
JULY 2012

CONTENTS IN THIS ISSUE

IS
S

N
 1

74
9-

70
27

Fighting malware and spam

2 COMMENT

 Where should security reside?

3 NEWS

 Largest international carding crimes
 operation: 26 arrests

 Hotel group fi ned

 VB welcomes

3 MALWARE PREVALENCE TABLE

 MALWARE ANALYSES

4 Noteven close

6 Tiny modularity

9 FEATURE

 Malicious PDFs served by exploit kits

 TUTORIALS

11 Unpacking x64 PE+ binaries: introduction
 part 1

20 Quick reference for manual unpacking II

23 END NOTES & NEWS

MOVE CLOSER
As computing devices become more or less
disposable, or quicker to reset and recover than to
repair, what is it that we actually need to secure?
Greg Day believes that, in the future, security must
move closer to the information.
page 2

BUGGY CODE
Code virtualization is a popular technique for making
malware diffi cult to reverse engineer and analyse.
W32/Noteven uses the technique, but has such a
buggy interpreter that it’s a wonder the code works at
all. Peter Ferrie has the details.
page 4

SMALL BUT MIGHTY
Researchers have found a small piece of malware
capable of doing just as much as its bigger brothers.
Raul Alvarez looks at the structure of the malware,
its code injections and modular execution, and
describes how the tiny ‘Tinba’ is capable of doing
so much.
page 6

2 JULY 2012

COMMENT

Editor: Helen Martin

Technical Editor: Morton Swimmer

Test Team Director: John Hawes

Anti-Spam Test Director: Martijn Grooten

Security Test Engineer: Simon Bates

Sales Executive: Allison Sketchley

Web Developer: Paul Hettler

Consulting Editors:
Nick FitzGerald, Independent consultant, NZ
Ian Whalley, Google, USA
Richard Ford, Florida Institute of Technology, USA

WHERE SHOULD SECURITY
RESIDE?
In 2011, we fi nally saw some of the long predicted growth
in mobile threats. While the numbers are still infi nitesimal
– thousands as opposed to the hundreds of millions of
threats discovered on PCs last year – mobile device
security is now a topic of discussion in the boardroom.

With this in mind, there is a question that I would like
to hear discussed more widely: what is the right way to
manage mobile threats?

The cost of a laptop computer has dropped signifi cantly
over the last decade1. It is predicted that the cost of
smartphones will also drop by a third over the next
couple of years2, with some substantial decreases having
already been seen this year (take RIM dropping up to
26% off some of its devices3 for example).

But what is the relevance of the cost of devices? I
increasingly fi nd myself contemplating whether we
will reach a point where the value of the device means
that it simply isn’t worth protecting. I’m not in any way
suggesting that we no longer need security. My question
is: what are we actually trying to achieve?

1 http://blogs.computerworld.com/18748/how_low_can_they_go_
laptop_prices_continue_to_drop.
2 http://articles.businessinsider.com/2012-02-29/tech/31109577_1_
smartphones-pc-sales-internet.
3 http://news.telecomseva.com/index.php/2012/03/research-in-
motion-decreases-smartphone-prices-by-up-to-26-per-cent/.

When I started working at Dr Solomon’s in the
early 1990s, recovering from a virus on a PC was a
signifi cant undertaking. Imaging was not common,
and back-ups were poor, so systems would need to
be built again from the ground up, and data could
be lost permanently. We sold anti-virus software to
mitigate the cost and effort involved in recovering
from infection.

With a modern smartphone, it is possible to reset
both the device itself and, in most instances, the apps
installed. Increasingly, it will also be possible to restore
data through services such as iCloud4. Furthermore,
smartphones typically have a lifespan of just six to
nine months from a manufacturer’s standpoint5, and
most providers’ contracts generally last from a year
to 18 months. Given these facts, is it possible that the
device has become a disposable shell that can be reset
or replaced more quickly and cheaply than actually
removing the infection/attack?

I increasingly wonder whether the existing security
model is the right approach going forward.

As the device is becoming more or less disposable,
or quicker to reset and recover than to repair, what
is it that we actually need to secure? In the world
of Social Mobile Cloud and information explosion,
it seems that the two most pivotal factors are the
integrity and confi dentiality of the information we hold
and use.

The disposable nature of the smart device and the
resilience of the cloud go a long way towards ensuring
availability. As a result, the priority is less about keeping
the device up and running and more about keeping the
information available and secure.

Whilst we still look to innovate with concepts such as
security in the hardware, it seems logical that, in the
future, security must move closer to the information.
This means better integration with the vast array of
information structure types. Take a look at the likes of
Google, which is perceived to be the leader of Internet
information management; it has made a number of
security acquisitions as it recognizes the signifi cance of
security at the information level.

The mobile threat landscape and the most effective way
to secure against it is undoubtedly a discussion that
is here to stay. In my opinion, security needs to be as
innovative as the devices, and needs to put information,
rather than just the device, at the forefront.

4 http://www.apple.com/icloud/.
5 http://www.theusdvista.com/business/android-os-changes-
smartphone-life-cycle-1.2000033.

‘It seems logical
that, in the future,
security must
move closer to the
information.’
Greg Day, Symantec

http://blogs.computerworld.com/18748/how_low_can_they_go_laptop_prices_continue_to_drop
http://articles.businessinsider.com/2012-02-29/tech/31109577_1_smartphones-pc-sales-internet
http://news.telecomseva.com/index.php/2012/03/research-in-motion-decreases-smartphone-prices-by-up-to-26-per-cent/
http://www.apple.com/icloud/
http://www.theusdvista.com/business/android-os-changes-smartphone-life-cycle-1.2000033

3JULY 2012

VIRUS BULLETIN www.virusbtn.com

NEWS
LARGEST INTERNATIONAL CARDING
CRIMES OPERATION: 26 ARRESTS
The results of what federal offi cials are calling the largest
ever coordinated international law enforcement action
directed at carding crimes were revealed last month when
the US Justice Department released documents detailing
a two-year operation in which FBI offi cials set up an
undercover carding forum (carderprofi t.cc) to catch users
buying and selling stolen credit card details. During the
operation the Justice Department said it passed information
on to fi nancial institutions regarding more than 411,000
compromised credit and debit cards, and notifi ed 47
companies, government entities, and educational institutions
about breaches of their networks. A total of 26 people were
arrested under suspicion of trading in stolen credit card
accounts.

HOTEL GROUP FINED
Large hotel group Wyndham has been fi ned by the FTC
for data breaches that resulted in the loss of hundreds of
thousands of customers’ confi dential data.

The FTC claims that Wyndham failed to maintain
‘reasonable security’ on its networks, thus allowing a series
of data breaches to occur.

According to the FTC’s complaint, the hotel group failed
to adequately protect a property management system used
to manage 7,000+ hotels under the Wyndham Hotels and
Resorts umbrella. Among other things, it is believed that
default administrative usernames and passwords were used
on servers that connected to the network.

In addition, Wyndham Worldwide – the hotel group’s parent
company – stored customer credit card data in plain text,
and did not adequately segregate the property management
system from the company’s intranet and the public Internet.
As a result, a string of security breaches occurred between
April 2008 and January 2010, and customer data was stolen.

The company says it has improved its information security
practices and that it plans to challenge the suit.

VB WELCOMES
Virus Bulletin welcomes a new member of staff this month.
Tom Gracey has joined the VB team as Perl Developer. His
work will focus mainly on updating and maintaining the
VB website, but he will also assist with some aspects of the
VBSpam and VB100 tests – which we hope will allow us to
introduce a new set of tests for URL fi lters later in the year.
Tom and the rest of the team will be at VB2012 in Dallas in
September: http://www.virusbtn.com/conference/vb2012.

Prevalence Table – May 2012 [1]

Malware Type %

Autorun Worm 11.71%

Confi cker/Downadup Worm 6.60%

Downloader-misc Trojan 6.45%

Iframe-Exploit Exploit 6.42%

Heuristic/generic Virus/worm 5.37%

Injector Trojan 3.74%

Crypt/Kryptik Trojan 3.58%

Java-Exploit Exploit 3.48%

Heuristic/generic Trojan 3.30%

Adware-misc Adware 2.92%

Blacole Exploit 2.87%

Sality Virus 2.82%

Agent Trojan 2.60%

Sirefef Trojan 2.58%

FakeAV-Misc Rogue 2.28%

LNK-Exploit Exploit 1.77%

Dorkbot Worm 1.68%

Banload Trojan 1.56%

Jeefo Worm 1.47%

Virut Virus 1.37%

AutoIt Trojan 1.27%

Exploit-misc Exploit 1.19%

Crack/Keygen PU 1.07%

Ramnit Trojan 1.03%

Dropper-misc Trojan 1.01%

Encrypted/Obfuscated Misc 0.97%

PDF-Exploit Exploit 0.96%

Wimad Trojan 0.84%

Delf Trojan 0.74%

Redirector PU 0.70%

Brontok/Rontokbro Worm 0.68%

Phishing-misc Phish 0.66%

Others [2] 14.32%

Total 100.00%

[1] Figures compiled from desktop-level detections.

[2] Readers are reminded that a complete listing is posted at
http://www.virusbtn.com/Prevalence/.

http://www.virusbtn.com/conference/vb2012
http://www.virusbtn.com/Prevalence

VIRUS BULLETIN www.virusbtn.com

4 JULY 2012

NOTEVEN CLOSE
Peter Ferrie
Microsoft, USA

Code virtualization is a popular technique for making
programs diffi cult to reverse engineer and analyse. While
its use is seen mainly in commercial products such
as VMProtect, some viruses use the technique for the
same purpose. The interpreter is the weak point in any
virtualization implementation, because if the interpreter can
be understood, then the virtualization can be reversed to
some degree. In some cases, the interpreter is intentionally
made diffi cult to read. In the case of the W32/Noteven
virus, the interpreter is diffi cult to read due to sloppy coding
and numerous bugs. We can safely assume that this is
unintentional.

UNSTRUCTURED EXCEPTIONS
The interpreter begins by installing a Structured Exception
Handler to point to a location within the interpreter. There is a
bug in this code, which is that the virus breaks the SEH chain,
so any code that needs to walk the chain will fail and possibly
cause an exception that will result in the program being
terminated. The interpreter retrieves the address of a system
DLL by walking the InInitializationOrderModuleList from
the PEB_LDR_DATA structure in the Process Environment
Block. This results in the interpreter retrieving the address
of kernelbase.dll on Windows 7 and later versions, but
kernel32.dll on earlier versions of Windows. The interpreter
resolves the addresses of the functions that it needs in order
to infect fi les (FindFirstFile, FindNextFile, CreateFile,
GetFileSize, ReadFile, WriteFile, CloseHandle, VirtualAlloc,
VirtualProtect and GetCurrentDirectory [which is unused]).
Fortunately for the virus author, all of these functions are
present in kernelbase.dll.

The interpreter allocates space on the host stack for the
encoded instructions. There is a minor bug in this code,
which is that depending on the size of the instructions,
the resulting stack pointer value might be misaligned.
Fortunately for the virus author, the interpreter uses no APIs
that require the stack to be aligned (such as FindFirstFile
– which is called by the virtualized code, and the interpreter
merely resolves it on behalf of the virtualized code). The
interpreter copies the array of instruction lengths to the
host stack for processing later, then allocates two blocks of
memory. The fi rst block is the stack for the virtualized code,
and the second block is the virtual machine buffer that will
hold the virtualized code. The interpreter then copies the
virtualized code to the virtual machine buffer, and unmaps
the virtual machine buffer in order to ‘protect’ it from being

read externally (though nothing stops the original copy from
being read instead).

The interpreter swaps to the virtual machine stack, saves
the CPU fl ags there, allocates space for the virtual machine
registers, and then swaps back to the host stack. The
interpreter copies the current register values to the virtual
machine stack, and then begins parsing the virtualized
instructions using the instruction lengths that were copied to
the host stack earlier. The parsing is performed in the reverse
direction, for no obvious reason. The interpreter maps the
virtual machine buffer, copies the virtualized instruction
from the virtual machine buffer to the virtual machine stack,
according to instruction length, decodes the instruction, and
then unmaps the virtual machine buffer again.

WHAT’S IN A NAME?
The decoded instruction is the original native CPU
instruction. The virus makes no attempt to transform the
opcodes in any way. Each instruction is examined before
execution, because the interpreter will perform a controlled
execution of the ‘safe’ instructions. Certain instructions
cannot be executed directly because they will cause a
loss of control and possibly a crash. This means that the
environment is not code virtualization in the typical sense,
but rather buffered code execution. The difference is not
important for the purpose of this article.

The instructions that are considered to be special by the
interpreter are: E8 (call rel32), C3 (ret), FF (various), EB
(jmp rel8), E9 (jmp rel32), 0F 80-8F (jcc rel32), 70-7F
(jcc rel8) and E0-EF. There is a bug in the last set, which is
that it should be restricted to E0-E3, but the way in which
the comparison is made throws away the entire low nibble
instead of just the low two bits. This prevents the interpreter
from supporting the missing instructions and can result in
unexpected behaviour.

If the instruction is not considered to be special, then the
interpreter appends a call/fault/jmp sequence before allowing
the instruction to run. The call is used to save the instruction
pointer onto the stack. The faulting instruction is used to
transfer control back to the interpreter. The jump is supposed
to transfer control back to the interpreter in the event that
somehow the faulting instruction did not do so, but the
jump offset is completely wrong, so if the jump were ever
hit, then the virus would crash. The interpreter intercepts
the exception and ensures that it is the expected kind. The
faulting instruction is an interrupt 3 instruction, which can
interfere with a debugger and make the code diffi cult to
trace. The context that is saved when an exception occurs
will be used to update the registers in the virtual machine.

In order to execute an instruction, the interpreter saves the
host registers on the host stack, swaps to the virtual machine

MALWARE ANALYSIS 1

VIRUS BULLETIN www.virusbtn.com

5JULY 2012

stack, restores the virtual machine registers from the virtual
machine stack, and then runs the instruction. When the
interpreter intercepts the exception, it reinstalls the broken
Structured Exception Handler vector and installs another
Structured Exception Handler to point to a location within
the interpreter. It also saves the virtual machine registers on
the virtual machine stack, swaps to the host stack, and then
restores the host registers from the host stack.

CALL ME CRAZY
If the instruction opcode is ‘E8’, then the interpreter
checks if the relative offset is within the limit of the virtual
machine buffer. There are two bugs in this routine. The fi rst
is an off-by-one boundary condition, which allows the call
to land on the fi rst byte beyond the end of the buffer. The
second bug is an off-by-n boundary condition, which does
not require that the next instruction to execute fi ts in the
space remaining in the buffer. The interpreter also implicitly
limits the size of the virtualized code, so anything outside
of the buffer is treated as though the relative offset were
zero for the call. If the instruction is accepted, then the
interpreter inserts space for a dword on the virtual machine
stack. There is a bug in that routine, too, which is that there
is no check against the stack limits. As a result, a stack fault
will occur when the stack becomes full. Otherwise, the
interpreter places the return address in the newly created
space, updates the stack pointer, and determines the new
instruction pointer location. There is yet another bug in
this code, which is that a missing instruction prevents the
interpreter from supporting calling backwards in the code.
Not only is it not supported, it is also misinterpreted – any
attempt to call backwards will be treated as a call forwards
by the absolute relative value (that is, a call backwards by
six bytes will become a call forwards by six bytes).

POINT OF NO RETURN
If the instruction opcode is ‘C3’ then the interpreter
fetches the return address from the virtual machine stack,
deletes the element from the virtual machine stack, and
adjusts its position in the length array corresponding to
the return address. There is a bug in this code, which is
that the interpreter assumes that it will be returning to an
earlier position in the array. Any attempt to return to a later
position will cause the virus to crash.

If the instruction opcode is ‘FF’, then the interpreter checks
if the eax register contains certain values. One value retrieves
the in-memory address of the interpreter. Another causes
a return of control to the host entry point, however there is
a bug in the state that is passed to the host. Another value
retrieves a pointer to the list of resolved API addresses. If

the value is none of these, then the interpreter attempts to
run the instruction as described above. There is a bug in
this behaviour, which can result in escape from the virtual
environment, because the interpreter does not prevent the
interpreted code from jumping to an arbitrary address.

If the instruction opcode is ‘EB’, then there is a bug:
the interpreter forces an exception to occur, perhaps for
debugging purposes, but since the wrong stack is in use at
that moment, the result is that another exception occurs. The
second exception is intercepted by the interpreter, but during
the handling, another exception occurs. This cycle repeats
until a stack fault causes Windows to terminate the program.

If the instruction opcode is ‘E9’, the interpreter calculates
the new instruction pointer and continues execution.

If the instruction opcode is ‘0F 80-8F’ or ‘70-7F’, then
the interpreter attempts to simulate the branch. The way
in which this is done is about as non-optimized as it is
possible to be. Instead of simply loading the fl ags and then
replicating the branch instruction locally, the virus examines
the fl ags according to the conditions that they are supposed
to represent, and then branches to a unique label for each
of the true and false conditions. Of course, there is also a
bug in this code. The ‘jbe’ simulation has its conditions
reversed, so a branch is taken when it shouldn’t be.

If the instruction opcode is ‘E0-EF’ then we encounter
more bugs. The fi rst is that the handling for the ‘E0-E2’
set (LOOPNE, LOOPE and LOOP) skips the instruction if
the ecx register is zero. A real CPU will perform the loop
as though it had an initial iteration count of 4GB. That is,
the value of zero in the ecx register is not special. Only a
value of one can cause a loop to exit immediately, and the
value in the ecx register is altered in all cases. The routine
is broken anyway, because it forces an exception to occur,
and demonstrates the recursive exception problem described
above.

The interpreter also attempts to intercept faults in the
virtual machine buffer, but there is a bug in this code: the
interpreter uses the wrong offset for fetching the faulting
address from the Exception Record. This results in a crash
in the interpreter while it is searching the length buffer
for the exception address. This bug also demonstrates the
recursive exception problem described above.

VIRTUAL MALWARE
The virus that the interpreter runs begins by requesting the
API addresses from the interpreter. The virus copies them to
a local buffer, and caches the FindFirstFile, FindNextFile,
and CreateFile addresses in registers, but the values are
lost during a memory allocation that follows immediately.
The caching might have been for debugging purposes to

VIRUS BULLETIN www.virusbtn.com

6 JULY 2012

see the values, because the addresses are loaded again later,
as needed. The virus enumerates the objects in the current
directory, but discards the fi rst two results, and begins
examining the objects from the third one that is found. There
is a minor bug in this idea, which is that the virus might
miss some fi les whose names cause the directory sorting
to place them before the ‘.’ and ‘..’ directories. The virus
attempts to check that the extension is ‘.exe’, but forgets to
check for the ‘.’, so a fi le named ‘exe’ is also accepted.

The virus attempts to open the fi le, allocate memory to hold
the entire fi le plus another 4KB, read the whole fi le, and
then close it. The only operation whose result is checked is
the fi le open. The virus assumes that the other operations
will succeed, or that the exception handler in the interpreter
will intercept any problem (but, as we have seen above, this
is not the case). There is another bug in this code, which
is that neither the interpreter nor the virus frees any of the
memory that they allocate. If enough large fi les exist in the
directory, then eventually the process will be terminated by
Windows due to memory exhaustion. The virus skips the fi le
if it is infected already. The infection marker is the value
‘EEEE’ stored in the OEM ID space in the MZ header.

The infection routine contains numerous bugs, the most
obvious of which is that the virus does not check the
Machine fi eld when infecting fi les, so 64-bit fi les will be
corrupted. The virus does not check other important fi elds
either, so DLLs and drivers will be infected, too. The virus
marks the last section as writable but not executable, so it
will fail to run on DEP systems if the last section was not
already marked as executable. The virus saves the absolute
address of the host entry point in the virus body, so the virus
will fail to run the host if the host supports ASLR.

The virus fetches the Load Confi guration Table data
directory information, and assumes that if it is present, then
it is located in the fi rst section. This can result in a pointer to
an unexpected location in the fi le. The virus attempts to zero
out the actual table, instead of the data directory entry. The
virus appends itself to the last section and changes the host
entry point to point to the interpreter code. It then attempts
to open the fi le, write itself, and close the fi le again. The
virus does not check that the fi le attributes allow the fi le to
be written to, and it does not do anything with the fi le’s date
and time stamps or the checksum. Files with appended data
will have their appended data overwritten by the virus code.
Once the virus has fi nished enumerating the fi les, it returns
control to the host.

CONCLUSION
Analysing virtualized code can leave us wondering how
it works. In this case, we’re left wondering how it works,
given how buggy it is.

TINY MODULARITY
Raul Alvarez
Fortinet, Canada

Researchers have found a small piece of malware capable
of doing just as much as its bigger brothers. Dubbed ‘Tinba’
(Tiny Banker) [1], the malware is approximately 20KB in
size. The size of the malware itself is nothing unusual – we
have already seen malware of around the same size and
even smaller. But, generally, smaller-sized malware tends
only to perform very specifi c tasks, such as downloading
components, creating backdoors, and other trivial things.
What sets this one apart from the pack is its ability to do
much more.

Using behavioural analysis, we can describe Tinba’s main
functionality. Using static analysis, we can predict and
confi rm what the code is doing. But it is only by following
its footsteps that we can observe the modularity of Tinba’s
execution.

This article will look at the internal structure of the
malware, its code injections, and its modular execution. We
will describe how such a small piece of malware is capable
of doing so much.

DECRYPTION ALGORITHM
The particular sample that we will look at is 19,968 bytes
in size. It is small, but it has a simple encryption/decryption
routine.

When the sample is executed, its initial routine starts with a
simple decryption algorithm. After setting up the destination
memory and the starting location of the encrypted bytes, it
XORs each byte with 0xBF. A total of 13,312 bytes will be
decrypted to the memory.

After decryption, the strings, texts and code that Tinba uses
are visible, including the domain names it tries to connect
to. After the decryption routine, the malware resolves the
APIs that it needs to execute its other tasks.

THE HUNT FOR APIs
The APIs used by the malware are taken from fi ve main
DLLs: kernel32, ntdll, advapi, ws2_32 and user32. With the
exception of kernel32, all of these names can be seen in the
decrypted strings.

The image bases of the DLL names are used to resolve the
APIs that Tinba needs for its malicious actions. These are
acquired as follows:

First, the image base of kernel32.dll is acquired by parsing
the Process Environment Block (PEB). The malware simply

MALWARE ANALYSIS 2

VIRUS BULLETIN www.virusbtn.com

7JULY 2012

looks for a match for ‘32’, which is part of the name of
kernel32.dll. No other checking is done to make sure the full
name is ‘kernel32’. Fortunately for Tinba, the fi rst DLL with
‘32’ in its name is kernel32.dll. Once it obtains the image
base of kernel32.dll, it parses its header to look for the export
table. Once the export table is located, the malware will get
the hash value of each API in kernel32.dll and compare it
with its own list of hash values (see Figure 1). This is the
malware’s method of resolving the API addresses without a
regular call to the GetProcAddress API. After resolving the
APIs that it needs, it moves on to get the image base of the
next DLL.

The image base for ntdll.dll is acquired next, using a call
to the GetModuleHandleA API using the string ‘ntdll’ as a
parameter.

The image bases of advapi32.dll, ws2_32.dll and
user32.dll are then acquired using the LoadLibraryA API
with the string names of the DLLs as parameters.

The APIs the malware needs from these DLLs are
resolved using the same method as for
kernel32.dll.

FIRST CODE INJECTION

After the exhaustive resolution of APIs,
Tinba creates a new process named
‘winver’ in suspended mode. It copies
its 12,744 bytes of decrypted code to
the winver process, and executes it
remotely by calling the ResumeThread

API. Afterwards, the original Tinba process
is terminated. It is interesting to note that the
malware hasn’t done anything beyond decrypting
its code and injecting it into the winver process.

Once Tinba has transferred execution to the
winver.exe process, it starts the API resolution
again in the same manner as it did during the
execution of the original malware. This is to
make sure that it gets the right DLL and the
right addresses for the APIs. The code for API
resolution is the fi rst set of routines from the
decrypted code.

Once the malware has determined that it is
running in the context of the winver process, it
looks for explorer.exe from the list of processes
and injects its code in the same way as it did
with the winver.exe process. This time, however,
the CreateRemoteThread API is called to trigger
the code in the explorer.exe process. This is the
second code injection performed by Tinba.

This time the malware doesn’t terminate the
execution of the winver.exe process after the code injection
into explorer.exe.

Tinba proceeds by initiating Internet connectivity for
its communication with the C&C server. The routine to
connect to the C&C servers is executed within the winver.
exe process. The domain names are hard-coded and can be
seen in the decrypted code of the malware (see Figure 2).

SECOND CODE INJECTION
Once the code injected into explorer.exe executes, Tinba
performs the API resolution again, and checks to see which
process it is running in. Once the malware has determined
that it is running inside the explore.exe process, it performs
the following familiar malware routines:

1. It checks whether the original sample is running as
%APPDATA%\default\bin.exe. If it isn’t, it creates
the %APPDATA%\default directory, then moves the

Figure 1: A partial list of resolved APIs and their hash values.

Figure 2: C&C domain names and the code that tries to access them.

VIRUS BULLETIN www.virusbtn.com

8 JULY 2012

original executable to %APPDATA%\default as
‘bin.exe’. This, eventually, will look like it has
deleted the original fi le and dropped a copy of itself.

2. It makes start-up registry keys with %APPDATA%\
default\bin.exe, to make sure that Tinba will survive
after a system reboot. Details of the registry keys are
as follows:

Key: HKEY_CURRENT_USER\Software\Microsoft\
Windows\CurrentVersion\Run

Value: default

Data: “%APPDATA%\default\bin.exe”

Key: HKEY_USERS\[SID]\Software\Microsoft\Windows\
CurrentVersion\Run

Value: default

Data: “%APPDATA%\default\bin.exe”

3. The malware also modifi es HKCU\Software\
Microsoft\Windows\CurrentVersion\Internet
Settings\Zones\3 with a value of 1609, also known as
DisplayMixedContentInternet.

4. It reads %APPDATA%\Mozilla\Firefox\profi les.ini,
to get the default profi le location. This is also one way
to check whether Firefox is installed in the system.
It looks for the ‘Path=’ from within the fi le, takes the
‘[profi le code].default’ value, and creates a folder
path: %APPDATA%\Mozilla\Firefox\Profi les\[profi le
code].default.

 Afterwards, Tinba creates the fi le %APPDATA%\
Mozilla\Firefox\Profi les\fzdq808c.default\user.js,
which contains:

user_pref(“security.warn_submit_insecure”,false);

user_pref(“security.warn_viewing_mixed”,false);

 Effectively, this disables the security warning that
appears when the user tries to send data through
an insecure site, and disables the warning that
appears when the user opens a page containing both
encrypted and unencrypted data.

5. Then, it creates and runs a thread that does the
following:

 It checks the list of processes for iexplore.exe,
fi refox.exe and chrome.exe. Once any of the three
processes is found, it injects the 12,744 decrypted
bytes again (giving us the third code injection), and
executes the code by calling the CreateRemoteThread
API. The code will only be injected into the browser
process if the browser is not yet infected.

 After injecting its code into the available browsers,
it goes back and lists the processes again, and
checks whether any new ones have been added since

the last time it checked the list. The thread keeps
running to check for new browser processes to inject
its code into.

THIRD CODE INJECTION
The code injected into the running browser is the same
as that injected into the explorer.exe and winver.exe
processes. This is the third and fi nal code injection
performed by Tinba. If any of the iexplore.exe, fi refox.exe
and chrome.exe processes are found on the list of running
processes, Tinba will inject its code to any or all of them.
It has a thread running within the explorer.exe process that
monitors for the execution of the browsers. Even if the
user terminates the browser, Tinba will be able to inject
its code again once the browser application is executed,
thanks to the persistent thread running inside the explorer.
exe process.

Once Tinba determines that it is running within the browser,
it executes the code used to intercept the user’s online
activities. Tinba now acts as a man-in-the-browser.

WRAP UP
On initial execution, Tinba’s only goal is to decrypt
the malware code and inject the decrypted code into
the newly created winver.exe process. It transfers
the malware execution to the winver.exe process and
terminates itself. There are two main tasks that Tinba
performs while in the context of the winver.exe process:
it injects its code into explorer.exe, and connects to the
C&C servers. Once execution has been transferred to the
explorer.exe process, the familiar malware routines are
performed, including dropping and creating fi les, adding
registry keys, and injecting code into browsers. Tinba
injects its code into running browser processes, but it
leaves a thread running inside explorer.exe to monitor and
make sure that it infects new browser processes. Finally,
modular execution inside the browser monitors the user’s
Internet activities.

One trivial feature of Tinba is its ability to know which
running process it has been injected into and perform the
relevant necessary tasks. Tinba may be small, but its code
has been optimized ingeniously. If a larger sized piece of
malware had this kind of coding structure, we would expect
it to be a considerable challenge. But, ingenious or not,
security experts will always fi nd a way to catch up with
the malware.

REFERENCE
[1] Tinba. http://www.csis.dk/en/csis/news/3566.

http://www.csis.dk/en/csis/news/3566

VIRUS BULLETIN www.virusbtn.com

9JULY 2012

MALICIOUS PDFS SERVED BY
EXPLOIT KITS
Didier Stevens
Contraste Europe, Belgium

The Portable Document Format (PDF) is still a very popular
vector with cybercriminals for infecting as many Windows
machines as they can. Although the PDF language was not
designed to allow arbitrary code execution, implementation
and design fl aws in popular reader applications make
it possible for criminals to infect machines via PDF
documents. Let us explore how this is possible.

FILE FORMAT

The PDF fi le format is composed of objects that defi ne
how pages should be rendered by reader applications
such as the ubiquitous Adobe Reader. These objects are
logically organized in a hierarchical tree structure. We
have a catalog object at the root, and fi nd page objects
lower in the tree structure. These page objects refer to
other objects to defi ne text and images to be drawn upon
an empty page.

Here, we come across the fi rst example of how malware
authors can tailor PDF documents to attack PCs. PDF
readers like Adobe Reader need to support a large number
of image formats that can be included in PDF documents.
This support requires a huge code base that inevitably
contains programming errors. In 2009, Adobe had to
release new versions of Reader to fi x bugs in the JBIG2
rendering algorithms. JBIG2 is an image compression
standard supported by Adobe Reader – but Adobe’s JBIG2
decompression algorithms were found to contain buffer
overfl ows. Malware authors discovered how to craft a
specially designed JBIG2 image that would cause a buffer
overfl ow in the decompression algorithm.

Exploit developers love to discover buffer overfl ows
because they can often lead to arbitrary code execution.
The type of buffer overfl ows that exploit developers search
for are the ones that eventually lead to EIP (Extended
Instruction Pointer) control. The EIP is a crucial register
in Intel x86 microprocessors, because it points to the next
instruction to be executed. When exploit developers can
control the value of the EIP register via a buffer overfl ow,
they can control which instructions will be executed, and
thus achieve arbitrary code execution. But controlling
the address to which the EIP points is only one element
of an exploit. Another important element is being able
to include instructions that the malware author wants to
execute. In most malicious exploits, these instructions

are shellcode that will ultimately download and execute
malware. Including shellcode in the exploit is often tricky,
but malware authors have found a quick and dirty solution:
the JavaScript heap spray. When a malware author develops
an exploit that achieves EIP control, he still needs to be able
to plant shellcode in memory at the address pointed to by
the EIP. Including this shellcode in an exploit that triggers
the vulnerability can often be very diffi cult or impossible to
achieve, because of the specifi cs of the vulnerability.

JAVASCRIPT
The PDF language supports a couple of programming
languages, one of which is JavaScript. PDF readers like
Adobe Reader include a JavaScript interpreter. When
JavaScript code is embedded inside a PDF document,
it will be executed depending on the type of action that
is defi ned. One such action is the opening of the PDF
document – meaning that the PDF reader will execute
the embedded JavaScript code when the PDF document
is opened. This in itself is not a security issue, as the
JavaScript implementation in PDF readers like Adobe
Reader is sandboxed. Programs written in this JavaScript
version cannot access or modify resources of the underlying
operating system such as fi les and registry entries.
JavaScript support in PDF documents is designed to
augment the rendering of those documents – for example by
calculating totals in order forms – and is designed to prevent
alteration of system resources. This means, for example,
that malware authors cannot write a JavaScript program to
drop a trojan.

But malware authors can use JavaScript to plant the
necessary shellcode for their exploit. They achieve this with
heap spraying: the script creates a string that contains the
shellcode preceded by a NOP sled – a long sequence of
NOP instructions. Then it creates a large number of copies
of this string. Since JavaScript is an interpreted language,
it uses a memory management structure (heap) to store
its variables. Thus, creating a large number of copies of a
string that contains shellcode effectively fi lls the heap with
shellcode. (This is likened to spraying shellcode into the
heap, hence the term ‘heap spray’.)

Finding a vulnerability (like the JBIG2 vulnerability)
in the PDF language parser is an important step
towards achieving arbitrary code execution, but there
is another popular tactic: fi nding a vulnerability in the
JavaScript parser. A well-known example is the util.printf
vulnerability. Exploit developers discovered that they can
take control of the EIP register by calling util.printf with
a very long numerical argument (Adobe released a new
version of Reader to address this vulnerability in 2008). An
exploit for util.printf fi rst uses JavaScript code to perform a

FEATURE

VIRUS BULLETIN www.virusbtn.com

10 JULY 2012

heap spray, then uses JavaScript to trigger the vulnerability
in util.printf.

The two major exploit avenues present in malicious
PDF documents found in the wild are: a JavaScript heap
spray followed by the triggering of a vulnerability in
the PDF language implementation, or the triggering of a
vulnerability in the JavaScript language implementation.

As JavaScript heap sprays are so often found in malicious
PDF documents, disabling JavaScript support in your
PDF reader is often recommended as a mitigating action.
Disabling JavaScript support in Adobe Reader means that
JavaScript code embedded in PDF fi les is not executed.
Remember that this course of action does not prevent PDF
language exploits, but since they often rely on JavaScript
heap sprays to plant shellcode, they ultimately fail when
JavaScript support is disabled.

EXPLOIT KITS

JavaScript is not only an essential tool for malware
authors developing PDF exploits, but it is also crucial
for the operation of exploit kits. Exploit kits are sets of
programs running on a web server that are designed to
automatically infect clients. When a user is directed to
a web server hosting an exploit kit, the exploit kit will
serve the client with malicious PDF fi les, Flash fi les, Java
fi les etc., all containing exploits specifi cally tailored to
infect the machine of the unsuspecting user. The exploit
kit serves many exploits to the client in the hope that at
least one will be successful and take control of the targeted
machine. PDF documents with embedded JavaScript code
are particularly well suited for use in exploit kits, because
they offer two important advantages: versatility and
stealthiness.

A PDF document with embedded JavaScript code is a
versatile tool for an exploit kit because it can serve many
exploits inside the same PDF document and activate the
one that is most likely to be successful. Adobe’s JavaScript
implementation comes with a function to check the version
of Adobe Reader: app.viewerVersion. This function returns
the version number of the reader that has opened the PDF
document and is executing the embedded JavaScript code.
By using the result of this function, authors of malicious
PDFs can design their JavaScript code to include several
exploits and select the best one with a JavaScript ‘if’
statement. For example, if the version of Adobe Reader is
8.1.2, the JavaScript code for the util.printf exploit will be
launched, but if the version of Adobe Reader is 8.1.3, then
the JavaScript code for the Collab.getIcon exploit will be
launched. Launching the JavaScript code for the util.printf
exploit with version 8.1.3 or later is pointless, because the

util.printf vulnerability was patched with the release of
version 8.1.3.

Malicious PDFs produced by exploit kits not only use
app.viewerVersion to determine which exploit to launch.
Many features in Adobe Reader are implemented via
plug-ins. These plug-ins are actually DLLs that are loaded
into the Adobe Reader process whenever the functionality
they implement is required. JavaScript in Adobe Reader
is implemented with the ECMA Script plug-in (fi le
Escript.api). Malicious PDFs can retrieve the version
number of the loaded ECMA Script plug-in by enumerating
plug-in array app.plugIns and reading the property version
for the plug-in with property name ‘EScript’.

This versatility not only allows authors of malicious PDFs
to tailor their JavaScript code to launch the most appropriate
exploit for the version of Adobe Reader their fi le is running
in, but it even allows them to target different readers with
the same PDF document, provided the targeted readers
support embedded JavaScript. For example, assume a
malware author wants to target both Adobe Reader and
Foxit Reader with the same malicious PDF. Both readers
had a vulnerability in the util.printf method, but the details
of the exploit for each are quite different. An exploit for
Adobe’s util.printf implementation does not work for
Foxit’s util.printf implementation, and vice versa. Hence the
malware author needs to write JavaScript code to determine
which reader opened his malicious PDF document and
to launch the appropriate exploit (provided the version is
vulnerable).

One method to determine which reader the JavaScript code
is running in is to use a property or method that is only
declared in one reader, and not in the other. For example, the
Net.SOAP.wireDump property is declared in Adobe Reader,
but not in Foxit Reader. When this property is accessed
from JavaScript code running in Foxit Reader, an exception
will be thrown, while with Adobe Reader, a boolean value
will be returned. When an exception is thrown, it interrupts
the running JavaScript code, but this can be prevented by
catching the exception with a JavaScript try-catch statement.
So, by inserting the Net.SOAP.wireDump expression inside
a JavaScript try-catch statement and catching the exception,
it is possible to determine which reader the JavaScript code
is running in, and launch the appropriate exploit.

Exploit kit developers want to prevent anti-virus programs
from detecting their exploits, so they develop kits that
serve ever-changing exploits. Malicious PDF documents
with embedded JavaScript code are particularly suited for
this, as JavaScript can be used to obfuscate the code in an
infi nite number of ways. This is especially the case if exploit
developers limit their malicious PDF documents to JavaScript
exploits, because then all malicious code can be obfuscated.

VIRUS BULLETIN www.virusbtn.com

11JULY 2012

OBFUSCATION

JavaScript obfuscation is a vast subject. New techniques
appear all the time, making the task of anti-virus engine
developers diffi cult. And with JavaScript code embedded
in PDF documents, there are even more obfuscation
possibilities. One popular way to obfuscate JavaScript code
is to split it up into different parts. Inside a PDF document
there are several ways to split up JavaScript code and store
the different parts. PDF document annotations are often
used to split up embedded JavaScript code. Annotations
allow a user of a PDF reader to annotate the document he is
reading. Annotations can be text, but also text highlights and
other symbols. Annotations can be made invisible, so that a
user can view the original document without annotations.

Invisible annotations are used by authors of malicious PDFs
to store partial JavaScript code. These snippets of code are
accessed from JavaScript code with the getAnnotations
method, recombined with string concatenation and then
executed via the eval function. The string concatenation
code is often convoluted to add to the overall obfuscation of
the JavaScript code.

One last obfuscation technique that deserves a mention
is encryption. PDF documents can be encrypted for
two reasons: for digital rights management and for
confi dentiality. When a PDF document is encrypted,
the structure of the document remains unchanged – the
structure is not encrypted, but the content is. This means
that objects and their properties remain unencrypted, while
the strings and streams stored inside objects (the actual
content) are encrypted. PDF documents are encrypted
with a key derived (amongst other elements) from a user
password and a hashed owner password. The hashed user
and owner password are stored inside the PDF document.
If the user password is empty, the key can be completely
derived from elements stored inside the PDF document,
and thus the user does not need to provide a password to
view the PDF document. In other words, a PDF document
that is encrypted with a key derived from the hashed owner
password (for DRM reasons, like disabling printing) is
‘obfuscated’ because of the encryption, but can be decrypted
(hence viewed) without requiring a password. Anti-virus
products that need to ‘deobfuscate’ such PDF documents
need to be able to decrypt PDF documents.

CONCLUSION

Malicious PDF documents are used on a large scale to infect
Windows PCs. This trend started several years ago, with
mass mailings of malicious PDF documents, and is likely
to remain popular for several years to come because of the
versatility and stealthiness it offers to exploit kit developers.

UNPACKING X64 PE+ BINARIES:
INTRODUCTION PART 1
Aleksander P. Czarnowski
AVET INS, Poland

The x86-64 architecture is taking over from IA32 CPUs
– but this should not come as a surprise, especially since
major operating system players have been supporting it
for years already. Of course, malware authors are aware
of this revolution and thus they target executable fi les
running natively on AMD64-compatible architectures
and operating platforms. One of the most complex (and
fl exible) executable formats in the 64-bit world is Microsoft
Windows PE32+ (since the name is a bit misleading, we
will refer to it as ‘PE+’ in the rest of this article). Due to
the closed-source nature of Windows, the best and most
advanced debuggers and anti-debugging techniques have
been developed for the Win32/64 world. Linux and BSD
systems lag behind, while embedded systems for the
mobile market such as Android and iOS are catching up in
this area.

While not all packers/obfuscators have been upgraded to
handle 64-bit executable formats, there are a lot of tools that
can handle both Windows PE+ fi les and ELF 64-bit fi les.
In this tutorial I will describe some of the main differences
between the PE and PE+ fi le formats from the perspective
of the binary unpacking process.

PE+ DIFFERENCES

The PE+ fi le format is a bit like the good old 32-bit
Windows PE format on steroids. If you thought you would
only be able to execute a PE(+) fi le after successfully
booting into Windows (you don’t have to log in successfully
since Windows service fi les are also PE(+) executables
internally), you would be wrong. The PE(+) fi le format
is supported by the UEFI specifi cation, so it is possible
to execute UEFI PE fi les even before the target operating
system or hypervisor starts. There is one important
note: UEFI expects the PE+ fi le format even on 32-bit
architecture, and furthermore it uses just a subset of PE+
features. In turn, the PE+ fi le format contains a special fl ag
to mark it as UEFI executable.

Other cases for loading Win32 PE or plain PE fi les are
limited today mostly to some DOS-based embedded
solutions. But wait a minute – isn’t DOS a 16-bit real-mode
operating system, whose process loader is limited to
handling 64KB COM fi les and MZ EXEs? How can it
execute Windows 32-bit protected mode binaries? The
answer is simple: DOS extenders.

TUTORIAL 1

VIRUS BULLETIN www.virusbtn.com

12 JULY 2012

REGISTERS
All general purpose registers are extended to 64-bit width in
long mode, providing us with RAX, RBX, RCX, RDX, RSI,
RDI, RBP, RSP and RIP, which serves like its 32-bit brother
EIP as an instruction pointer. New general purpose registers
have also been introduced (it seems as if the AMD and Intel
engineers fi nally decided that they envied some of the good
old Motorola 68K features): from R8 to R15. New XMM
registers are also available: from XMM8 to XMM15. All
XMM registers are of 128-bit width. 64-bit MMX0–MMX7
registers are available as well.

CALLING CONVENTION
x64 Windows systems no longer use the STDCALL calling
convention by default. Instead, the FASTCALL convention
is used, which means that the fi rst four parameters are
passed in RCX, RDX, R8 and R9 registers. Further
parameters are passed using the stack. There are no
attempts to spread a single argument across many registers.
Additionally, the caller is responsible for allocating
parameter space to the callee, and must always allocate
suffi cient space for the four register parameters, even if the
callee doesn’t have that many parameters [2].

Following [3], here is a typical function prolog:

mov [RSP + 8], RCX

push R15

push R14

push R13

sub RSP, fi xed-allocation-size

lea R13, 128[RSP]

And here is a typical function epilog:

add RSP, fi xed-allocation-size

pop R13

pop R14

pop R15

ret

UNAVAILABLE INSTRUCTIONS IN LONG
MODE

It is worth mentioning that while in long mode some of the
16/32-bit instructions are unavailable and can generate an
undefi ned opcode exception (#UD).

Furthermore, opcodes from 40h to 4fh (inc register/dec
register) have a different mapping in long mode. The REX
prefi x uses those while in long mode.

String operation instructions like LODSB, STOSB etc.
have been extended to handle 64-bit addressing. In turn, a

There are a couple of DOS extenders that offer Win32
PE support out of the box. If you thought that DOS and
DOS extenders were part of the past, you would be wrong.
Some DOS extenders are still actively being developed and
supported: HX DOS Extender [1] is a great example. HX
provides a Win32 emulation layer to DOS and enables DOS
to load 32-bit PE fi les.

Returning to our 64-bit version of PE: if you know the
PE fi le format well, you won’t be surprised by changes
introduced in PE+. The table below summarizes most of the
basic ones:

Field PE PE+

BaseOfData ULONG
(4 bytes)

Removed from the
Optional Header

ImageBase ULONG
(4 bytes)

ULONGLONG (8
bytes)

SizeOfHeapCommit ULONG
(4 bytes)

ULONGLONG (8
bytes)

SizeOfHeapReserve ULONG
(4 bytes)

ULONGLONG (8
bytes)

SizeOfStackReserve ULONG
(4 bytes)

ULONGLONG (8
bytes)

StackOfSizeCommit ULONG
(4 bytes)

ULONGLONG (8
bytes)

Table 1: Comparison between PE and PE+ formats.

The AddressOfEntryPoint fi eld has the same size (ULONG)
in both PE and PE+ fi les. How one can recognize a PE+
fi le? The magic number fi eld in Optional Headers is
different:

Field PE PE+

Magic Number 0x10b 0x20b

PE+ executable images are restricted to a maximum size
of two gigabytes, so relative addressing with a 32-bit
displacement can be used to address static image data. This
data includes the import address table, string constants,
static global data, and so on.

The rest of the PE+ fi le looks like a PE fi le – and what’s
more important is that all compression/obfuscation tools
that handle PE+ fi les work in exactly the same way as in the
case of 32-bit executable images. Therefore, the unpacking
process is also similar. The following sections describe
some of the other important differences that the 64-bit
architecture brings in.

VIRUS BULLETIN www.virusbtn.com

13JULY 2012

few new string instructions have been introduced: LODSQ,
CMPSQ, MOVSQ, SCASQ and STOSQ. As a consequence,
REPx prefi xes handle 64-bit registers as well as LOOP,
LOOPZ and LOOPNZ. All those string instructions can be
found in decompression/decryption loops.

Furthermore, both SYSENTER and SYSEXIT instructions
are available from legacy mode. In long mode, the
SYSCALL/SYSRET pair is used.

If, during unpacking, you see some of these unavailable
instructions in your disassembly, you can be assured that
either the unpacking process has gone wrong, or it has not
yet fi nished.

WOW64
WOW64 is an emulation layer that enables AMD64
and Itanium-based Windows systems to execute Win32
applications to maintain backwards compatibility. Figure 1
describes the high-level WOW64 architecture. It is worth
mentioning that WoW64.dll loads a 32-bit version of
ntdll.dll, which loads other 32-bit DLLs that are needed to
support Win32 application execution. Most of these DLLs
are exact binary copies from the 32-bit system, however
some have been modifi ed in order to be able to share
resources with 64-bit system components.

Note that in the case of Itanium-based systems there are two
more libraries involved in running 32-bit software:

• IA32Exec.bin – contains an x86 software emulator.

• Wowia32x.dll – provides an interface between WOW64
and IA32Exec.bin.

THE TEST FILES
Since this is a tutorial, I’ve decided not to use a specifi c
malware sample. Instead, I have created a sample PE+ fi le

written in assembly language. This fi le can be compiled
with fl at assembler (fasm), which is available at [4]. Do
not try to compile this example with different assemblers
such as MASM or NASM as you will not succeed without
editing the source code. The presented examples use
specifi c fasm syntax. I’ve chosen fasm since it provides a
lot of control over output executable fi les within the source
code level and no external linker is needed in our case.
For example, you can manually control the layout of PE+
sections, their order and attributes:

WoW64 Emulation

PE+ (64bit process)

Native (x64)
kernel32.dll

Native (x64)
ntdll.dll

WoW64cpu.dll

WoW64win.dll

WoW64.dll

PE (32bit process)

Ring 0

32bit
Ntdll.dll

Loads on startup

32bit
kernel32.dll

Loads

Figure 1: WOW64 architecture.

AAA

AAD

AAM

AAS

BOUND

DAA

DAS

INTO

LDS

LES

POPA

POPAD

POP DS

POP ES

POP SS

PUSH CS

PUSH DS

PUSH ES

PUSH SS

PUSHA

PUSHAD

Table 2: Unavailable instructions in long mode.

VIRUS BULLETIN www.virusbtn.com

14 JULY 2012

; Example of 64-bit PE program

format PE64 GUI

entry start ;Entry point defi nition

;DATA SECTION

section ‘.data’ data readable writeable

 _caption db ‘Win64 assembly program’,0

 _message db ‘Hello World!’,0

;CODE SECTION

section ‘.text’ code readable executable

 start:

 sub rsp,8*5 ; reserve stack for API use
and make stack dqword aligned

 mov r9d,0

 mov r8,_caption

 mov rdx,_message

 xor rcx,rcx

 call [MessageBoxA]

 mov ecx,eax

 call [ExitProcess]

; IMPORT SECTION

section ‘.idata’ import data readable writeable

 dd 0,0,0,RVA krnl_name,RVA krnl_tbl

 dd 0,0,0,RVA user_name,RVA user_tbl

 dd 0,0,0,0,0

 krnl_tbl:

 ExitProcess dq RVA _ExitProcess

 dq 0

 user_tbl:

 MessageBoxA dq RVA _MessageBoxA

 dq 0

 krnl_name db ‘KERNEL32.DLL’,0

 user_name db ‘USER32.DLL’,0

 _ExitProcess dw 0

 db ‘ExitProcess’,0

 _MessageBoxA dw 0

 db ‘MessageBoxA’,0

To compile the fi le just enter: fasm.exe testwin64.asm.
Assuming that the compilation succeeded you can now load
the binary fi le into IDA Pro using the standard Open File
option. This will be our template fi le that we will use for all
further operations. The fi le sections and attributes are shown
in Figure 2.

Next, disassemble the entry point using the Ctrl+E shortcut
to jump directly to the start label, as shown in Figure 3.
You can see that the data closely resembles our fasm source
– now you know why I have chosen fasm for this job: the
source code is quite similar to the resulting EXE fi le.

Figure 3: Entry point and main code of the test fi le.

Take a note of the instruction bytecodes forming the entry
point and entry point address: 0x0402000. This address will
later be our original entry point address (OEP).

Next, let’s inspect the import section and list imports using
the ‘Imports’ subview from IDA Pro (Figure 4). Since
we have used only two functions, MessageBoxA and
ExitProcess, only those two are listed.

Figure 4: Test fi le imports.

The next step is to generate the target fi le. In order to do that
we will compress our test fi le so that we will be able to make
a comparison with the original during the unpacking process.

Figure 5: Generating a compressed fi le using mpress.

I’ve chosen the mpress [5] fi le packer since it is freely
available and handles both PE and PE+ fi les. In order
to create a new, compressed executable fi le, follow the

commands shown in
Figure 5. We use –i
options since the resulting
compressed fi le will be
larger than the original Figure 2: Section list of test fi le before compression.

VIRUS BULLETIN www.virusbtn.com

15JULY 2012

one. By default, mpress refuses the compression and
creation of a new executable if the resulting output fi le is
bigger than the input. Observant readers might notice that
our test fi le can also be used as a base for measuring the
effi ciency of compression algorithms. Additionally, the test
fi le is a perfect target for reversing the compression stub
since the original EXE fi le has such a simple construction.

IDA PRO NATIVE DEBUGGER VS IDA PRO
BOCHS PLUG-IN
Obviously, any native 64-bit debugger supported by IDA
Pro requires Windows on the x64 platform. Fortunately,
the Bochs plug-in allows you to debug both PE and PE+
binaries inside Bochs, even on 32-bit platforms. The speed
impact due to code emulation can be ignored in most cases
during malware analysis and unpacking fi les. The next
advantage of the Bochs plug-in, when analysing hostile
code, is that the code is ‘executed’ in a virtual, controlled
environment. The recently disclosed SYSRET privilege
escalation vulnerability (CVE-2012-0217) demonstrates the
risk associated with running hostile code inside hypervisors.
The disadvantage of emulation is obvious – there are no
100% perfect emulators of bare metal hardware and the real
operating system. There is a set of methods that can be used
to detect if code is being executed under Bochs emulation.
For some of the most basic methods see [7].

When using Bochs in PE operation mode, keep in mind
that in the current version there are some important
limitations:

• PE+ support is limited.

• Windows environment emulation is limited and this can
lead to its easy detection by the process.

• Thread and process manipulations are not supported
– this could render the Bochs plug-in useless against
more advanced compression/obfuscation methods
combined with anti-debugging tricks.

• Only a handful of API calls are implemented.

• LoadLibrary() works only on DLLs defi ned in the
startup.idc fi le before running the debugger.

Fortunately, some important Windows features such as
TLS callbacks, SEH and crucial Windows structures
are available. Furthermore, bochsys.dll exports the
BxUndefi nedApiCall() function, which catches
unimplemented API calls. Setting a breakpoint on it
allows such a situation to be trapped or for the end of the
unpacking process to be detected. Bochsys.dll exports
another useful function: BxIDACall(). Setting a breakpoint
on this function allows all API calls that are handled
internally by IDA Pro to be monitored.

UUNP PLUG-IN

The uunp plug-in is a demonstration plug-in bundled with
IDA Pro. It is available from the ‘Edit->Plugins-> Universal
unpacker manual reconstruct’ menu option. As a side
note: Windows 32-bit plug-ins use the *.plw fi le extension,
while 64-bit ones use *.p64. They all reside in the plug-ins
directory of the IDA Pro installation folder. Looking at
the limitations of the Bochs plug-in and some additional
information required by the uunp plug-in (Figure 6), you
might be wondering why we are not using another plug-in
distributed with IDA Pro: Universal PE Unpacker. We will
discuss the Universal PE Unpacker internals in the second
part of this tutorial.

The uunp plug-in does the following:

1. Locates the Import Address Table (IAT).

2. Creates an XTRN segment to represent imports.

3. Generates a new entry point (OEP) in the IDA
database while deleting the old one used by the
packer.

4. Forces reanalysis of new code sections.

Figure 6: uunp plug-in main window – you need to enter
the correct information manually in order to get the desired

results.

However, in order to get a reasonable output from the
uunp plug-in we need to feed it manually with the proper
addresses of the original fi le. The only way we can fi nd
out the requested information is to execute or emulate
decompression code. The most important pieces of
information we need to gather are: the original entry point
(OEP) address and the Import Address Table (IAT) start
and end address. The value for the ‘Code end address’
fi eld could theoretically be guessed, however this is not
recommended when analysing malware.

UNPACKING PE+ WITH IDA, BOCHS AND
UUNP

Let’s start with the default PE+ fi le loader from IDA Pro
– in order to do that, just open the compressed test fi le. The

VIRUS BULLETIN www.virusbtn.com

16 JULY 2012

default PE+ fi le loader (Figure 7) will warn us about the
Import Table section (Figure 8).

Figure 7: Loading the compressed fi le – note that the ‘Make
imports segment’ option is enabled by default.

Figure 8: IDA Pro-generated warning during the loading of
a PE+ fi le with a strange Import Table.

Next we should examine our PE+ fi le layout in memory
using the option ‘View->Open subviews->Segments’
(shift+F7 is the default shortcut). Figure 9 shows that
there are three segments, named .MPRESS1, .MPRESS2,
.MPRESS2 and .idata (this is not a mistake: the .MPRESS2
name is used twice, but the two segments have different
start addresses). Note that segments in IDA Pro are not
directly equal to executable fi le sections. In our case,
segments have been created automatically by IDA Pro.
A different list of segments will be created if we load
our PE+ fi le with the ‘Make imports segment’ option
disabled.

Since the name ‘.idata’ suggests that IDA Pro has
somehow created an Import Address Table section
(marked as XTRN), we can inspect it, but fi rst
let’s check which imports IDA detected. Use the

‘View->Open subviews->Imports’ option to list all imports
(Figure 10). Only three Windows functions are imported:
GetModuleHandleA, GetProcAddress and MessageBoxA.
Inspection of the ‘.idata’ segment confi rms our fi ndings
(Figure 11). At least one obvious function import is missing
from this picture: LoadLibrary and VirtualProtect come to
mind.

Since it was detected in the imports, we can assume that
GetProcAddress is being used by the decompression loop.
Therefore, we can either manually analyse and trace code
under the debugger in order to fi nd its invocation or we
can set up a breakpoint at GetProcAddress. Since this is a
tutorial, setting up a breakpoint at GetProcAddress is not a
bad idea. It will not only allow us to verify our hypothesis
that functions found in the import table are used to
recreate the original IAT, but also to inspect how IDA Pro
cooperates with Bochs at a low level. This knowledge
may be helpful in the future in case of more advanced
assignments.

Before running the Bochs debugger plug-in we need to
confi gure it. From the ‘Debugger’ menu choose ‘Select
debugger option’. From this window select ‘Local Bochs
debugger’ (see Figure 12).

Next, again from the ‘Debugger’ menu, select ‘Debugger
options…’ – a new confi guration window will open (Figure
13). From this window click the ‘Set specifi c options’
button to display another window, as shown in Figure 14.

Figure 9: IDA Pro automatically generates segments of the
compressed fi le with the ‘make imports segment’ options

enabled.

Figure 10: Compressed fi le imported functions –
LoadLibrary is missing, for example.

Figure 11: Inspection of the .idata segment.

VIRUS BULLETIN www.virusbtn.com

17JULY 2012

addresses (Figure 15). In our case, IDA Pro detected only
one entry point and labelled it ‘start’. This is obviously not
our Original Entry Point. Let’s add a breakpoint at the entry
point. Press F2 at the entry point (0x04040C2 address in
our case) and start a debugger. This can be done either by
pressing the green ‘play’ icon on the toolbar or by pressing
the F9 key. Take a second to look at the navigation bar – the
current entry point is located near the end of the fi le: many
compression/obfuscation tools just add their code after the
original fi le end. This could be a hint that the OEP may be
located below the current entry point, however at this point
this is only a hypothesis.

Figure 15: Selecting the entry point.

Figure 16: Breakpoint hit at the entry point.

Figure 12: Selecting Bochs local debugger as default for
this session.

Figure 13: Confi guring basic debugger options.

Figure 14: Bochs specifi c options.

Be sure to enable 64-bit support and PE fi le support in
this window.

Now we are ready to start unpacking our target fi le.
First go to the PE+ entry point – this can be done
by pressing Ctrl+E and selecting one of the possible

VIRUS BULLETIN www.virusbtn.com

18 JULY 2012

After pressing the F9 key (Run), the debugger should
stop at the fi rst instruction. Now we can fi nally add
a breakpoint at the GetProcAddress function. In
order to do so, open the ‘Breakpoints’ list from the
‘Debugger->Breakpoints->Breakpoint list’ menu. Now
press the ‘insert’ key to add a new breakpoint. At the
‘location’ fi eld enter ‘kernel32_GetProcAddress’ (remember
that the kernel32 name is misleading since we are dealing
with the 64-bit version despite the ‘32’ in the name) and
click ‘OK’. Now, run the debugger again (F9) and wait until
the GetProcAddress function breakpoint has been hit. Our
function should look like this:

KERNEL32.dll:0000000078D26455 kernel32_
GetProcAddress:

KERNEL32.dll:0000000078D26455 push cs:off_78D2645C

KERNEL32.dll:0000000078D2645B retn

Use ‘step into’ (F7) options to execute the retn instruction.
The next function should be within the bochsys module:

bochsys:FFFFC00000001467 bochsys64_BxGetProcAddress:
; DATA XREF: KERNEL32.dll:off_78D2645Co

bochsys:FFFFC00000001467 mov rax,
0FFFFC00000001467h

bochsys:FFFFC00000001471 call near ptr
bochsys64_BxIDACall

bochsys:FFFFC00000001476 retn

We can ‘step over’ this code until we reach the retn
instruction. This is a stub code used by the Bochs plug-
in to communicate with IDA, as mentioned earlier. After
executing the retn instruction we return to our module
inside the .MPRESS1 section:

.MPRESS1:00000000004010D4 test eax, eax

.MPRESS1:00000000004010D6 jz short loc_401103

.MPRESS1:00000000004010D8 push rax

.MPRESS1:00000000004010D9 push rsp

.MPRESS1:00000000004010DA pop r9

This is obviously the code that checks the success of
GetProcAddress (test eax,eax). Now let’s open the Imports
window and jump to GetProcAddress import (Figure 17):

Now you see there is a cross reference j_GetProcAddress
– jump to it (Figure 18).

There is another cross reference at .MPRESS1:0x0401152.
Once again, jump to that cross reference to fi nd the
following code:

MPRESS1:000000000040114F loc_40114F:
 ; CODE XREF: .MPRESS1:0000000000401141j

.MPRESS1:000000000040114F mov rcx, rbx
 ; hModule

.MPRESS1:0000000000401152 call j_GetProcAddress

.MPRESS1:0000000000401157 stosq

.MPRESS1:0000000000401159

.MPRESS1:0000000000401159 loc_401159:
 ; CODE XREF: .MPRESS1:0000000000401161j

.MPRESS1:0000000000401159 xor al, al

.MPRESS1:000000000040115B mov [rsi-1], al

.MPRESS1:000000000040115E lodsb

.MPRESS1:000000000040115F or al, al

.MPRESS1:0000000000401161 jnz short loc_401159

.MPRESS1:0000000000401163 jmp short loc_401132

The stosq instruction should store the address returned
by the GetProcAddress() function at the location pointed
to by the RDI register. The RDI register value during the
fi rst iteration of this loop will point to the original IAT.
Consequently, at this address the RDI register during the
last iteration will point to the end of the IAT. Note both
values, since these are required by the uunp plug-in.

Stepping over this loop we can see how the IAT is being
reconstructed and fi nally, when we reach the following
code, we have found the jump to the original entry point:

MPRESS1:0000000000401165 exit_to_oep:
 ; CODE XREF: .MPRESS1:0000000000401118j

.MPRESS1:0000000000401165 lea rdi, loc_40106F

.MPRESS1:000000000040116C mov al, 0E9h

.MPRESS1:000000000040116E stosb

.MPRESS1:000000000040116F mov eax, 10Ch

.MPRESS1:0000000000401174 stosd

.MPRESS1:0000000000401175 add rsp, 28h

Figure 17: GetProcAddress import.

Figure 18: GetProcAddress jump.

VIRUS BULLETIN www.virusbtn.com

19JULY 2012

.MPRESS1:0000000000401179 pop r8

.MPRESS1:000000000040117B pop rdx

.MPRESS1:000000000040117C pop rcx

.MPRESS1:000000000040117D pop rbx

.MPRESS1:000000000040117E pop rsi

.MPRESS1:000000000040117F pop rdi

.MPRESS1:0000000000401180 jmp OEP_at_0x402000

A few important observations should be made at this
point:

• The packer does not use the popa instruction before
jumping to the original entry point (some 32-bit
compressors use it). Therefore, any universal
unpacking methods based on detecting the popa
instruction before jumping to OEP will fail. Popa/
popad is not valid in long mode, as mentioned earlier
(however POPFQ is).

• We can use the long list of pop instructions ending with
the jmp as a signature to look for the original entry
point address. Note that our OEP is actually at a higher
address than the decompression exit code. This means
that any plug-in trying to automatically detect the OEP
based on a jump below the decompression loop in
memory will also fail.

At this point we can feed the uunp plug-in with the data we
have gathered during our debugging session.

IDA PRO ALTERNATIVE STRATEGIES

Manual unpacking obviously does not scale well in
production environments. Therefore, plug-ins like uunp
can be treated only as a simple demonstration of IDA Pro’s
scripting abilities and plug-ins/modules architecture. If
you are willing to automate the unpacking process with
IDA Pro, or the case you are working on requires some
special treatment/tricks, you have a couple of options that
might help you:

• Write a custom loader module – all examples here were
based on IDA Pro default PE+ loader. However, you
can either load a fi le manually, bypassing the loader
(this option is quite handy when some uncommon PE+
format tricks are used), or implement your own loader.
This could be handy if you are able to automatically
decompress original code and data plus reconstruct
the import table. Obviously this requires either some
knowledge about how a certain packer works, or use of
a more generic approach based on execution/emulation
of code.

• Write a custom processor module – this option is
especially handy when, besides the compression/

encryption algorithm, some kind of virtual machine/
bytecode scheme has been used in order to further
obfuscate the original executable code.

FINAL NOTES AND CHALLENGES

It turns out that unpacking 64-bit PE fi les doesn’t really
differ much from unpacking 32-bit EXEs or DLLs. The
only difference is the limited number of tools that can
handle the PE+ format correctly.

Furthermore, both 32- and 64-bit architectures allow
complex compression, encryption and obfuscation
techniques, and since PE(+) structures add some
complexity to the equation, we are yet to see new
techniques. Of course, the complexity of PE+ will increase
as natural Windows platform evolution introduces new
bugs and vulnerabilities into the process loader. I’m afraid
that those vulnerabilities are likely to be exploited sooner
rather than later.

In the second part of this tutorial (which will appear in
the August issue of VB) I will dig a bit more deeply into
Windows x64 internals, use some of IDA Pro’s scripting
functionality and use WinDbg to unpack our example fi le. In
the meantime, if you would like to see another example of
unpacking an mpress binary with IDA Pro take a look at the
blog post at [9].

REFERENCES

[1] HX DOS Extender. http://www.japheth.de/
HX.html.

[2] MSDN: Overview of x64 Calling Conventions.
http://msdn.microsoft.com/en-us/library/
ms235286(v=vs.80).aspx.

[3] MSDN: Prolog and Epilog.
http://msdn.microsoft.com/en-us/library/
tawsa7cb(v=vs.80).aspx.

[4] fl at assembler. http://fl atassembler.net/.

[5] mpress. http://www.matcode.com/mpress.htm.

[6] UPX. http://upx.sourceforge.net/.

[7] Ferrie, P. Attacks on Virtual Machine Emulators.
https://www.symantec.com/avcenter/reference/
Virtual_Machine_Threats.pdf.

[8] WinDbg. http://msdn.microsoft.com/en-us/
windows/hardware/gg463009.aspx.

[9] Unpacking mpress’ed PE+ DLLs with the Bochs
plugin. http://www.hexblog.com/?p=403.

http://www.japheth.de/HX.html
http://msdn.microsoft.com/en-us/library/ms235286(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/tawsa7cb(v=vs.80).aspx
http://flatassembler.net/
http://www.matcode.com/mpress.htm
http://upx.sourceforge.net/
https://www.symantec.com/avcenter/reference/Virtual_Machine_Threats.pdf
http://msdn.microsoft.com/en-us/windows/hardware/gg463009.aspx
http://www.hexblog.com/?p=403

VIRUS BULLETIN www.virusbtn.com

20 JULY 2012

QUICK REFERENCE FOR
MANUAL UNPACKING II
Abhishek Singh
FireEye, USA

Unpacking is a critical step in the process of analysing
malware. Malware authors use packers to make it diffi cult
for their malware to be reversed – the packers encode the
original instructions. By packing a malicious executable, the
author can be sure that when it is opened in a disassembler
it will not show the correct sequence of instructions.
Packers add some instructions at the top of the binary to
unpack the executable.

In [1] we described the steps that can be used to manually
unpack malware packed with a number of commonly used
packers. In this article, we will cover another set of packers
that are popular with malware authors.

(The purpose of this article is to provide a quick reference
guide that will assist analysts in the unpacking of malware
and reduce the response time for malware analysis – the full
technical details of each packer have thus been omitted.)

Molebox
Molebox is a runtime executable packer for Windows
applications. It can be used to pack an application and all
its data into a single executable fi le. As shown in Figure 1,
Molebox starts with a CALL instruction, followed by
PUSHAD.

The fi rst step in the process of locating the original entry
point (OEP) of a fi le packed with Molebox is to put a
breakpoint on PUSHAD. PUSHAD pushes the contents of
the general purpose registers onto the stack. The registers
are stored on the stack in the following order: EAX, ECX,
EDX, EBX, EBP, ESP (original value), EBP, ESI and EDI
(if the current operand-size attribute is 32), AX, CX, DX,
BX, SP (original value), BP, SI and DI (if the operand size
attribute is 16).

Figure 1: The initial instructions for Molebox.

Step once after the breakpoint has triggered, since EDI is the
last value which is pushed (as shown in Figure 2). The next
step involves setting an access hardware breakpoint at the
memory location pointed to by ESP. As shown in Figure 2,
the address location at ESP stores the value in EDI.

Figure 2: EDI in the memory location pointed to by ESP.

When the hardware breakpoint triggers, a POP EAX
instruction is followed by the CALL EAX instruction (see
Figure 3). Step into CALL EAX, and we have reached the
OEP.

Simply dump the process to obtain the unpacked fi le.

Figure 3: The instructions when the breakpoint triggers.

PE-Pack
PE-Pack was released by ANAKiN. It is commonly used by
malware authors to hide code. When a packed fi le is launched
in a debugger, it starts with a JMP instruction (see Figure 4).

Figure 4: The initial instruction for PE-Pack.

To unpack the fi le, put a breakpoint on the JMP instruction.
When the breakpoint triggers, the debugger will reach the
PUSHAD instruction, as shown in Figure 5.

The PUSHAD instruction will push all the registers onto
the stack. Next, set an access hardware breakpoint on the
uppermost dword of the stack. As shown in Figure 5, the
top dword will be the same value as that stored in the EDI
register. This can be confi rmed by looking in memory at the
address value pointed to by ESP.

When the hardware breakpoint triggers, as shown in
Figure 6, the debugger will reach the instruction JMP EAX.
This is the jump to the OEP. Step once on it and we have
reached the OEP.

TUTORIAL 2

VIRUS BULLETIN www.virusbtn.com

21JULY 2012

WinUpack

WinUpack is a command-line program for compressing/
decompressing Windows EXE/DLL fi les. The program is
mainly used for compression, rather than for protection.
When the fi le is executed, the compressed EXE/DLL
will decompress and run normally without any additional
software. In order to unpack a WinUpack packed fi le, it
should be loaded in OllyDbg. Once the fi le has been loaded
in the debugger, scroll down to fi nd the following set of
instructions:

46 inc esi

AD lodsd

85C0 test eax, eax

0F84xxxxxxxx 00 jz xxxxxxxx

When JZ triggers, we have reached the OEP. Dump the
process to get the unpacked fi le.

PolyCryptPE
PolyCryptPE is used for encrypting PE fi les and can also be
used to protect PE fi les from disassembly. The packer starts
with the PUSHAD instruction. However, as seen in Figure
8, it employs various anti-debugging tricks.

Figure 8: Assembly instructions checking for a debugger.

The instruction MOV EAX, DWORD PTR FS:[30] loads
the value FS:[30] (or process environment block) in
the EAX register. The next instruction, MOVZX EBX,
BYTE PTR DS:[EAX+2], loads the third value of PEB.
When the process is being debugged, the third value in
the PEB structure will be set. So when a fi le packed with
PolyCryptPE is being debugged, either the isDebugged()
fl ag must be set, or the HideOE plug-in must be used in
order to hide the debugger.

The packed fi le starts with the POPAD instruction. In
order to debug the packed fi le, the POP EBP, POPFD,
POPAD instructions must be located. When the debugger
executes the RETN instruction, the debugged process has
reached the OEP. The process should be dumped to get the
unpacked version of the fi le.

Figure 9: The assembly instructions before the OEP.

Figure 5: The hardware breakpoint when PUSHAD is
encountered.

Figure 6: Instructions encountered when the debugger
reaches the OEP.

Figure 7: Assembly instructions just before the OEP.

VIRUS BULLETIN www.virusbtn.com

22 JULY 2012

SimplePack
SimplePack is another packer that is often used by malware
authors. It uses LZMA compression. When the packed
process is opened in a debugger, the packed code starts
with the PUSHAD instruction, as shown in Figure 10. The
instruction will push all the general purpose registers onto
the stack, with the value stored in EDI being on top of the
stack.

Figure 10: Starting instructions of the packed fi le.

The next obvious step in unpacking the fi le is to set a
hardware access breakpoint on the uppermost dword of the
stack when the PUSHAD instruction is executed. When the
breakpoint triggers, as shown in Figure 11, the POPAD,
PUSH and RETN instructions are encountered.

Figure 11: Assembly instructions when the hardware
breakpoint triggers.

When the debugger executes the RETN instruction, we can
see the initialization of the stack frame (Figure 12).

Upon initialization of the stack frame, the debugged process
can be dumped to get the unpacked fi le.

PECompact 1.x
PECompact 1.x is a commercial packer. It compresses the
code, date, import directory, selected resources and other
portions of Windows executables (DLL, EXE, SCR, OCX
etc.). The concept for unpacking PECompact 1.x is pretty

much the same as that described for SimplePack above.
After loading the packed fi le in a debugger, step down a few
instructions and fi nd PUSHAD. The instruction will push
the registers onto the stack. When the instructions have been
pushed, set a hardware access breakpoint on the top dword
of the stack. Basically, the hardware access breakpoint will
be on the ESI value at the address pointed to by ESP. When
the breakpoint is triggered, the following instructions will
be encountered:

9D popfd

50 push

68 xx xx xx xx push xxxxxxxx

c2 04 00 retn 04

RETN 04 is a jump to OEP. Step on the instruction and then
dump the process to get the unpacked fi le.

CONCLUSION

Unpacking is a key step for the static analysis of malware.
Loading a packed malicious executable and executing step-
by-step instructions in a debugger is one of the best ways to
locate the OEP. In this article, we have provided assembly
instructions for Molebox, PE-Pack, WinUpack, PolyCryptPE,
PECompact 1.x and SimplePack – these instructions can
be used to manually unpack malware. It is also possible to
generate OllyScript for the methods mentioned in the article.
Open RCE [2] provides a good reference collection of
OllyScripts for unpacking these packers.

REFERENCES

[1] Singh, A. Quick reference for manual unpacking.
Virus Bulletin, April 2012, p.11.
http://www.virusbtn.com/virusbulletin/
archive/2012/04/vb201204-manual-unpacking.

[2] OllyScripts for the Packers. http://www.openrce.org/
downloads/browse/OllyDbg_OllyScripts.

Figure 12: SimplePack initialization of the stack frame.

http://www.virusbtn.com/virusbulletin/archive/2012/04/vb201204-manual-unpacking
http://www.openrce.org/downloads/browse/OllyDbg_OllyScripts

Black Hat USA will take place 21–26 July 2012 in Las Vegas, NV,
USA, followed immediately by DEFCON 20, which takes place
26–29 July. For more information see http://www.blackhat.com/ and
https://www.defcon.org/.

The 21st USENIX Security Symposium will be held 8–10 August
2012 in Bellevue, WA, USA. For more information see
http://usenix.org/events/.

TakeDownCon Baltimore is scheduled to take place 25–30 August
2012 in Baltimore, MD, USA. Interest can be registered at
http://www.takedowncon.com/Events/Baltimore.aspx.

SOURCE Seattle 2012 takes place 13–14 September 2012 in
Seattle, WA, USA. A call for papers has been announced, with
a deadline date of 25 June. For more information see
http://www.sourceconference.com/seattle/.

VB2012 will take place 26–28
September 2012 in Dallas, TX, USA.
Online registration is now available.
Full details can be found at

http://www.virusbtn.com/conference/vb2012/.

Security Summit Verona takes place 4 October 2012 in Verona,
Italy. For details see https://www.securitysummit.it/.

RSA Conference Europe takes place 9–11 October 2012 in
London, UK. Registration is now open. http://www.rsaconference.
com/events/2012/europe/.

Ruxcon takes place 20–21 October 2012 in Melbourne, Australia.
A call for papers has been announced, with a deadline date of
15 July. See http://www.ruxcon.org.au/.

eCrime 2012 will be held 22–25 October 2012 in Las Croabas,
Puerto Rico, consisting of the APWG annual General Members
Meeting and the eCrime Researchers Summit VII. During the
General Meeting the APWG will examine crimeware’s evolution,
behavioural vulnerabilities and human factors that contribute to
its success, the roles of registrars, registries and DNS in managing
phishing attacks, public health approaches to managing the ecrime,
as well as news on counter-ecrime efforts and resources. The eCrime
Researchers Summit will discuss all aspects of electronic crime and
ways to combat it. For details see http://apwg.org/events/events.html.

Hacker Halted USA will take place 25–31 October 2012 in
Miami, FL, USA. http://www.hackerhalted.com/.

AVAR 2012 will be held 12–14 November 2012 in Hang Zhou,
China. For details see http://www.aavar.org/avar2012/.

SOURCE Barcelona 2012 takes place 16–17 November 2012 in
Barcelona, Spain. For details see http://www.sourceconference.com/
barcelona/.

TakeDownCon Las Vegas is scheduled to take place 1–6
December 2012 in Las Vegas, NV, USA. Interest can be registered
at http://www.takedowncon.com/Events/LasVegas.aspx.

VB2013 will take place 2–4 October
2013 in Berlin, Germany. Details will
be revealed in due course at http://www.
virusbtn.com/conference/vb2013/. In the
meantime, please address any queries to
conference@virusbtn.com.

DALLAS
2012

END NOTES & NEWS
ADVISORY BOARD
Pavel Baudis, Alwil Software, Czech Republic

Dr Sarah Gordon, Independent research scientist, USA

Dr John Graham-Cumming, CloudFlare, UK

Shimon Gruper, NovaSpark, Israel

Dmitry Gryaznov, McAfee, USA

Joe Hartmann, Microsoft, USA

Dr Jan Hruska, Sophos, UK

Jeannette Jarvis, McAfee, USA

Jakub Kaminski, Microsoft, Australia

Eugene Kaspersky, Kaspersky Lab, Russia

Jimmy Kuo, Microsoft, USA

Chris Lewis, Spamhaus Technology, Canada

Costin Raiu, Kaspersky Lab, Romania

Péter Ször, McAfee, USA

Roger Thompson, Independent researcher, USA

Joseph Wells, Independent research scientist, USA

SUBSCRIPTION RATES
Subscription price for Virus Bulletin magazine (including

comparative reviews) for one year (12 issues):

• Single user: $175

• Corporate (turnover < $10 million): $500

• Corporate (turnover < $100 million): $1,000

• Corporate (turnover > $100 million): $2,000

• Bona fi de charities and educational institutions: $175

• Public libraries and government organizations: $500

Corporate rates include a licence for intranet publication.

Subscription price for Virus Bulletin comparative reviews

only for one year (6 VBSpam and 6 VB100 reviews):

• Comparative subscription: $100

See http://www.virusbtn.com/virusbulletin/subscriptions/ for
subscription terms and conditions.

Editorial enquiries, subscription enquiries, orders and payments:

Virus Bulletin Ltd, The Pentagon, Abingdon Science Park, Abingdon,
Oxfordshire OX14 3YP, England

Tel: +44 (0)1235 555139 Fax: +44 (0)1865 543153

Email: editorial@virusbtn.com Web: http://www.virusbtn.com/

No responsibility is assumed by the Publisher for any injury and/or
damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods,
products, instructions or ideas contained in the material herein.

This publication has been registered with the Copyright Clearance
Centre Ltd. Consent is given for copying of articles for personal or
internal use, or for personal use of specifi c clients. The consent is
given on the condition that the copier pays through the Centre the
per-copy fee stated below.

VIRUS BULLETIN © 2012 Virus Bulletin Ltd, The Pentagon, Abingdon
Science Park, Abingdon, Oxfordshire OX14 3YP, England. Tel: +44
(0)1235 555139. /2012/$0.00+2.50. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

VIRUS BULLETIN www.virusbtn.com

23JULY 2012

http://www.takedowncon.com/Events/LasVegas.aspx
http://www.takedowncon.com/Events/Baltimore.aspx
https://www.securitysummit.it/
http://www.sourceconference.com/seattle/
http://usenix.org/events/
http://www.virusbtn.com/conference/vb2012
mailto:editorial@virusbtn.com
mailto:conference@virusbtn.com
http://www.virusbtn.com/conference/vb2013
http://www.virusbtn.com/
http://www.virusbtn.com/virusbulletin/subscriptions
http://www.sourceconference.com/barcelona/
http://www.defcon.org/
http://www.blackhat.com
http://www.aavar.org/avar2012/
http://www.rsaconference.com/events/2012/europe/
http://www.ruxcon.org.au/
http://apwg.org/events/events.html
http://www.hackerhalted.com/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

