will not work as the author intended (I won’t
give details).

VIRUS BULLETIN www.virusbtn.com

18 MAY 2013

THREAD #1
Kolab creates two threads that perform separate functions.
Let’s take a look at the fi rst thread.

Kolab allocates memory for a list of names of AV
and security software. The malware checks if any
application on the list is actively running in the system
by parsing the process list using a combination of
the CreateToolhelp32Snapshot, Process32First and
Process32Next APIs. If the target process is found, the
malware will effectively terminate it (see Figure 1).

The malware will parse the process list completely and
check each process against its list of application names.

Once every process has been checked against the list
of application names, the thread will sleep for 5,203
milliseconds then start its function all over again. This is to
make sure that no AV or security applications are running on
the system.

THREAD #2
Kolab’s second thread performs a similar function to the
fi rst. The only difference is the list of application names.
The second thread checks the process list against a list of
applications that are used for malware analysis, monitoring,
cleaning and debugging. Even the registry editor is not safe.
If any of these processes are running in the system, Kolab
will terminate them.

After every process has been checked, it will sleep for 1,189
milliseconds, then perform the thread execution again.

The two threads will keep running until the main thread has
spawned a new process, csdrive32.exe, and terminated itself
(i.e. the original executable).

Once the original executable has been terminated, the AV,
security, analysis, and fi x tools can run properly again.
Figure 1 shows a partial listing of the software names
mentioned above.

SPAWNED CSDRIVE32
The spawned csdrive32 process performs decryption, API
resolution and decompression routines similar to those in
the original malware execution discussed earlier.

Afterwards, the new process generates a new set of APIs by
resolving them using a series of calls to the GetProcAddress
API. The typical resolution of API addresses also includes
the loading of the required DLL into memory using the
LoadLibraryA API.

Kolab also resolves Internet-related APIs if it is sure that the
infected machine has an Internet connection.

After performing these routines, the malware checks if it is
running as %windir%\csdrive32.exe. If it is, the dropping of
fi les, the fi rewall confi gurations, and the running of the two
thread routines will be skipped.

However, it will create another thread.

THREAD #3

The third thread is invoked by the spawned process. It
creates redundant mutexes and also performs the bot-related
activities of the malware as well as other activities, as
described in the last part of this article.

REDUNDANT MUTEXES

The new thread creates a mutex named ‘jsg28sdgrg2scj’ to
prevent multiple instances of the malware. Interestingly,
it then creates a second mutex with the same name,
‘jsg28sdgrg2scj’ – since it is identical to the fi rst, the second
mutex is redundant (see Figure 2).

Figure 2: Two mutexes are created with the same name.

Figure 1: Kolab creates two threads which check for
running AV/security applications and analysis tools.

VIRUS BULLETIN www.virusbtn.com

19MAY 2013

BOT-RELATED ACTIVITIES
After setting up the mutexes, Kolab starts performing the
routine that initiates contact with its C&C server. It sends
information taken from the computer including the OS and
its locale, among other things. It waits for some IRC-like
commands to execute other malicious activities.

The following is a walk-through of how the bot side is
implemented:

The malware initiates the Winsock DLL using a call to the
WSAStartup API. It gets the standard host name of the
infected local machine using the GetHostName API and
uses the resulting host name to acquire the IP address of the
local machine by calling the GetHostByName and inet_ntoa
APIs.

After getting the IP address of the local machine, the
malware sets up some IRC-like commands for later use (see
Figure 4).

Kolab initiates contact with the C&C server by sending
the infected local host’s information. It uses a combination
of the country name taken from the GetLocaleInfoA API,
the Windows version from the GetVersionExA API, and
seven random numbers generated by the rand function (see
Figure 3).

Figure 3: Kolab sends the infected local host’s information.

If a successful connection is established, the malware will
wait for further instructions from the bot master.

Kolab uses two types of commands. The fi rst set, as shown
in Figure 4, look like regular IRC commands, and the
second set of commands are mostly customized for the
malware.

The two sets are:

1. IRC-like commands: e.g. KCIK, PASS, QUIT, PONG,
PING, PRIVMSG, JOIN, NOTICE, PART, and
PRRVMSG (as shown in Figure 4).

2. Bot-related commands: e.g. login, logout, lo, rm,
download, update, gone, threads, scan, advscan,
r.getfi le, r.new, r.update and r.upd4te.

The bot master will issue the commands and the client
version of Kolab will perform the appropriate action.

OTHER MALICIOUS ACTIVITIES
The malware also performs the following activities:

1. It creates a batch fi le in the %temp% directory with
the name ‘removeMe[four random digits].bat’, which
contains the following commands:

@echo off

:Repeat

del “%windir%\csdrive32.exe” > nul

if exist “%windir%\csdrive32.exe” goto Repeat

del “%0”

 This batch fi le is used to remove the malware from the
system.

2. The malware tries to connect to the C&C server,
hiiiiii[removed]er.net, which at the time of writing
this article, is no longer active. (Just to be safe, I have
removed part of the domain name.)

 Some other domain names found within the code are:

• pppppppppppppppppp[removed]m.us

• ppppppppppppppppppppppp[removed]m.us

• pppppppppppp.p[removed]m.us

• ppppppppp[removed]m.us

• obsoletegpp[removed]m.us

• ppp16ptok2pcomphomepaq[removed]m.us

• 1p[removed]m.us

• ppppnipp[removed]m.us

• mob[removed]m.us

WRAP UP
Examples of malware that persist in the wild are resistant to
detection simply because they have lots of fi re power within
their code. They have capabilities and features that are not
found in their simpler peers. They also are capable of fast
updates and of creating new variants on a regular basis.

Even though Kolab’s encryption algorithm is relatively
simple, it possesses other signifi cant attributes. Using
compression, terminating important pieces of software,
backing up with C&C, controlling the fi rewall, and
smart timing regarding when to remove itself are a good
combination for becoming an infamous piece of malware.

If we can understand each of these pieces of tenacious
malware, we might be able to reduce their persistence in
the wild.Figure 4: Commands used by Kolab.

VIRUS BULLETIN www.virusbtn.com

20 MAY 2013

CAT-AND-MOUSE GAME IN
CVE-2012-0158
Ruhai Zhang
Fortinet, China

The CVE-2012-0158 vulnerability has been widely used
by cybercriminals since April 2012 and has been exploited
in the wild with many anti-detection tricks. As we know,
when an exploit sample is executed, the corresponding
vulnerable application will initially load and parse it. While
scanning an exploit fi le, an AV engine will also analyse its
fi le format. For some fi le types with complicated structures,
the AV engine may struggle to parse all of the structures
listed in the format specifi cation. Moreover, for effi ciency,
fault-tolerant performance purposes, or even through
carelessness, an application may not fully comply with the
format specifi cation while parsing a fi le. These factors open
a door in the cat-and-mouse game. The exploit in question
can be implemented in both Microsoft Offi ce and RTF fi les,
which increases its spreading ability.

VULNERABILITY ANALYSIS
The CVE-2012-0158 vulnerability is in the ListView,
ListView2, TreeView and TreeView2 ActiveX controls in
MSCOMCTL.OCX, which are mainly used in Microsoft
Offi ce, as shown in Figure 1.

The following is the execution process for the vulnerable
function in MSCOMCTL.OCX, as shown in Figure 2:

• Read a 0xC bytes record in the ‘Contents’ stream to the
stack buffer, which has the following structure:

struct CobjRecord {

DWORD fl ag;

DWORD unknown;

DWORD next_read_len;

}

• Get the value next_read_len.

• In the second call to the CheckLenAndReadRecord
function, the Next Record Len value is read (see
Figure 1) and compared with next_read_len value in
the CobjRecord. If the two length values are equal, the
following next_read_len bytes size data will be read to
the stack buffer. However, only eight bytes are allocated
on the stack.

For the sample1 shown in Figure 1, the vulnerable function
will return to address 0x27583C30 and then jump to the
shellcode at 0x125DA4, as shown in Figures 3–5.

1 MD5: C694ED321C758AF7D4F7582A415DEDE9

Figure 1: An exploit sample’s ListView Contents stream.

Figure 2: Vulnerable parsing function in MSCOMCTL.OCX
(v6.01.9545).

Figure 3: Stack overview after overfl ow.

Figure 4: Jmp esp instruction in MSCOMCTL.OCX
(v6.01.9545).

Figure 5: Jmp to the shellcode.

TECHNICAL FEATURE

VIRUS BULLETIN www.virusbtn.com

21MAY 2013

OFFICE FILE FORMAT ANTI-DETECTION
TRICKS

End of Chain Sector ID

Figure 6 is a rough fl ow chart showing how Microsoft Offi ce
reads stream data.

Figure 6: Reading stream data fl ow chart.

From the fl ow chart in Figure 6, we can see that the Sector
ID -2 (End of Chain SecID) is not, in fact, the end of the
stream.

Figure 7: A sample’s Contents directory entry.

Figure 8: A sample’s short-sector allocation table.

The sample2 shown in Figures 7 and 8 uses this trick. The
End Of Chain SecID at offset 10252 should have been 4, a
continuous value. It is likely that this value was modifi ed in
an attempt to evade detection. If the AV engine recognizes
the End of Chain SecID as the end of the stream data, this
kind of crafted exploit sample may slip away undetected.

Microsoft Excel default password

Figure 9 shows the process of Microsoft Excel validating
password-protected documents:

Figure 9: A password-protected Excel sample’s Workbook
stream.

1. The decryption key is derived from the default
password ‘VelvetSweatshop’ and Salt.

2. The EncryptedVerifi er fi eld is decrypted using the
derived key.

3. The hashing algorithm output is obtained by using the
above decrypted Verifi er as input.

2 MD5: 52a87d2cd564900904aea8869c00f6c6

VIRUS BULLETIN www.virusbtn.com

22 MAY 2013

4. The EncryptedVerifi erHash fi eld is decrypted using the
key derived in step 1.

5. If the above two hash values are equal, execution will
continue. If they are not, the user will be prompted to
input the password and validate it as per the above steps.

We can see that password-protected Microsoft Excel
documents can be executed without entering the password
while it is set to the default ‘VelvetSweatshop’.

Figure 10: A password-protected Excel sample’s directory
entries.

Figures 9 and 10 show a sample3 using this trick. The
exploit relevant data is encrypted in the ‘encryption’ stream.
We can see the following decrypted exploiting structure in
the memory:

Figure 11: A sample’s decrypted exploiting data in the
memory.

RTF FILE FORMAT ANTI-DETECTION
TRICKS
This exploit can also be embedded into an RTF fi le as an
OLE object, so some tricks relevant to RTF parsing can also
be used.

RTF magic checking

While parsing an RTF fi le, Microsoft Word will not check
the fi fth character (‘f’ in the ‘\rtfN’ control word), as shown
in Figure 12.

The sample4 shown in Figure 13 uses this trick. If the AV
engine recognizes the RTF fi le totally as described in the
RTF specifi cation, this kind of crafted exploit sample will
escape detection.

RTF object obfuscating

The exploit OLE fi le is embedded into an RTF fi le using
control word ‘\object’. The object data is encoded using

3 MD5: 5c7d74dd1c96651d22c5829039ab93bd
4 MD5: 63eb0c0ae2853c9398d94569cf5eadcf

the ‘Hex to ASCII’ method. While parsing the object data,
Microsoft Word will ignore space characters and other
control words.

Figure 14 shows a sample5 using this trick. The OLE fi le
magic ‘D0CF11E0A1B11AE1’ value is not continuous, but
separated by some space characters and RTF control words.

The sample6 shown in Figure 15 also uses this trick. In this
sample, several useful characters are separated by some

5 MD5: f8ec2de6927ac7a22a88f8a2f6c2ebd3
6 MD5: 4c4d397511fd8f802950218d598c3478

Figure 12: RTF magic parsing in WINWORD.EXE
(v11.0.5604).

Figure 13: An exploit sample using the RTF
magic trick.

VIRUS BULLETIN www.virusbtn.com

23MAY 2013

obfuscating RTF groups ‘{}’, which may also contain some
useful characters.

To detect this kind of crafted sample, an AV engine must
also ignore the obfuscating characters and structures while
parsing the OLE object from an RTF fi le.

CONCLUSION

The cat-and-mouse game of exploit samples is based largely
around the differences in fi le format parsing between
the vulnerable application and the detection engine. One
exploit sample which seems corrupted because of unusual
structures may indeed execute correctly. For each type of
fi le, the engine should try to parse its fi le format exactly as
its corresponding application does, and not simply rely on
its format specifi cation.

REFERENCES

[1] CVE-2012-0158. http://www.cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2012-0158.

[2] Microsoft Offi ce Document Cryptography
Structure. http://msdn.microsoft.com/en-us/library/
cc313071(v=offi ce.12).aspx.

Figure 14: An exploit sample using RTF obfuscating
tricks.

Figure 15: Another exploit sample using RTF obfuscating
tricks.

VB2013 BERLIN
2–4 OCTOBER 2013

Join the VB team in Berlin, Germany for the
anti-malware event of the year.

What: • Three full days of presentations by
 world-leading experts

 • Mobile malware

 • Banking trojans

 • Phishing & spam

 • Java exploits

 • AV testing

 • Pentesting

 • Law enforcement

 • Last-minute technical presentations

 • Networking opportunities

 • Full programme at
 www.virusbtn.com

Where: The Maritim Hotel Berlin

When: 2–4 October 2013

Price: VB subscriber rate $1795 + VAT

Early bird rate $1615.50 + VAT until 15 June

BOOK ONLINE AT
WWW.VIRUSBTN.COM

2013
BERLIN
2 - 4 October 2013

http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0158
http://msdn.microsoft.com/en-us/library/cc313071(v=office.12).aspx
http://www.virusbtn.com/conference/vb2013

MAY 2013

VIRUS BULLETIN www.virusbtn.com

END NOTES & NEWS

24

ADVISORY BOARD
Pavel Baudis, Alwil Software, Czech Republic

Dr Sarah Gordon, Independent research scientist, USA

Dr John Graham-Cumming, CloudFlare, UK

Shimon Gruper, NovaSpark, Israel

Dmitry Gryaznov, McAfee, USA

Joe Hartmann, Microsoft, USA

Dr Jan Hruska, Sophos, UK

Jeannette Jarvis, McAfee, USA

Jakub Kaminski, Microsoft, Australia

Jimmy Kuo, Microsoft, USA

Chris Lewis, Spamhaus Technology, Canada

Costin Raiu, Kaspersky Lab, Romania

Roel Schouwenberg, Kaspersky Lab, USA

Péter Ször, McAfee, USA

Roger Thompson, Independent researcher, USA

Joseph Wells, Independent research scientist, USA

SUBSCRIPTION RATES
Subscription price for Virus Bulletin magazine (including

comparative reviews) for one year (12 issues):

• Single user: $175

• Corporate (turnover < $10 million): $500

• Corporate (turnover < $100 million): $1,000

• Corporate (turnover > $100 million): $2,000

• Bona fi de charities and educational institutions: $175

• Public libraries and government organizations: $500

Corporate rates include a licence for intranet publication.

Subscription price for Virus Bulletin comparative reviews

only for one year (6 VBSpam and 6 VB100 reviews):

• Comparative subscription: $100

See http://www.virusbtn.com/virusbulletin/subscriptions/ for
subscription terms and conditions.

Editorial enquiries, subscription enquiries, orders and payments:

Virus Bulletin Ltd, The Pentagon, Abingdon Science Park, Abingdon,
Oxfordshire OX14 3YP, England

Tel: +44 (0)1235 555139 Fax: +44 (0)1865 543153

Email: editorial@virusbtn.com Web: http://www.virusbtn.com/

No responsibility is assumed by the Publisher for any injury and/or
damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods,
products, instructions or ideas contained in the material herein.

This publication has been registered with the Copyright Clearance
Centre Ltd. Consent is given for copying of articles for personal or
internal use, or for personal use of specifi c clients. The consent is
given on the condition that the copier pays through the Centre the
per-copy fee stated below.

VIRUS BULLETIN © 2013 Virus Bulletin Ltd, The Pentagon, Abingdon
Science Park, Abingdon, Oxfordshire OX14 3YP, England. Tel: +44
(0)1235 555139. /2013/$0.00+2.50. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

The 2nd Annual Cyber Security Summit UAE 2013 will be held
13–14 May 2013 in Dubai, UAE. For more information see
http://www.cybersecurityuae.com/.

The 7th International CARO Workshop will be held 16–17 May
2013 in Bratislava, Slovakia. See http://2013.caro.org/.

AusCERT2013 takes place 20–24 May 2013 in Gold Coast,
Australia. For full details see http://conference.auscert.org.au/.

The 2nd Annual Cyber Security for the Chemical Industry Europe
takes place 29–30 May 2013 in Frankfurt, Germany. For details see
http://www.cybersecuritychemicals.com/.

TakeDownCon St Louis takes place 3–4 June 2013 in St Louis,
MO, USA. For details see http://www.takedowncon.com/stlouis/.

The 22nd Annual EICAR Conference will be held 10–11 June
2013 in Cologne, Germany. For details see http://www.eicar.org/.

Digital Enterprise Europe will be held 11–12 June 2013 in
Amsterdam, The Netherlands. For information about the event
see http://www.revolution1.plus.com/Digital_Enterprise_Europe_
Website/.

The CISO Roundtable and Summit will be held 12–14 June 2013
in Amsterdam, The Netherlands. For more information see
http://www.ciso-summit.com/europe/.

NISC13 will be held 12–14 June 2013. For more information see
http://www.nisc.org.uk/.

The 25th annual FIRST Conference takes place 16–21 June 2013
in Bangkok, Thailand. For details see http://conference.fi rst.org/.

Hack in Paris takes place 17–21 June 2013 in Paris, France. For
information see https://www.hackinparis.com/.

TakeDownCon Rocket City takes place 11–16 July 2013 in
Huntsville, AL, USA. Training days are 11–14 July, with the
conference running 15–16 July. See http://www.takedowncon.com/
rocketcity/.

DIMVA 2013 takes place 18–19 July 2013 in Berlin, Germany.
For details see http://dimva.sec.t-labs.tu-berlin.de/.

Black Hat USA will take place 27 July to 1 August 2013 in Las
Vegas, NV, USA. For more information see http://www.blackhat.com/.

DEF CON 21 will take place 1–4 August 2013 in Las Vegas, NV,
USA. For more information see https://www.defcon.org/.

The 22nd USENIX Security Symposium will be held 14–16
August 2013 in Washington, DC, USA. For more information see
http://usenix.org/events/.

VB2013 takes place 2–4 October 2013 in Berlin, Germany. The
conference programme and online registration are now available
– early bird rates apply until 15 June. See http://www.virusbtn.com/
conference/vb2013/.

MALWARE 2013 takes place 22–24 October 2013 in Fajardo,
Puerto Rico, USA. See http://www.malwareconference.org/.

VB2014 will take place 24–26 September 2014 in Seattle, WA,
USA. More information will be available in due course at
http://www.virusbtn.com/conference/vb2014/. For details of
sponsorship opportunities and any other queries please contact
conference@virusbtn.com.

mailto:editorial@virusbtn.com
mailto:conference@virusbtn.com
http://www.virusbtn.com/virusbulletin/subscriptions
http://www.virusbtn.com/
http://www.virusbtn.com/conference/vb2014/
http://www.virusbtn.com/conference/vb2013/
http://www.cybersecurityuae.com/
http://2013.caro.org/
http://conference.auscert.org.au/
http://www.cybersecuritychemicals.com/
http://www.takedowncon.com/stlouis/
http://www.eicar.org/
http://www.revolution1.plus.com/Digital_Enterprise_Europe_Website/
http://www.ciso-summit.com/europe/
http://www.nisc.org.uk/
http://conference.first.org/
https://www.hackinparis.com/
http://www.takedowncon.com/rocketcity/
http://dimva.sec.t-labs.tu-berlin.de/
http://www.blackhat.com/
http://www.defcon.org/
http://usenix.org/events/
http://www.malwareconference.org/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

