
APRIL 2012

CONTENTS IN THIS ISSUE

IS
S

N
 1

74
9-

70
27

Fighting malware and spam

2 COMMENT

 Is Android simply Windows all over again?

3 NEWS

 Pay and satisfaction increase in IT security

 Academic excellence rewarded

3 VIRUS PREVALENCE TABLE

 MALWARE ANALYSES

4 ‘Amfi bee’-ous vehicle

6 Zombifying targets using phishing campaigns

11 TUTORIAL

 Quick reference for manual unpacking

17 FEATURE

 Francophile phishers

20 END NOTES & NEWS

CROSS INFECTOR
There are already at least two known 32-bit and
64-bit cross-infectors for Windows, but
W32/W64.Amfi bee is the fi rst 32/64-bit
cross-infector for Windows that is almost entirely a
single block of code. Peter Ferrie explains more.
page 4

GUIDE TO UNPACKING
By packing their malicious executables, malware
authors can be sure that when they are opened
in a disassembler they will not show the correct
sequence of instructions, thus making malware
analysis a more lengthy and diffi cult process.
Abhishek Singh provides a quick reference guide
for unpacking malware from some of the most
commonly used packers.
page 11

FRENCH PHISH
Phishing is a global problem, but there are some
geographic variances. Sébastien Goutal presents
a study of the phishing attacks typically seen in
France.
page 17

2 APRIL 2012

COMMENT

Editor: Helen Martin

Technical Editor: Morton Swimmer

Test Team Director: John Hawes

Anti-Spam Test Director: Martijn Grooten

Security Test Engineer: Simon Bates

Sales Executive: Allison Sketchley

Web Developer: Paul Hettler

Consulting Editors:
Nick FitzGerald, Independent consultant, NZ
Ian Whalley, Google, USA
Richard Ford, Florida Institute of Technology, USA

IS ANDROID SIMPLY WINDOWS
ALL OVER AGAIN?
It has been very interesting to observe the meteoric rise
of the Android operating system over the past few years.
As we’ve seen in the past, the more popular a platform
becomes, the more cybercrime and malicious activity
target it. In 2011, the platform became the most popular
target for cybercriminals, with attacks and exploits
focusing on fi nancial gain.

What is perhaps more interesting and unfortunate is that
many of the attacks on the Android platform are not new
– the technical nuances may be different, but the premise
is the same. I’m not the fi rst to note that successful
Android attack techniques were fi rst seen on Windows
years earlier, but the problem continues to grow.

Let’s look at the differences. Early Windows malware
was more of a disorganized nuisance than an effort
to make money. This changed fundamentally once
criminals released the profi t potential. Android malware
writers entered the fi eld with this knowledge, and we see
very little, if any, malware specifi cally designed to harm
the device – there’s no money in that.

We have seen mobile malware that can exploit the
operating system, gain administrator privileges, install
remote access backdoors, install banking malware
and join botnets. We’ve seen fake anti-virus, phishing,
adware and spyware.

Yet, the industry seems to be surprised when these
old attacks are repurposed on new systems. Why?
Aren’t mobile devices just one more computer we use?

Shouldn’t we all have seen this coming?

While some of these attacks are unavoidable, many
could have been avoided with better design – design we
should have learned about based on the mistakes made in
our Windows past.

Let’s take root exploits for example. With the sheer
amount of code involved in designing an operating
system, it is impossible to avoid a mistake that could
enable an escalation of privilege exploit. In the Windows
(and Apple) world, the response is to provide an update
as soon as possible to close the fl aw that allowed the
attack. It’s the same on Android, but there is a lack
of consistent updates in a timely manner, and a lack
of support for older platforms. We need a system of
modular security patches for current and (especially)
older systems. What we don’t need is a new version of
the operating system running on shiny new hardware
every six months. One could argue that it still takes
Windows a long time to address such fl aws, but they do
get addressed eventually. In many cases, if your mobile
device has lost support, the fl aw will never be addressed.

Perhaps it’s the nature of the modern disposable mindset:
if a device stops working, you don’t fi x it, you replace it.
Perhaps that’s what all the companies that sell Android
hardware are banking on. However, you can’t expect
everyone to upgrade to a new device every six months,
and you certainly can’t do it in the name of security.

Android was designed with security in mind. But it
was not designed with users in mind. Take the app
permissions screen. Most people click past it as fast
as their fi ngers will allow. While the idea of making
permissions known to the end-user is a good idea, the
Windows installer screen has taught users to click and
click until they’re done. With the recent spate of adware
arriving for Android, perhaps it would make more sense
to warn users how much of their data is being sent to
third parties. Google decided not to remove the apps
containing the so-called ‘Counterclank’ advertising
because it did not violate its terms of service. Perhaps this
is because Google is primarily an advertising company.
Didn’t we already hash out these overly aggressive
advertising practices on Windows? Why has data leakage
become ok just because we’re on a new platform?

So, is Android simply Windows all over again? In some
ways, it’s worse. Companies are already aware of the
threat, and have done little to protect against it. It is not in
Google’s or the ISP’s or even the device manufacturer’s
fi scal interest to release updates consistently at this point.
It is important to sell new devices with new service plans.
Until this situation changes (or becomes less profi table),
we can expect nothing to change.

‘The industry seems to
be surprised when old
attacks are repurposed
on new systems.’

Tim Armstrong, Kaspersky Lab

3APRIL 2012

VIRUS BULLETIN www.virusbtn.com

NEWS
PAY AND SATISFACTION INCREASE IN IT
SECURITY
InformationWeek had some good news for IT security
professionals last month when it revealed the results of its
2012 Salary Survey. According to the survey (conducted
between November 2011 and January 2012), the median
base salary for IT security workers in the US has risen by
$7,000 this year, with managers also seeing an increase.
Overall job satisfaction (taking into account compensation,
benefi ts, and other employment aspects) also saw an
increase for both staff and management.

It will come as little surprise to anybody who has worked
in the industry for any length of time (or ever attended a
VB conference) that women are still in the minority in IT
security. A whopping 88% of the IT security workers and
91% of the managers surveyed were male. As seen in other
industries, salaries for the female security professionals
were below those of their male counterparts, but the results
of the survey suggest that the gap may be closing: female
workers drew a median base salary of $95,000 (compared
with $87,000 last year) while male workers earned $97,000
(compared with $90,000 last year). At management level
there was a $5,000 difference between the median salaries
for men and women.

The survey also showed that it pays to have certifi cations.
The median base salary for employees with security
certifi cations (such as CISSP, CISA and CISM) was
$99,000, compared with $93,000 for those without the
letters after their name. At management level, certifi ed
managers were shown to be earning a median base salary of
$119,000, while their uncertifi ed colleagues took home an
average of $14,000 less.

ACADEMIC EXCELLENCE REWARDED
Eight UK universities have each been given a cash injection
of £50,000 and awarded ‘Academic Centre of Excellence
in Cyber Security Research’ status by the Government
Communications Headquarters (GCHQ).

The institutions recognized by GCHQ were: the University
of Bristol, Imperial College London, Lancaster University,
the University of Oxford, Queen’s University Belfast, Royal
Holloway, the University of Southampton and University
College London.

The Centres of Excellence are set to run for a period of
fi ve years – during which time GCHQ will encourage
other universities to develop their capabilities in the area of
cybercrime research. It is hoped that this will considerably
strengthen the UK’s cyber research community and attract
the best academics and research students both in the UK
and from overseas.

Prevalence Table – February 2012 [1]

Malware Type %

Autorun Worm 8.93%

Exploit-misc Exploit 5.99%

Heuristic/generic Virus/worm 5.63%

Heuristic/generic Trojan 5.54%

Crack/Keygen PU 5.48%

Confi cker/Downadup Worm 5.01%

Sirefef Trojan 4.67%

Iframe-Exploit Exploit 4.17%

Adware-misc Adware 3.16%

BHO/Toolbar-misc Adware 2.91%

Agent Trojan 2.67%

Sality Virus 2.52%

Injector Trojan 2.40%

Kryptik Trojan 2.24%

Downloader-misc Trojan 2.23%

LNK-Exploit Exploit 1.95%

Crypt Trojan 1.70%

Blacole Exploit 1.60%

AutoIt Trojan 1.53%

Virut Virus 1.45%

Dofoil Trojan 1.44%

Freeware-downloader PU 1.40%

Encrypted/Obfuscated Misc 1.27%

PDF-Exploit Exploit 1.26%

JS-Redir/Alescurf Trojan 1.21%

Redirector PU 1.20%

Dropper-misc Trojan 1.14%

FakeAV-Misc Rogue 1.12%

Backdoor-misc Trojan 0.85%

InstallCore Adware 0.84%

VB Worm 0.84%

Lethic Trojan 0.83%

Others [2] 14.81%

Total 100.00%

[1] Figures compiled from desktop-level detections.

[2] Readers are reminded that a complete listing is posted at
http://www.virusbtn.com/Prevalence/.

http://www.virusbtn.com/resources/malwareDirectory/prevalence/index

VIRUS BULLETIN www.virusbtn.com

4 APRIL 2012

‘AMFIBEE’-OUS VEHICLE
Peter Ferrie
Microsoft, USA

A cross-infector is typically implemented as two viruses
stuck together, simply because it’s the easiest (and in most
cases the only) way to do it. However, the x64 technology
is a special case – 64-bit instructions use a prefi x which
corresponds to a register decrement in 32-bit mode. With
careful coding, that effect can be reversed as appropriate,
and then code can be shared between the 32-bit and 64-bit
platforms. There are already at least two known 32-bit and
64-bit cross-infectors for Windows, but now we have the
fi rst 32-bit and 64-bit cross-infector for Windows that is
almost entirely a single block of code: W32/W64.Amfi bee.

STACKING THE RANKS

The fi rst generation of the virus begins by saving the
relative virtual address of the original entry point on the
stack. However, depending on the image base value that
was used when building it, this value might be completely
wrong. In order to account for Address Space Layout
Randomization (ASLR), the virus applies the current
image base value from the ImageBaseAddress fi eld in the
Process Environment Block. This is an interesting way to
deal with ASLR – it is more common simply to calculate
the difference between a branch instruction and the host
entry point. The virus also saves the current stack pointer to
a fi eld in its body. Using this value the virus can undo any
changes to the stack at any point during the execution of the
code. This is particularly important during API resolution,
since the virus cannot easily determine how many APIs
have been saved before something goes wrong.

DETERMINISM

The virus begins by retrieving the base address of ntdll.dll.
It does this by walking the InMemoryOrderModuleList
from the PEB_LDR_DATA structure in the Process
Environment Block. This is compatible with the
changes that were made in Windows 7. The required
offsets within the InMemoryOrderModuleList are
platform-dependent. The virus determines the platform
on which it is executing by using a RIP-relative
instruction. On the 32-bit platform, the instruction
returns a zero in the register. On the 64-bit platform, the
same instruction returns an address in the register. The
virus also saves the pointer to the current position in the
InMemoryOrderModuleList so that it can resume the
parsing later to fi nd the base address of kernel32.dll. If

the virus fi nds the PE header for ntdll.dll, it resolves the
two required APIs: RtlAddVectoredExceptionHandler and
RtlRemoveVectoredExceptionHandler.

The platform determination code is the fi rst ‘mistake’ in
the code. The wrong size of register is checked, resulting
in a redundant prefi x after every check, which leads to an
unnecessary increase in the size of the code. There are a
number of similar ‘mistakes’ in the code.

AN EXPORT EXHORT
The virus uses hashes instead of names, but unlike previous
viruses by the same author [1–3], the hashes are not sorted
alphabetically according to the strings they represent. As a
result, the export table must be parsed repeatedly in order
to resolve the APIs. This is not really a problem, it is just
not an effi cient way to do things. There is also no obvious
reason for doing it, since the two registers that are used
during the resolution are not altered by anything else. Thus,
if the hashes were sorted, the API resolution could easily
continue from the current position, with no increase in the
size of the code.

Each API address is placed on the stack for easy access, but
because stacks move downwards in memory, the addresses
end up in reverse order in memory. The virus also checks
that the exports really exist by limiting the parsing to the
number of exports in the table. The hash table is terminated
with a single byte whose value is 0x2a (the ‘*’ character).
This is a convenience that allows the fi le mask to follow
immediately in the form of ‘*.exe’. The virus retrieves the
base address of kernel32.dll by fetching the next entry in
the InMemoryOrderModuleList list, using the pointer that
was saved earlier. The same routine is used to retrieve the
addresses of the API functions that it requires, which is
the minimum set of APIs that it needs for replication (but
because of a bug, more than it actually uses): fi ndfi rst/next,
open, map, unmap (see below), close.

As with previous viruses by the same author, this virus
only uses ANSI APIs. The result is that some fi les cannot
be opened because of the characters in their names, and
thus cannot be infected. The virus searches in the current
directory (only), for objects whose names end in ‘.exe’. This
is intended to be restricted to fi les, but can also include any
directories that have such a name, and there is no fi ltering
to distinguish between the two cases. For each such fi le that
is found, the virus attempts to open it and map a view of
the contents. There is no attempt to remove the read-only
attribute, so fi les that have that attribute set cannot be
infected. In the case of a directory, the fi le open will fail,
and the map will be empty. The virus registers an exception
handler at this point, and then checks whether the fi le can be
infected.

MALWARE ANALYSIS 1

VIRUS BULLETIN www.virusbtn.com

5APRIL 2012

RELOCATION ALLOWANCE
The virus is interested in Portable Executable fi les for
either the x86 or x64 platforms. Renamed DLL fi les are
not excluded, nor are fi les that are digitally signed. The
subsystem value is checked, but incorrectly. The check
is supposed to limit the types to GUI or CUI but only
the low byte is checked. Thus, if a fi le uses a (currently
non-existent) subsystem with a value in the high byte, then
it could potentially be infected too.

The virus checks the Base Relocation Table data directory
to see if the relocation table begins at the start of the last
section. If it does, then the virus assumes that the entire
section is devoted to relocation information. This could be
considered to be a bug. The virus checks that the physical
size of the section is large enough to hold the virus code.
There are two bugs in this check.

The fi rst is that the size of the relocation table could be
much smaller than the size of the section, and other data
might follow it. The data will be overwritten when the virus
infects the fi le. Further, the value in the Size fi eld of the
Base Relocation Table data directory cannot be less than the
size of the relocation information, and it cannot be larger
than the size of the section. This is because the value in
the Size fi eld is used as the input to a loop that applies the
relocation information. It must be at least as large as the sum
of the sizes of the relocation data structures. However, if the
value were larger than the size of the relocation information,
then the loop would access data after the relocation table,
and that data would be interpreted as relocation data. If the
relocation type were not a valid value, then the fi le would
not load. If the value in the Size fi eld were less than the
size of the relocation information, then it would eventually
become negative and the loop would parse data until it hit
the end of the image and caused an exception.

The second bug is that by checking only the physical size
and not the virtual size, whatever the virus places in the
fi le might be truncated in memory if the virtual size of the
section is smaller than the physical size of the section. Both
of these bugs are also present in some of the other viruses
created by the same author.

If the section appears to be large enough, then its attributes
are marked as executable and writable, and the virus copies
itself to the relocation table. After copying itself, the virus
zeroes the value in the Offset fi eld of the Base Relocation
Table data directory, saves the original entry point in the
virus body, and then sets the host entry point to point
directly to the virus code.

OFF THE MAP
The virus code ends with an instruction to force an

exception to occur. This is used as a common exit
condition. However, the virus does not recalculate the
fi le checksum, even though it might have changed as a
result of infection. It also does not restore the fi le’s date
and timestamps, making it very easy to see which fi les
have been infected, even though the fi le size does not
change.

There is a bug here, the severity of which depends on the
confi guration of the environment.

The bug is that the virus calls the wrong API when
attempting to unmap the view of the fi le (and therefore the
‘unmap’ API is never used). The correct index is used to
access the API table, but the virus uses the wrong calling
convention, so it ends up calling the CloseHandle() API
instead. The act of calling the CloseHandle() API with
an invalid handle has a particular effect if a debugger is
present, and the same effect if a debugger is not present
but if a certain registry value contains a certain value.
Normally (that is, no debugger and no registry value),
the result is simply that an error code is set, and there is
no visible effect. This probably explains why the bug was
not noticed.

If a debugger is present, then Windows will raise an
exception. If a debugger is not present, but the
FLG_ENABLE_CLOSE_EXCEPTIONS (0x400000) fl ag
is set in the ‘HKLM\System\CurrentControlSet\Control\
Session Manager\GlobalFlag’ registry value prior to the
system being rebooted, then an exception will also be
raised. Further, if the fl ag were set while the virus was
running, then the virus would be terminated by Windows
because the virus unregisters the exception handler prior
to closing the fi le. In that case, the bug would have been
very noticeable.

However, the bug will be particularly noticeable in a
directory that contains many executable fi les, regardless
of their suitability for infection. The problem is that since
the map view is never unmapped, it remains in memory
– one map per fi le that is examined. The size of the map is
equal to the size of the fi le, and each of the maps is aligned
to a 64KB block. This is in addition to the host image
which is also present in memory, along with its associated
DLLs. Thus, it might require only a few hundred large
fi les to be mapped before the memory becomes so scarce
that the host simply cannot run after the virus completes
its work.

SIZE DOES MATTER
The code is mostly optimized for size, but some obvious
size optimizations are missing, such as during the transfer
of control that appears after the API resolution. The existing

VIRUS BULLETIN www.virusbtn.com

6 APRIL 2012

code determines the platform and then jumps through the
stack using a platform-specifi c value. However, the check
could have been avoided completely by using a particular
single-byte instruction earlier in the code. The result would
be a single jump instruction using a value that is common to
both platforms.

In other cases, such as in the vectored exception handler, at
least part of the two code paths could be merged by using
a nice trick whereby the platform check is used to skip
just the REX prefi x. There are other examples of multiple
code paths where a single one could have been used, such
as fi nding the image base of kernel32, or indexing the API
table on the stack.

There are also cases where the REX prefi x is redundant
because of an unexpected register behaviour on the
64-bit platform. Specifi cally, assigning a value to a 32-bit
register results in the upper 32 bits of the corresponding
64-bit register being zeroed. This also results in a bug
which, fortunately for the virus writer, does not have an
effect because of a compatibility decision by Microsoft.
The bug is that the virus retrieves the 32-bit RVA of the
export table from ntdll.dll or kernel32.dll, but forgets
to add the full 64-bit image base prior to using it. As a
result, only the low 32 bits are valid, but it just so happens
that the image base of both of those DLLs is always in
the low 2GB range, and thus the size of the image base
never exceeds 32 bits. In the case of kernelbase.dll and a
number of other introduced DLLs, on the other hand, the
size of the image base does exceed 32 bits. If the virus had
attempted to access any APIs from such a DLL, then the
bug would have caused a crash. However, since only
ntdll.dll and kernel32.dll are used, the REX prefi x is not
needed to access their memory.

CONCLUSION

A virus that can run its code natively on both 32-bit and
64-bit platforms is a bit like a lungfi sh that can live in water
or on land (but perhaps less ugly). Fortunately, this virus is
in the early stages of evolution – however, we can probably
expect to see future advances in this technique.

REFERENCES

[1] http://www.virusbtn.com/virusbulletin/
archive/2011/09/vb201109-Holey.

[2] http://www.virusbtn.com/virusbulletin/
archive/2012/01/vb201201-sig.

[3] http://www.virusbtn.com/virusbulletin/
archive/2012/02/vb201202-Svar.

ZOMBIFYING TARGETS USING
PHISHING CAMPAIGNS
Aditya K. Sood and Richard J. Enbody
Michigan State University, USA

Phishing has grown exponentially over recent years. In this
article we analyse the Google E-Card phishing campaign
and its accompanying binary to show how a victim’s
machine is compromised.

Figure 1 shows the Google E-Card phishing email. We
gathered the following information from the email:

• A classic spoofi ng technique was used to make it
appear as if the email had been sent from the address
E-cards@google.com.

• The email headers pointed to a Chinese server running
a webmail interface on port 80. Further investigation
indicated that the server was controlled by the
dgds.gov.cn authority. When the DNS was mapped and
the Whois records were searched, it was found that the
server was hosted somewhere in the ‘China Unicom
Guangdong province network’.

 When we followed the link contained in the email,
we noticed that the server was confi gured to host
the freebonus.exe software package. The IP address
(58.254.202.103) failed to resolve to any hostname or
DNS name, and although it was included on a Malware
Patrol blacklist [1], our browsers did not raise any

Figure 1: Google E-Card phishing email.

MALWARE ANALYSIS 2

http://www.virusbtn.com/virusbulletin/archive/2011/09/vb201109-Holey
http://www.virusbtn.com/virusbulletin/archive/2012/01/vb201201-sig
http://www.virusbtn.com/virusbulletin/archive/2012/02/vb201202-Svar

VIRUS BULLETIN www.virusbtn.com

7APRIL 2012

warnings on visiting the site. We also scanned the
domain using Wepawet [2], which returned benign
results with no trace of malicious JavaScript or exploit.

• On reverse tracing the network using a decoy scan
against the phishing server, several ports were found
to be in an open state, including: FTP (21), SSH (22),
SMTP (25), POP3 (110), IMAP (143) and HTTP
(80). On querying port 25, the ‘220 mail.dgds.gov.cn
ESMTP Postfi x’ banner was received, which showed
that the mail server was confi gured for the Chinese
government network. The server was not confi gured as
an open relay mailing server, as is usually the case for
phishing servers. The IMAP interface was confi gured to
support webmail running on port 80.

• It was found that the SMTP server was confi gured in a
secure manner, with the following commands:

220 mail.dgds.gov.cn ESMTP Postfi x

EHLO mail.dgds.gov.cn

250-mail.dgds.gov.cn

250-PIPELINING

250-SIZE 52428800

250-VRFY

250-ETRN

250-AUTH PLAIN LOGIN

250-AUTH=PLAIN LOGIN

250-ENHANCEDSTATUSCODES

250-8BITMIME

250 DSN

 Even though the VRFY command was enabled, it was
not possible to verify the user accounts – the server
replied with error message 252 (which states that the
server is unable to verify the members of the mailing
list). This suggests that either the server is fully
compromised or an attack is in progress.

• FTP was running with anonymous access and it was
possible to download some fi les from the server. A
custom FTP banner was served when FTP was queried
instead of the standard FTP server banner. On fuzzing,
the FTP returned a ‘500 OPS - vsf_sysutil_recv_peek:’
error. This error is produced by the VSTFPD server
when a capability module is missing from the kernel.
However, the server was suffi ciently secured not to
support the PORT command for launching FTP bounce
scans against machines in the same network.

DISSECTING FREEBONUS.EXE
The Chinese server we had traced was serving a zipped
self-extracting (SFX) package named freebonus.exe.
Some generic techniques were applied to extract the SFX
package, but only text fi les were extracted – which did not

seem to make sense from a malware perspective. On closer
analysis, we found a number of fi les that were confi gured
in an obscure manner. As soon as these fi les were extracted,
other critical fi les were hidden by default. Since the analysis
was carried out in a controlled environment we proceeded
to consider every step taken by the malware. Once the fi les
were extracted, a generic ‘attrib -h *.*’ command was run
to reveal the fi les present in the directory. The error received
upon running that command was as follows:

C:\Documents and Settings\Administrator\Desktop\
freebonus>attrib -h *.*

Not resetting system fi le - C:\Documents and Settings\
Administrator\Desktop\free

bonus\aliases.ini

Not resetting system fi le - C:\Documents and Settings\
Administrator\Desktop\free

bonus\away.txt

Not resetting system fi le - C:\Documents and Settings\
Administrator\Desktop\free

bonus\baby.mrc

Not resetting system fi le - C:\Documents and Settings\
Administrator\Desktop\free

bonus\control.ini

Not resetting system fi le - C:\Documents and Settings\
Administrator\Desktop\free

bonus\feel.reg

Not resetting system fi le - C:\Documents and Settings\
Administrator\Desktop\free

bonus\fi refox.exe

Not resetting system fi le - C:\Documents and Settings\
Administrator\Desktop\free

bonus\fullname.txt

Not resetting system fi le - C:\Documents and Settings\
Administrator\Desktop\free

bonus\gain.bat

Not resetting system fi le - C:\Documents and Settings\
Administrator\Desktop\free

bonus\ident.txt

Not resetting system fi le - C:\Documents and Settings\
Administrator\Desktop\free

bonus\jumbo.ico

Not resetting system fi le - C:\Documents and Settings\
Administrator\Desktop\free

bonus\lord.mrc

Not resetting system fi le - C:\Documents and Settings\
Administrator\Desktop\free

bonus\mirc.ini

Not resetting system fi le - C:\Documents and Settings\
Administrator\Desktop\free

bonus\remote.ini

Not resetting system fi le - C:\Documents and Settings\
Administrator\Desktop\free

bonus\servers.ini

Not resetting system fi le - C:\Documents and Settings\
Administrator\Desktop\free

bonus\users.ini

The error suggests that the system is not able to reset the
fi les. This error occurs when fi les are marked with both

VIRUS BULLETIN www.virusbtn.com

8 APRIL 2012

hidden (h) and system (s) attributes in the directory. The
fi les can only be retrieved when both fl ags are removed
simultaneously. In order to do this, the ‘attrib -h -s *.*’
command was run, resulting in the successful extraction of
fi les from the SFX package as shown in Figure 2.

The package was structured in an interesting manner. It was
aimed at infecting systems running IRC client software and
installed the same set of fi les as those that are present in
a legitimate installation of IRC client software. However,
this class of malware has the ability to change the user’s
machine into a zombie that remains dormant and is only

activated when a remote server sends a command. The
functionality of the various fi les are discussed next.

The main fi le in the package was ‘fi refox.exe’. On
performing a binary analysis of the fi le, we found that the
executable was written in Borland C, and that the code had
the well-defi ned structure of a message client. This binary
looked legitimate in the way it was designed and written.
The PE header of ‘fi refox.exe’ gave the impression of
being a mIRC client. We wondered whether the malware
package was installing the legitimate mIRC client version
6.0.3. In order to verify our hypothesis, we conducted a
binary differential analysis. mIRC client version 6.03 was
downloaded from the Internet and LordPE was used to
perform a binary comparison, as presented in Figure 3.
We were surprised to fi nd that ‘fi refox.exe’ and ‘mirc.exe’
were the same in every aspect. This means that the malware
package was actually installing a legitimate mIRC client on
the victim machine as a service.

Signature-based tools would have raised a false positive
on scanning the system. In reality, it is hard to say that
an apparently legitimate binary fi le on the system would
turn it into a zombie. The SFX package also contained a
number of mIRC scripts. On analysing the mirc.ini fi le, we
found that the IRC client settings had an option defi ned as
hide=1, which directed the IRC client to execute in a hidden
manner. The confi guration fi le is shown below:

[warn]

fserve=on

dcc=on

[dirs]

logdir=logs\

[about]

version=6.03

show=BR26354

[ports]

random=off

bind=off

[ident]

active=yes

userid=Y

system=UNIX

port=113

[socks]

enabled=no

port=1080

method=4

dccs=no

useip=yes

[clicks]

status=/lusers

Figure 2: Extracted fi les from the Freebonus.exe package.

Figure 3: Binary comparison between fi refox.exe and
mirc.exe.

VIRUS BULLETIN www.virusbtn.com

9APRIL 2012

query=/whois $$1 $$1

channel=/channel

nicklist=/query $$1

notify=/whois $$1 $$1

message=/whois $$1 $$1

[dde]

ServerStatus=off

ServiceName=fi refox

CheckName=off

[text]

network=All

commandchar=/

linesep=-

timestamp=[HH:nn]

accept=*.jpg,*.gif,*.png,*.bmp,*.txt,*.log,*.wav,*.
mid,*.mp3,*.wma,*.ogg,*.zip

ignore=*.exe,*.com,*.bat,*.dll,*.ini,*.mrc,*.vbs,*.
js,*.pif,*.scr,*.lnk,*.pl,*.shs,*.htm,*.html

aptitle=Mozilla Firefox

quit=losing my brains

theme=mIRC Classic

[fi leserver]

warning=on

[dccserver]

n0=0,59,0,0,0,0

[

[mirc]

user=V

nick=V

anick=V

email=V

host=BudapestSERVER:Budapest.Hu.Eu.Undernet.
Org:7000GROUP:Undernet

[

fi les]

servers=servers.ini

fi nger=fi nger.txt

urls=urls.ini

addrbk=addrbk.ini

trayicon=jumbo.ico

[styles]

thin=0

font=0

hide=1

color=default

size=2

buttons=0

[nicklist]

[windows]

main=1244,123,0,34,3,1,0

scripts=-2,1279,-5,931,0,0,0

wchannel=0,610,0,128,0,1,0

wquery=84,610,84,195,2,1,0

wdccs=-1,269,-1,264,0,1,0

wnotify=-1,602,-1,268,0,1,0

playctrl=352,308,178,289,0,0,0

[pfi les]

n0=popups.ini

[notify]

[afi les]

n0=aliases.ini

[rfi les]

n0=users.ini

n1=remote.ini

n2=baby.mrc

n3=lord.mrc

The package also contained fi les such as ‘ident.txt’,
‘servers.ini’, ‘lord.mrc’ and ‘baby.mrc’. When the SFX
package was unpacked, ‘gain.bat’ started executing its
commands. First, it manipulated the registry entries. Next,
it installed the binary into the history folder present in the
temporary directory in the ‘%systemroot’ folder. Then it hid
the history folder by running the attrib command. Generally,
the batch fi le acted as an installer for the malicious IRC
client. The baby.mrc and lord.mrc scripts were executed
automatically after the installation of fi refox.exe as a service.
The malicious fi refox.exe client triggered these scripts for
joining the remote channel and acting as a zombie for the
attacker to control the machine. The mIRC scripts were used
to communicate with the admin of the channel by building
an ident profi le for every server listed in the ‘servers.ini’ fi le.

The ‘servers.ini’ fi le was used by the malicious IRC client
(fi refox.exe) for initiating connections to the various
IRC servers listed in the fi le. In order to connect to those
servers, the IRC client used the ‘users.ini’ fi le to pick up
user details. The fi le contained close to 15 entries related
to different IRC servers. The server entries were structured
as ‘n1=ManaGerSERVER:ff.freebsd.md:8889GROUP:
ManaGer’, ‘n18=BucharestSERVER:82.76.255.62:666
2:Undernet’, etc. This suggested that IRC servers were
differentiated based on the groups. A ‘Manager’ group was
designated for the channel administrators who controlled the
bot, while ‘Undernet’ was the group used for other agents in
the network. The IRC servers were found to be in different
geographical areas around the globe, which showed that the
malware infections were managed in a decentralized manner.

On inspecting ‘feel.reg’, we found that registry entries were
modifi ed for installing ‘fi refox.exe’ as a hidden service.
One registry entry, ‘[HKEY_CURRENT_USER\Software\
mIRC\UserName]@=“PeNdEjO!”’, defi ned the username
of the installed mIRC client as ‘PeNdEjO!’. Another entry
in the registry was labelled: ‘[HKEY_LOCAL_MACHINE\
SOFTWARE\Microsoft\Windows\CurrentVersion\Run]
“fi refox”=“\”C:\\Windows\\temp\\history\\fi refox.exe\’. This

VIRUS BULLETIN www.virusbtn.com

10 APRIL 2012

caused the process to run in an automated manner when the
system was rebooted.

INSIDE MIRC SCRIPTS
The IRC scripts included in the SFX package perform
malicious activity on the victim’s machine. The following is
a snippet of the lord.mrc script:

on *:open:?:{

 inc -u3 %msg.chalange 1

 if (%msg.chalange == 2) {

 ame 10Message4 Flood6 detectat2,6 activez4
silence6 pentru4 16 minut2.

 silence +*!*@*

 timerunsilence 1 60 silence -*!*@*

 close -m

 }

}

on *:notice:*:?:{

 if (%notice.chalange.nick != $nick) {

 inc -u3 %notice.chalange 1

 }

 if (%notice.chalange == 2) {

 ame 10Notice4 Flood6 detectat2,6 activez4
silence6 pentru4 16 minut2.

 silence +*!*@*

 timerunsilence 1 60 silence -*!*@*

 }

 set %notice.chalange.nick $nick

}

ctcp *:*:?:{

 if (%ctcp.chalange.nick != $nick) {

 inc -u3 %ctcp.chalange 1

 }

 if (%ctcp.chalange == 2) {

 ame 10CTCP4 Flood6 detectat2,6 activez4 silence6
pentru4 16 minut2.

 silence +*!*@*

 timerunsilence 1 60 silence -*!*@*

 }

 set %ctcp.chalange.nick $nick

}

on *:invite:#:{

 if (%invite.chalange.nick != $nick) {

 inc -u3 %invite.chalange 1

 }

 if (%invite.chalange == 2) {

 ame 10Invite4 Flood6 detectat2,6 activez4
silence6 pentru4 16 minut2.

 silence +*!*@*

 timerunsilence 1 60 silence -*!*@*

 }

 set %invite.chalange.nick $nick

}

on 1:connect:{

 nick $read ident.txt $+ $r(a,z)

 anick $read ident.txt $+ $r(a,z)

 fullname $read fullname.txt

 identd on $read ident.txt

 .timer 1 5 mode $me +iwx

 .timer 1 7 silence +*!*@*,~*!*@*undernet.org

 .timer 1 17 secure

 .notify on

}

on *:notice:*:#:{ hinc -mu2 spam $chan | if
$hget(spam,$chan) >= 3 { mode $me +d | timerunsilence
1 60 mode $me -d | ame 6Am activat modul 4 +d
6pentru 4 1 6minut din cauza fl oodului2.

---- Truncated ----

The script defi nes the events as invite, open, notice, ctcp etc.
Most of the malicious IRC scripts are written as triggers or
events that execute when a particular action is taken. Triggers
are defi ned to automate activity from the IRC client. The
generic pattern of a trigger statement is ‘on <level>:<event>:
{ ;Statement block }’. The level is defi ned as the access level
on the IRC channel. The following are explanations of some
of the triggers from the malicious IRC scripts:

• The ‘open’ event is created for all access levels on the
IRC channel. The ‘inc -u3 %msg.chalange 1’ command
handles the value in variable %msg.chalange. In this
case if the value of %msg.chalange is incremented by
one, then after three seconds %msg.chalange will be
null. After this, if the required condition is matched
then the ‘ame’ command is executed. The ‘ame’
command sends a specifi c action to all channels that the
bot is currently on. In this script, the ‘ame’ command
sends a ‘10Message4 Flood6 detectat2, 6 activez4
silence6 pentru4 16 minute2’ message, which defi nes
the fl ooding activity to be started by the bot connected
on a particular channel when fi nal notifi cation is sent
by the server manager. The command ‘silence +*!*@*’
hibernates the bot on the channel, and ‘timerunsilence’
defi nes the time period for activating the bot on the
channel.

• Other triggers include the ‘invite’ and ‘notify’ events.
The fi le also contains a ‘CTCP’ (client-to-client
protocol) trigger. The CTCP command is used to
perform client-specifi c functions on the IRC network.
CTCP is used widely for operations such as setting a
fi le server on the victim machine or enabling bots to
perform operations without user interaction with the
lRC client. The CTCP trigger notifi es the channel that
a victim’s machine ($nickname) is open and already
established on the communication channel. The generic
CTCP command is used as ‘/ctcp <nickname><ping|fi ng
er|version|time|userinfo|clientinfo>’. The ‘invite’ trigger

VIRUS BULLETIN www.virusbtn.com

11APRIL 2012

is used to invite other users to the same channel. The
user list is provided in the users.ini and ident.txt fi les.

• The ‘connect’ event is triggered for initiating
connections using the ident profi le, the IRC client
startss and identd server on port 113 on the victim’s
machine. The ‘nick’ command reads an entry from
ident.txt and starts connecting back to the IRC server
silently.

• The fi nal trigger is the ‘notice’ event that is used to send
a specifi ed notice to the user (nick) on the channel.
In this script, messages related to spam are sent in a
timely manner.

The malicious scripts are sending notifi cations for starting
fl ooding and spamming activities on the channel.

DISCUSSION
This malware uses IRC scripting to perform malicious
activity on victims’ machines. Our analysis and evaluation
has indicated that IRC scripting is not a very clear
programming language. The IRC clients and IRC scripts
are designed to activate backdoors on the victim machine
by downloading other malicious programs from remote
servers. In this sample, the group leader can use the IRC
scripts to control the IRC client and force it to connect to
predefi ned IRC servers and join specifi c channels. While
carrying out background research, we found that a similar
variant of this malware [3] has previously been analysed.

CONCLUSION
We have analysed the details of a phishing zombie to
understand the propagation and distribution of the malware.
We found that tracking the malware domain back to its
source can provide a wealth of information to better
understand the mechanisms. The malicious binary was also
dissected to understand the design of this malware that
infects machines and turns them into zombies. One aim of
this study is to present a glimpse into the methodology used
to track back malicious servers for gathering details about
the malicious tools.

REFERENCES
[1] http://www.malware.com.br/cgi/submit-agressive?a

ction=list&type=agressive.

[2] Wepawet. http://wepawet.iseclab.org/index.php.

[3] Client-IRC.Win32.mIRC.603, Backdoor.IRC.
Zapchast.zwrc. http://www.threatexpert.com/report.
aspx?md5=c0d2abe80f901502fb3e7a40f8bf77aa.

QUICK REFERENCE FOR
MANUAL UNPACKING
Abhishek Singh
FireEye, USA

Malware authors utilize packers to make it diffi cult for their
malware to be reversed – the packers encode the original
instructions. By packing a malicious executable, its author
can be sure that when it is opened in a disassembler it will not
show the correct sequence of instructions. Packers add some
instructions at the top of the binary to unpack the executable.
The process of decryption is performed in memory at run
time, and the state of the application is restored. Since
packers work on a compiled executable, the unpacking
module must be independent of the original application.

One of the methods that can be used to locate the original
entry point (OEP) of the fi le is to apply break points on the
following APIs:

GetLoadLibraryA

GetVersionExA

GetEnvironmentA

LoadLibraryA

GetProcAddress

IniHeap

These APIs are called by the packers’ start-up routines
in order to set up the execution environment. When a
breakpoint is applied to these routines, we are close
to the OEP. When the break point triggers, we can use
step-by-step tracing to locate the initialization of the stack
frame. The start of the function can be recognized by the
initialization of the stack frame.

push ebp

mov ebp, esp

The instructions shown above denote the start of the stack
frame. Once these instructions are located, the debugged
process can be dumped to obtain the unpacked version of
the fi le.

In the following sections we describe some common
packers and the assembly instructions that can be used to
locate the OEP.

MANUAL UNPACKING
The purpose of this section is to provide a quick reference
guide that will assist malware analysts in the unpacking of
malware and reduce the response time for malware analysis
– the full technical details of each packer have therefore
been omitted.

TUTORIAL

http://www.malware.com.br/cgi/submit-agressive?action=list&type=agressive
http://wepawet.iseclab.org/index.php
http://www.threatexpert.com/report.aspx?md5=c0d2abe80f901502fb3e7a40f8bf77aa

VIRUS BULLETIN www.virusbtn.com

12 APRIL 2012

ASPack

ASPack is an advanced Windows 32 executable compressor
capable of reducing the fi le size of 32-bit Windows (95/98/
ME/NT/2000/XP/2003/Vista/7) programs by as much
as 70%. It is also used by some hackers to protect their
programs.

To unpack ASPack, follow the fi rst jmp, and follow
JMP EAX. Later in the code you will fi nd the following
instructions:

mov eax,1

retn 0C

push 0

retn

Once these instructions have been identifi ed, as shown
in Figure 1, a break point should be put on RETN. When
the break point triggers, we are at the OEP. The process
can be dumped at this stage, leaving us with the unpacked
executable.

Figure 1: Instructions before the code is unpacked.

OllyScript code for the automatic unpacking of
ASPack is shown in Figure 2. The instruction ‘fi ndop
eip, #6800000000#’ locates the PUSH 0 instruction in
a debugged process packed with ASPack. Once this
instruction is located, the debugger steps once to reach the
RETN instruction. The debugger then steps again to reach
the OEP instruction. Once the OEP instruction is located the
debugger steps once more to reach the OEP. The debugged
process can now be dumped to get the unpacked version of
the fi le.

Figure 2: OllyScript code used to locate the OEP for
ASPack.

KKrunchy

KKrunchy [1] is a small executable packer intended
for 64k intros. It does not try to pack DLLs and cannot
handle exports or TLS. It performs a transform on the
input code to allow it to compress better. It will fi ll
uninitialized data sections with zeros and then pack them
together with the rest of the code. KKrunchy is often used
by malware authors to prevent AV analysts from reversing
their code.

In order to unpack KKrunchy, put a break point on
LoadLibraryA. When the break point triggers, step the
debugger and search for the initialization of the stack frame.
Once the stack frame initialization is complete, dump the
debugged process. The dumped process is the unpacked
version of the executable.

PECompact v2.x

PECompact [2] is fully compatible with DEP and
code signing, and provides support for Windows 7 and
Windows 2008. It provides a good compression ratio
compared to other compressors such as ASPack. The
PECompact [3] loader consists of three components.
The fi rst is the SEH entry, which transfers control to the
second component, the loader decoder. The loader decoder
decodes the code and invokes the third component,
the primary loader. The loader decoder is stored in the
last section (or the second-to-last section if relocations
have been preserved). The primary loader exists in
uncompressed form at runtime in dynamically allocated
memory. To hide the transfer of control, an SEH frame is
set up and there is an exception. The exception handler
then modifi es the code at the exception address to a JMP
and continues execution.

Figure 3 shows PECompact’s exception handler. The
instruction sequence ‘PUSH EAX, PUSH DWORD PTR
FS:[0], MOV DWORD PTR FS:[0], ESP’ sets up the SEH
frame. The instruction ‘XOR EAX, EAX’ sets the value
in EAX to zero. The instruction ‘MOV DWORD PTR
DS:[EAX], ECX’ triggers the exception.

Figure 3: The PECompact exception handler.

To unpack PECompact, follow the exception and step
through the code until the instructions shown in Figure 4 are
observed. JMP EAX is the jump to the OEP.

VIRUS BULLETIN www.virusbtn.com

13APRIL 2012

Figure 4: PECompact instructions before unpacking.

Set a break point on JMP EAX, step once, and observe the
initialization of the stack frame as shown in Figure 5. Dump
the process. The dumped process will be the unpacked
executable.

Figure 5: Initialization of the stack frame.

The logic shown in Figure 4 can be converted into script
such as that shown in Figure 6 (the script is available from
Open RCE [4]).

Figure 6: OllyScript for PECompact.

The instruction ‘fi nd eip, #8BC65A5E5F595B5DFFE0#’
locates the instructions ‘MOV EAX ESI, POP EDX,
POP ESI, POP EDI, POP ECX, POP EBX, POP EBP,
JMP EAX’. Once these are located, the script steps once
at the JMP instruction and the debugger is at the OEP.
The debugged process now can be dumped to obtain the
unpacked version of the fi le.

NSPack

NSPack [5] is capable of compressing EXE, DLL, OCX
and SCR fi les. It also has the ability to compress 64-bit
executables. It provides support to compress fi les packed
by other packers such as UPX, ASPack and PECompact.
It supports direct compression of directories or multiple

fi les. This packer is quite commonly used by malware
authors.

As shown in Figure 7, the packer starts with the instructions
PUSHFD, PUSHAD.

Figure 7: The starting instructions for NSPack.

Check for equivalent POPAD and POPFD instructions, as
shown in Figure 8. The JMP instruction follows. Put a break
point on the JMP instruction. When the break point triggers,
step once and dump the process to obtain the unpacked fi le.

Figure 8: NSPack instructions before unpacking.

The abovementioned logic can be converted into the
OllyScript shown in Figure 9. The instruction ‘fi nd eip,
#619DE9#’ locates the instruction POPAD, followed by
POPFD, followed by a JMP instruction. Once these are
located, the code is debugged, step by step, until the JMP
instruction is executed – the debugger has then reached the
OEP instruction. By using a plug-in like OllyDump, the
process can be dumped to obtain the unpacked version of
the fi le.

Figure 9: OllyScript used to locate the OEP for NSPack.

FSG 1.33
FSG stands for Fast Small and Good, and is currently used
to pack various malware. It was originally created to pack
assembly demos. Since it has a small loader, it is one of the
most desirable packers for small executables.

In order to obtain the unpacked executable fi le for FSG
1.33, put a break point on the LoadLibraryA function, as
shown in Figure 10.

VIRUS BULLETIN www.virusbtn.com

14 APRIL 2012

Figure 10: The LoadLibraryA function in FSG 1.33.

When the break point triggers, step a few instructions below
until the following instructions are seen:
dec byte ptr [esi]

jz xxxxxxxx

PUSH ESI

PUSH EDP

CALL DWORD PIR D5:[EBX=4]

When JE Address triggers, we can observe the initialization
of the stack frame. We are at the OEP, so dump the process
to get the unpacked version of the fi le.

Figure 11: Instructions denoting the end of FSG.

FSG 2.0

For version 2.0 of the FSG packer, the instructions that
indicate the end of the FSG stub are as follows:

move eax (edi)

inc eax

js address

jnz address

jmp dword ptr [ebx+0Ch]

In order to manually unpack a fi le packed with FSG
2.0, put a break point on LoadLibraryA and execute the
compressed fi le. When it breaks, clear the break point and
execute until return (Ctrl -f9). Step through the debugged
application until the instructions shown in Figure 12 are
reached.

Here, ‘JMP DWORD PTR DS: PTR [ebx+0Ch]’ is the jump
to OEP. Once the JMP instruction is executed, dump the
process to get the unpacked version of the fi le.

UPX
UPX [6] stands for Ultimate Packer for eXecutables.
It offers an excellent compression ratio which is
better than WinZip, Zip and GZIP. It also maintains a
checksum for both compressed and uncompressed fi les.
It uses compression algorithms like UCL [7]. UCL has
the inherent advantage that the decompressor can be
implemented in a few hundred bytes of code. Many
malware families such as Qakbot are packed using UPX.
It offers very fast compression and decompression speeds:
~10MB/s on a Pentium 133. It also offers support for
LZMA compression and has support for BSD. LZMA
decompression is disabled on the 16-bit platform due to
the slow decompression speed on older platforms. It also
provides support for two types of decompression routines.
The fi rst is the in-place technique, which decompresses the
executable in memory. In-place decompression is possible
only for some platforms. The extraction of a temporary fi le,
even though it uses extra overhead, allows any executable
fi le format to be packed.

In order to unpack UPX using a manual approach, the
end of the UPX routine must be identifi ed. The end of the
UPX routine can be identifi ed by the instructions CALL,
POPAD and JMP, as shown in Figure 13. Put a break point
on the JMP instruction. The JMP instruction will lead to
initialization of the stack frame. After the JMP instruction
has executed, dump the process by using a plug-in such as
OllyDump, and the program is unpacked.

Figure 13: UPX end of routine instructions.

Figure 12: Instructions reached before unpacking FSG 2.0.

VIRUS BULLETIN www.virusbtn.com

15APRIL 2012

Figure 14: The OllyScript used to unpack UPX.

The script shown in Figure 14 is the implementation of
the logic used to locate the OEP. The instruction ‘fi ndop
eip, #61#’ locates the assembly instruction POPAD, sets a
break point on it, and then executes the code packed with
UPX. Once the break point is triggered, the instruction
‘fi ndop eip, #E9????????#’ locates the JMP instruction
and sets a break point on it. When the break point triggers,
the debugger steps once in the code and is at the OEP.
The debugged process can be dumped to get the unpacked
version of the fi le.

PEDiminisher
PEDiminisher is a simple PE packer. It uses the aplib
compression/decompression library. Many AV engines have
the ability to unpack fi les packed with PEDiminisher to
check for malicious content.

The end routine for PEDiminisher is shown below:
pop EBP

POP EDI

POP ESI

POP EDX

POP ECX

POP EBX

JMP EAX

For unpacking, the end instructions must fi rst be located in
the packed fi le (as shown in Figure 15). JMP EAX is the
jump to the OEP. Set a break point at the JMP instruction,
step once and then dump the process to get the unpacked
version of the fi le.

The instruction ‘fi nd eip, #5D5F5E5A95BFFE0#’ locates
the instructions ‘POP EBP, POP EDI, POP ESI, POP
EDX, POP ECX, POP EBX, JMP EAX’. The script then
steps through the debugger until it reaches JMP EAX.
Once it is at JMP EAX, the code steps once and is at the
OEP. The OllyDump plug-in can be used to dump the
process and we are left with the unpacked version of the
executable fi le.

MEW
MEW [8] is an executable tool which was designed to
handle small fi les. It works on 32-bit workstations and uses
the LZMA algorithm. It strips reloc tables, Delphi resources,
and unused resources. Even though it was designed to handle
small fi les, it can compress large fi les as well.

The last instruction in the MEW stub, as shown in Figure
17, is RETN. After this instruction a jump to the OEP takes
place. Set a break point on the RETN instruction. When the
break point is triggered, as shown in Figure 17, step once and
then dump the process to get the unpacked version of the fi le.

Figure 15: The end instruction for PEDiminisher.

Figure 16: The OllyScript used to unpack PEDiminisher.

Figure 17: The last instructions for the MEW packer.

VIRUS BULLETIN www.virusbtn.com

16 APRIL 2012

The logic used to locate the OEP for MEW is shown in
Figure 18. The code ‘fi ndop eip, #C3#’ locates the RETN
instruction in the debugged process packed with the MEW
packer. Once the RETN instruction is located, the debugger
steps once and is at the OEP. The OllyDump plug-in can be
used to dump the process and we are left with the unpacked
version of the executable fi le.

CONCLUSION
Reducing the time it takes to perform malware analysis
is very important. For static analysis of malware it is
important that the malware is unpacked. There are many
approaches to unpacking a piece of malware – for example,
it can be executed in a virtual environment and then we can
capture a memory snapshot of the executing malware. Once
we get the snapshot, we can dump the unpacked malware
directly from memory. However, it is possible that not all
of the code of the unpacked malware will be in memory, so
dumping a process from memory might not be an effective
unpacking method. Loading a packed malicious executable
and executing step by step instructions in a debugger is one
of the best ways to locate the OEP and execute the malware.
In this article we have provided assembly instructions for
the most commonly used packers which can be used to
quickly unpack malware. We have also provided OllyScripts
for the logic to manually unpack the malware. This can
further aid in reducing response time for malware analysis.

REFERENCES
[1] http://www.farbrausch.de/~fg/kkrunchy/.

[2] http://pecompact.com/pecompact.php.

[3] http://www.bitsum.com/pec2av.htm.

[4] http://www.openrce.org/downloads/details/156/
PECompact_v.2.40_-_OEP_fi nder.

[5] http://nspack.download-230-13103.programsbase.
com/.

[6] http://upx.sourceforge.net/.

[7] http://www.oberhumer.com/opensource/ucl/.

[8] http://www.softpedia.com/get/Programming/Packers-
Crypters-Protectors/MEW-SE.shtml.

Figure 18: The OllyScript used to unpack MEW.

‘Securing your Organization in
the Age of Cybercrime’

A one-day seminar in association
with the MCT Faculty of

The Open University

- Are your systems SECURE?

- Is your organization’s data at
RISK?

- Are your users your greatest
THREAT?

- What’s the real DANGER?

Learn from top security experts
about the latest threats, strategies
and solutions for protecting your

organization’s data.

For more details:

www.virusbtn.com/seminar
or call 01235 555139

SEMINAR
19 April 2012
Milton Keynes, UK

http://www.virusbtn.com/seminar/
http://www.farbrausch.de/~fg/kkrunchy/
http://pecompact.com/pecompact.php
http://www.bitsum.com/pec2av.htm
http://www.openrce.org/downloads/details/156/PECompact_v.2.40_-_OEP_finder
http://nspack.download-230-13103.programsbase.com/
http://upx.sourceforge.net/
http://www.oberhumer.com/opensource/ucl/
http://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/MEW-SE.shtml

VIRUS BULLETIN www.virusbtn.com

17APRIL 2012

FRANCOPHILE PHISHERS
Sébastien Goutal
Vade Retro, France

Phishing is a major threat to email users. Not only do
victims face fi nancial loss, but phishing can also result in a
loss of trust and confi dence in the organizations targeted in
the attacks (ISPs, banks, social networks etc.). In this article
we present a study of the phishing attacks that we typically
see in our home market of France.

PHISHER PROFILE
In our experience, phishers tend to be aged between 15 and
25 years old. They operate alone or in small groups, have
relatively limited skills1 and work on a small scale, using
several hacked servers and hosted services.

In contrast, a typical spammer is a professional criminal with
signifi cant technical skills2 and access to many resources.
Spammers maintain large networks and send email in very
high volumes. While a phisher will send at most a few tens
of thousands of emails per day, a botnet has the capacity to
send hundreds of millions of emails, and even up to several
billion on a daily basis (for instance, the Rustock botnet has
the capacity to send 30 billion emails per day).

Phishing provides a quick return on investment, and it
requires few resources. The main challenge for phishers is
converting money from online accounts into hard cash.

PHISHING IN FRANCE
There is a persistent phishing threat in France that requires
daily vigilance. Phishers operate mainly from Morocco
(Rabat, Casablanca), and occasionally from Tunisia and
France. Why Morocco and Tunisia? First, because the
French language is widely spoken there, and secondly, these
countries are located outside the European Union – where
the risk of prosecution for damages caused in the European
Union (and France in particular) is extremely small.

Every day, we identify between 10 and 20 new phishing
campaigns or variations of existing ones.

The size of campaigns varies from a few hundred emails to
tens of thousands of emails. They last for anywhere between
one hour and several days. The average duration of the

1 Knowledge of a scripting language and a basic knowledge of Apache,
HTTP and SMTP protocols is more than suffi cient to conduct phishing
campaigns.
2 A spammer has to conduct vast malware campaigns to build spambot
networks, handle complex peer-to-peer interaction between botnet
elements, and monitor an infrastructure of signifi cant size.

phishing campaigns we see is about seven hours, with a low
and constant intensity.

Globally, there is a low volume of phishing: phishers
attempt to keep their activity below a certain threshold in
order to remain undetected for as long as possible. This is
consistent with the phishing business model which requires
a low volume to be profi table.

PHISHING PROCESS

Phisher’s infrastructure
The phishing process is rather simple. First, the phisher
needs at least two servers: one is dedicated to the dispatch of
emails, and another hosts the phishing sites. In most of the
cases that we see, phishers use hacked servers3, but it has
also become common for phishers to use hosted services4.

Templates for phishing sites are widely available on the
Internet, however most phishers create their own pages,
basing their design heavily on the offi cial site of the targeted
company. They always include a script that will send
notifi cations of captured data to one or more mailboxes
– typically free webmail addresses such as Yahoo! or
Gmail. This is the safest and easiest way to retrieve stolen
credentials; storing them locally on the servers is risky in
case the servers are forced to shut down due to abuse reports.

Phishing campaign
Next, the phisher has to compose a phishing email and
send it to selected recipients. Previously, phishers compiled
emails that were designed to resemble the legitimate emails
sent by the target companies – including the company’s logo
and layout – and the From and Subject headers, as well as
body content, were explicit: their primary objective was to
convince the majority of end-users that this was a legitimate
email. Nowadays, regular phishing is still explicit5 but less
close to the genuine emails sent by the targeted companies:
the primary objective is now to bypass spam fi lters, whose
effi ciency against phishing has increased.

The phisher must make a choice: write a ‘genuine’-looking
phishing email that will trap a lot of end-users but will
quickly be detected by spam fi lters, or write an obfuscated
email that will trap fewer end-users but will be more
diffi cult to detect. There is a growing tendency towards

3 For instance, a lot of servers hosting misconfi gured or vulnerable
versions of WordPress are used by phishers to host phishing sites. They
can easily be identifi ed by the ‘ wp-’ prefi x in the phishing link.
4 However, the rental of hosted services requires prior theft of credit
card credentials in order to anonymize the fi nancial source.
5 Although this does not prevent phishers from using classic spam
techniques to bypass spam fi lters, such as misspellings or character
substitutions.

FEATURE

VIRUS BULLETIN www.virusbtn.com

18 APRIL 2012

extreme obfuscation. For example, some phishing emails
contain nothing but a link to the fraudulent site, which make
them very diffi cult to detect in a predictive way.

We see the same arguments being used repeatedly in
phishing campaigns to convince the end-user to take action:

• suspicious connection attempts to your account

• unusual transactions on your account

• an unauthorized transaction on your account

• a transaction error

• account or credit card suspended

• new message received

• new invoice received.

It is also very common for phishing emails to request
confi rmation of customer credentials in order to enhance
security: phishers use and abuse the fact that a lot of people
are already aware of phishing scams.

Finally, before launching the phishing campaign, the
phisher sends one or several phishing emails to the targeted
ISP, using an email address hosted by the ISP. By doing
this, he can make sure that the phishing campaign will not
be blocked from the very beginning. He can then launch the
campaign, and start to harvest the stolen data.

PHISHER BUSINESS MODEL
We often see stolen credit card credentials being used to
fund online credit accounts, such as PayPal and Ogone. The
credit is used for various operations:

• Purchase of high-value consumer goods (laptop
computers, tablet computers, consoles etc.), which are
then resold via classifi ed ad websites6.

• Purchase of plane tickets, which are then resold at
lower prices.

• Purchase of hosting services to perpetuate the phishing
business.

As money laundering is a complex process and requires
close acquaintance with criminal organizations, some
phishers also sell credential databases on the black market.
These may be used for other activities such as identity
theft.

The obvious limitation to the business model is the diffi culty
of converting money from online accounts into hard cash.

6 Leboncoin.fr is the most popular classifi ed ad website in France, and
as such it is widely used for the resale of goods that have been obtained
illegally. For this reason the site is under constant surveillance by law
enforcement. eBay is also widely used for this purpose.

Figure 1: This phishing scam contains various misspellings.
Notice the contrast between the logo that will draw the
recipient’s attention, and the misspelled words ‘Caiise

d’Epargne’.

Figure 2: Phishing emails are often deliberately misspelled
to bypass spam fi lters that may be triggered by certain

keywords. However, this one is particularly well written:
this is an image phishing scam, thus there is no need for

misspellings.

VIRUS BULLETIN www.virusbtn.com

19APRIL 2012

PHISHING TARGETS
Typically, we see the following targets of phishing
campaigns:

• Internet service providers

• Banks (La Banque Postale, BNP Paribas, Crédit
Agricole, Crédit Mutuel, Caisse d’Epargne, Société
Générale) and companies providing fi nancial services
(Visa, MasterCard, PayPal, Western Union)

• Public services (income taxes, Caisse Primaire
d’Assurance Maladie, Caisse d’Allocation Familiale,
Electricité De France, Gaz De France)

• Social networks (Facebook, Twitter)

• Online games (battle.net, RuneScape)

• Online auction services (eBay).

In France, phishers focus heavily on ISPs, because they can
easily determine the victim’s ISP by extracting the domain
name of their email address. PayPal7 and Visa/MasterCard
are also very highly targeted.

Local banks are also targeted. The phisher does not know the
identity of the victim’s bank, and there are around ten major
banks in France – the probability that the victim is a customer
of any of these banks is around 10%. Despite this, phishers
still focus on local banks as customers tend to trust them, and
are thus more likely to be trapped.

We rarely see phishers targeting foreign banks (e.g. Bank Of
America, Chase, Wells Fargo, Santander, Halifax, Barclays,
HSBC etc.), instead focusing their activities on French
banks to maximize their return on investment.

CONCLUSION

Nowadays, phishing is one of the most problematic
threats in mail security: in contrast to spam, phishing

7 The number of PayPal accounts is estimated to be over 230 million.
It is therefore very likely that the recipient of a phishing email has a
PayPal account.

campaigns are low-volume, targeted, transient, and thus
both very diffi cult to detect in a feedback loop and almost
non-existent in honeypots. Moreover, phishing is very
profi table for the attackers and can be extremely damaging
for the victims.

Two layers of security are generally set up to limit
the damage caused by phishing. First, ISPs and ESPs
implement message fi ltering to detect and reject phishing
emails. Secondly, most popular Internet browsers provide
anti-phishing features8, the majority of which are based
on live phishing URL database queries, to prevent access
to forged websites. However, in both cases, the phishing
attack fi rst has to be detected and reported, and the
delay in this process means that the initial victims go
unprotected9.

It is inevitable that, whatever the sophistication of the
implemented protection technologies, phishers will
manage to steal valid credentials and will try to use
them. We must therefore limit damages by strengthening
controls at the point at which these credentials will be
used.

E-commerce websites should detect suspicious behaviour
– such as multiple payment attempts with different credit
card details – and should reject, log and report such
attempts.

In addition, banks and online fi nancial services should
implement two-factor authentication. Two-factor
authentication is an approach to authentication which
requires the presentation of two or more of the three
authentication ‘factors’ (something the user knows,
something the user has, and something the user is).
A classic approach is to send a confi rmation code to
a mobile phone (something the user has), and thus
validate authentication. Widespread use of two-factor
authentication should limit the damages caused by
phishing.

Last but not least, it is essential that there is effective
cooperation between authorities in different countries:
phishing is an international threat, and we know that
phishers take advantage of weaknesses in international
cooperation and often carry out their actions with a sense
of impunity10.

8 Such as Google Safe Browsing in Google Chrome and Mozilla
Firefox.
9 In the best case, it takes several minutes before a phishing campaign
is reported by a user in a large ISP feedback loop. We estimate
that the time taken to broadcast the signature for a new phishing
campaign is between 20 minutes and several hours after the start of
the campaign.
10 For example, it is not unusual for phishers to post about their exploits
(with screenshots as evidence) on their Facebook walls.

APRIL 2012

VIRUS BULLETIN www.virusbtn.com

END NOTES & NEWS

20

ADVISORY BOARD
Pavel Baudis, Alwil Software, Czech Republic

Dr Sarah Gordon, Independent research scientist, USA

Dr John Graham-Cumming, CloudFlare, UK

Shimon Gruper, NovaSpark, Israel

Dmitry Gryaznov, McAfee, USA

Joe Hartmann, Microsoft, USA

Dr Jan Hruska, Sophos, UK

Jeannette Jarvis, McAfee, USA

Jakub Kaminski, Microsoft, Australia

Eugene Kaspersky, Kaspersky Lab, Russia

Jimmy Kuo, Microsoft, USA

Chris Lewis, Spamhaus Technology, Canada

Costin Raiu, Kaspersky Lab, Romania

Péter Ször, McAfee, USA

Roger Thompson, Independent researcher, USA

Joseph Wells, Independent research scientist, USA

SUBSCRIPTION RATES
Subscription price for Virus Bulletin magazine (including

comparative reviews) for one year (12 issues):

• Single user: $175

• Corporate (turnover < $10 million): $500

• Corporate (turnover < $100 million): $1,000

• Corporate (turnover > $100 million): $2,000

• Bona fi de charities and educational institutions: $175

• Public libraries and government organizations: $500

Corporate rates include a licence for intranet publication.

Subscription price for Virus Bulletin comparative reviews

only for one year (6 VBSpam and 6 VB100 reviews):

• Comparative subscription: $100

See http://www.virusbtn.com/virusbulletin/subscriptions/ for
subscription terms and conditions.

Editorial enquiries, subscription enquiries, orders and payments:

Virus Bulletin Ltd, The Pentagon, Abingdon Science Park, Abingdon,
Oxfordshire OX14 3YP, England

Tel: +44 (0)1235 555139 Fax: +44 (0)1865 543153

Email: editorial@virusbtn.com Web: http://www.virusbtn.com/

No responsibility is assumed by the Publisher for any injury and/or
damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods,
products, instructions or ideas contained in the material herein.

This publication has been registered with the Copyright Clearance
Centre Ltd. Consent is given for copying of articles for personal or
internal use, or for personal use of specifi c clients. The consent is
given on the condition that the copier pays through the Centre the
per-copy fee stated below.

VIRUS BULLETIN © 2012 Virus Bulletin Ltd, The Pentagon, Abingdon
Science Park, Abingdon, Oxfordshire OX14 3YP, England. Tel: +44
(0)1235 555139. /2012/$0.00+2.50. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

SOURCE Boston 2012 will be held 17–19 April 2012 in Boston,
MA, USA. For further details see http://www.sourceconference.com/
boston/.

The 3rd VB ‘Securing Your Organization
in the Age of Cybercrime’ Seminar takes
place 19 April 2012 in Milton Keynes, UK.

Held in association with the MCT Faculty of The Open University,
the seminar gives IT professionals an opportunity to learn from and
interact with top security experts and take away invaluable advice
and information. See http://www.virusbtn.com/seminar/.

Infosecurity Europe 2012 takes place 24–26 April 2012 in
London, UK. See http://www.infosec.co.uk/.

The Sixth Counter-eCrime Operations Summit will be held
25–27 April 2012 in Prague, Czech Republic. For details see
http://apwg.org/events/2012_cecos.html.

TakeDownCon Dallas takes place 4–9 May 2012 in Dallas, TX,
USA. Other TakeDownCon events take place 25–30 August in
Balitmore, MD, and 1–6 December in Las Vegas, NV. For more
information about each see http://www.takedowncon.com/.

The 21st EICAR Conference takes place 7–8 May 2012 in Lisbon,
Portugal. For details see http://www.eicar.org/17-0-General-Info.html.

The CARO 2012 Workshop will be held 14–15 May 2012 near
Munich, Germany. For more information see http://2012.caro.org/.

CONFidence 2012 will take place 23–24 May 2012 in Krakow,
Poland. For details see http://2012.confi dence.org.pl/virus-bulletin.

EC-Council Summit Boston takes place 4–7 June 2012 in Boston,
MA, USA. Other summits take place 11–14 June in San Antonio,
CA, and 20–23 August in San Jose, CA. For details of each see
http://www.eccouncil.org/training/advanced_security_training/cast_
summit.aspx.

The MAAWG 25th General Meeting will be held 5–7 June 2012
in Berlin, Germany. MAAWG meetings are open to members and
invited guests only. For questions and invite requests see
http://www.maawg.org/contact_form.

NISC12 will be held 13–15 June 2012 in Cumbernauld, Scotland.
The event will concentrate on ‘The Diminishing Network Perimeter’.
For more information see http://www.nisc.org.uk/.

The 24th annual FIRST Conference takes place 17–22 June 2012
in Malta. For details see http://conference.fi rst.org/.

Black Hat USA will take place 21–26 July 2012 in Las Vegas, NV,
USA. For more information see http://www.blackhat.com/.

The 21st USENIX Security Symposium will be held 8–10 August
2012 in Bellevue, WA, USA. For more information see
http://usenix.org/events/.

VB2012 will take place 26–28 September 2012 in Dallas, TX,
USA. The conference programme will be announced shortly.
Online registration is now available. Full details can be found at
http://www.virusbtn.com/conference/vb2012/.

VB2013 will take place 2–4 October 2013 in Berlin, Germany.
Details will be revealed in due course at http://www.virusbtn.com/
conference/vb2013/. In the meantime, please address any queries to
conference@virusbtn.com.

SEMINAR

http://www.virusbtn.com/virusbulletin/subscriptions
http://www.virusbtn.com/
mailto:editorial@virusbtn.com
http://usenix.org/events/
http://www.nisc.org.uk/
http://2012.caro.org/
http://conference.first.org/
http://www.sourceconference.com/boston/
http://www.virusbtn.com/seminar/
http://www.infosec.co.uk/
http://apwg.org/events/2012_cecos.html
http://www.takedowncon.com/
http://www.eicar.org/17-0-General-Info.html
http://2012.confidence.org.pl/virus-bulletin
http://www.eccouncil.org/training/advanced_security_training/cast_summit.aspx
http://www.maawg.org/contact_form
http://www.blackhat.com/
http://www.virusbtn.com/conference/vb2012/
http://www.virusbtn.com/conference/vb2013/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

