
DECEMBER 2011

CONTENTS IN THIS ISSUE

IS
S

N
 1

74
9-

70
27

Fighting malware and spam

2 COMMENT

 All your lulz will belong to us

3 NEWS

 Happy holidays

 Call for papers: VB2012 Dallas

3 VIRUS PREVALENCE TABLE

 MALWARE ANALYSES

4 Win32/Induc.C: getting noisier in the library

9 As above, Sobelow

11 FEATURE

 Mobile botnets for smartphones: an unfolding
 catastrophe?

17 BOOK REVIEW

 Book Worm

19 END NOTES & NEWS

NEW AND IMPROVED INDUC
The Induc virus has been spreading successfully
around the world since its fi rst appearance in
2009, but back then it didn’t contain a malicious
payload. The latest variant contains a genuinely
malicious payload and additional fi le-infecting and
propagation capabilities. Robert Lipovský has the
details.
page 4

KNOCKING AT HEAVEN’S GATE
‘Heaven’s Gate’ is an undocumented feature used
by the 32-bit Windows environment when running
on 64-bit versions of Windows, which allows for the
transition between 32-bit and 64-bit code. In August
2011, we saw the fi rst virus to make use of it. Peter
Ferrie takes a close look at W32/W64.Sobelow.
page 9

BOOK CLUB
In ‘Worm: The First Digital World War’, Mark
Bowden writes about the team who worked together
to combat the Confi cker worm, focusing on some
of the principal players in the Confi cker Working
Group and on their stories over the nine months of
Confi cker’s activity. Paul Baccas reviews the book.
page 17

2 DECEMBER 2011

COMMENT

Editor: Helen Martin

Technical Editor: Morton Swimmer

Test Team Director: John Hawes

Anti-Spam Test Director: Martijn Grooten

Security Test Engineer: Simon Bates

Sales Executive: Allison Sketchley

Web Developer: Paul Hettler

Consulting Editors:
Nick FitzGerald, Independent consultant, NZ
Ian Whalley, IBM Research, USA
Richard Ford, Florida Institute of Technology, USA

ALL YOUR LULZ WILL BELONG
TO US
Attackers read – we pay attention. The recent US DoD
Cyberspace Policy Report scoped out a number of
challenges in defending critical assets and infrastructure.
In it were things we have known about for a long time
that apply to the private realm, but they hold true even for
the best-funded power structure in the world: attribution
is a pain – hiding behind the veil of anonymity on the net
is powerful, and attackers have the advantage.

We agree. The report not only admitted that attribution is
a major diffi culty even for the government’s well-funded
structure, but that addressing it properly will require years
of R&D investment. It is a problem that is not going to go
away any time soon. We already know that well-rehearsed
attackers have an advantage over defenders. Looking
at what pass as ‘Advanced’ attack tools nowadays, one
would know that the advantage is generally not in the
complexity of our technology. Instead, the advantage is in
our coordination and craft – information collected from
social networks, current events, conferences, meetings,
travel, your friends and colleagues. This is a game of
fi nding the weakest link and pounding it.

We thrive in the shadows. Attribution is one of the things
in the IT security industry that is dropped on the fl oor.
The data is accessible. The techniques to root us out
are (for the most part) available, or could be. ISPs often
choose not to cooperate with the security community,
partly because it’s easier to abide by particular sections
of their contractual obligations, partly because they
don’t have the resources or understand the impact of the

problems, and partly because some are making money
on our side. Even legitimate ISPs and DNS registrars
maintain odd boundaries. On the one hand, you’ve got
ISPs testing ‘deep packet manipulation’ on unknowing
users, and on the other, you’ve got researchers
investigating contract breaches, clearly abused IP and
domain resources, and the ISPs refusing to provide
details until they are subpoenaed by under-resourced law
enforcement contacts. We like that.

And then there are the myriad law enforcement problems
across international boundaries. But now, the FBI,
DHS, and other countries are cooperating further with
researchers and local LE around the world – take, for
example, the almost half-decade effort that culminated in
Operation Ghost Click. But we’ll see if the extraditions
complete.

It takes years of evidence gathering to build an
overwhelming case against cybercriminals and nation
state actors, and only those cases that have certain,
demonstrably concrete value can be taken on – this is
good for us. We dread organization, cooperation and
transparency on the part of the security industry and we
dislike research efforts like the Kelihos botnet takeover,
agreements like strong data breach laws, the Budapest
convention and the recent ITU-Impact work. And the
mistakes we make.

We continue to loot as we always have done: PII, CC,
intellectual property, direct transfers of hard-earned
cash, the results of research and investment and years of
negotiations. For us it is catastrophic that these incidents
are no longer hidden away under NDAs, because an
informed public can be a powerful public. Damn you
Google and your Aurora disclosure, RSA disclosure, and
SEC disclosure guidance! Damn you, the possibility of
federal breach notifi cation law for private and public
organizations! Our darkest corners are being lit.

Looking to the future, the possibilities for us to exploit
big data stores are limitless. Berico recently highlighted
architectural security concerns for Hadoop and big data
implementations at federal data centres. It pleases us to
know that data encryption carries with it many challenges,
even today. And the possibilities to exploit mobile and
‘smart’ technologies are growing. While Android malware
is on the increase, for the most part, the malware itself is
immature – much like the adware markets of 2005. Our
adware groups morphed into crimeware efforts, and even
as Windows, Java, Adobe Reader and Flash are further
hardened, we have continued to build our profi ts attacking
these platforms with darker crimeware.

We are cybercrime and cyber espionage. And we make
mistakes.

‘Attribution is one of
the things in the IT
security industry that is
dropped on the fl oor.’
Anon

3DECEMBER 2011

VIRUS BULLETIN www.virusbtn.com

NEWS
HAPPY HOLIDAYS

The members of the VB team extend their warm wishes to
all Virus Bulletin readers for a very happy holiday season
and a healthy, peaceful, safe and prosperous new year.

Clockwise from top left: Helen Martin, John Hawes,
Martijn Grooten, Simon Bates, Allison Sketchley,

Paul Hettler.

CALL FOR PAPERS: VB2012 DALLAS

Virus Bulletin is seeking
submissions from those wishing
to present papers at VB2012,
which will take place 26–28
September 2012 at the Fairmont

Dallas hotel, Dallas, TX, USA.

The conference will include a programme of 30-minute
presentations running in two concurrent streams: Technical
and Corporate. Submissions are invited on all subjects
relevant to anti-malware, anti-spam and related fi elds.
In particular, VB welcomes the submission of papers
that will provide delegates with ideas, advice and/or
practical techniques, and encourages presentations that
include practical demonstrations of techniques or new
technologies.

The deadline for submission of proposals is Friday 9 March
2012. Abstracts should be submitted via the online abstract
submission system at http://www.virusbtn.com/conference/
abstracts/.

Full details of the call for papers, including a list of topics
suggested by the attendees of VB2011, can be found at
http://www.virusbtn.com/conference/vb2012/call/.

Any queries should be addressed to editor@virusbtn.com.

DALLAS
2012

Prevalence Table – October 2011[1]

Malware Type %

Autorun Worm 8.57%

Encrypted/Obfuscated Misc 6.84%

LNK-Exploit Exploit 5.01%

Sality Virus 4.96%

Heuristic/generic Virus/worm 4.65%

Adware-misc Adware 4.58%

Zbot Trojan 3.55%

Iframe-Exploit Exploit 3.24%

Confi cker/Downadup Worm 3.04%

Crack/Keygen PU 2.99%

Virut Virus 2.97%

Agent Trojan 2.50%

Cycbot Trojan 2.35%

Delf Trojan 2.31%

Downloader-misc Trojan 2.21%

Heuristic/generic Trojan 2.20%

Slugin Virus 2.11%

AutoIt Trojan 2.05%

VB Worm 1.71%

Freeware-downloader PU 1.70%

RogueSoftware-misc Rogue 1.64%

Virtumonde/Vundo Trojan 1.64%

Dorkbot Worm 1.49%

Dropper-misc Trojan 1.33%

Bifrose/Pakes Trojan 1.32%

FakeAlert/Renos Rogue 1.29%

BHO/Toolbar-misc Adware 1.28%

Exploit-misc Exploit 1.19%

Vobfus Trojan 1.17%

Rogue-Registryfi x Rogue 1.08%

Kryptik Trojan 1.06%

Crypt Trojan 0.93%

Others [2] 15.11%

Total 100.00%

[1] Figures compiled from desktop-level detections.

[2] Readers are reminded that a complete listing is posted at
http://www.virusbtn.com/Prevalence/.

http://www.virusbtn.com/resources/malwareDirectory/prevalence/index
http://www.virusbtn.com/conference/abstracts
http://www.virusbtn.com/conference/vb2012/call/
mailto:editor@virusbtn.com

VIRUS BULLETIN www.virusbtn.com

4 DECEMBER 2011

WIN32/INDUC.C: GETTING
NOISIER IN THE LIBRARY
Robert Lipovský
ESET, Slovakia

The Delphi infector Win32/Induc is back, this time with a
genuinely malicious payload and additional fi le-infecting
and propagation capabilities.

Classic fi le-infecting viruses are not as common as they
were 15 years ago, but occasionally we do come across a
‘modern virus’. A good example of such a menace is the
polymorphic fi le infector Win32/Sality [1].

In 2009, the virus Win32/Induc.A [2], which infected
Delphi fi les at compile-time, caught our attention [3]. Apart
from the infection process itself, this variant did not contain
any other malicious payload and was considered a proof of
concept, or code in development (although it did actually
infect real systems). One of its interesting features [4] was
that it appeared to have been infl uenced by a classic 1984
paper that describes an infection implemented by planting a
‘bug’ into a C compiler [5].

About two years later, in July 2011, a new version
appeared. Win32/Induc.B featured some minor
improvements, but was actually quite similar to the fi rst
variant. However, more dramatic changes appeared in
August in the latest development of the virus,
Win32/Induc.C. In this variant the infecting code had been
modifi ed and extended, and more malicious functionality
had been added.

In this article, we will fi rst analyse Win32/Induc.C – the
most complex variant to date. Afterwards, we will briefl y
describe Induc’s evolution by outlining the differences
between this and the earlier versions of the virus.

ANALYSIS OF WIN32/INDUC.C
The fundamental characteristic of the Induc virus is that it
infects a standard Delphi library, resulting in the infection
of every application compiled in this modifi ed Delphi
development environment. In the case of Win32/Induc.C,
the virus body (which the Delphi linker includes in all
programs) is 52,736 bytes. (This does not include the
malicious code inside the infected Delphi library, which
drops and launches the virus body.)

Delphi library infection
Before analysing the virus body, let’s take a look at how
the Delphi infection works. Delphi applications link to the

fi le SysInit.dcu. This is a component of the Delphi/Kylix
Cross-Platform Runtime Library, specifi cally the System
Initialization Unit. As the name suggests, code from this
library is included in the initialization part of every Delphi
application, and this is the target of the Induc infection.
SysInit.dcu contains object code (.dcu is a Delphi Compiled
Unit) compiled from SysInit.pas. Induc modifi es this
source fi le and compiles it into the resulting SysInit.dcu
fi le. (The virus actually compiles SysInit.dcu ‘indirectly’ by
compiling System.dcu.)

Figure 1: Malicious code is inserted into SysInit.pas.

Only two lines of code are added to SysInit.pas, as the rest
is taken care of by the fi le Defi nes.inc, which is dropped by
Induc. The malicious CreateMyFile function (implemented
in Defi nes.inc) is called in _InitExe just before the
_StartExe function call.

The method for launching the virus body is quite trivial.
Defi nes.inc contains the virus body as a PE fi le as an array
of 52,736 bytes and the CreateMyFile function simply
drops the executable to the current directory with the name
‘~.exe’ and executes it.

Figure 2: The virus body stored as an array of 52,736 bytes
in Defi nes.inc.

Second fi le infection method

Win32/Induc.C features a method not present in the
previous variants for infecting any .exe fi le, not just
those compiled with Delphi. In this case, Induc acts as a
prepender virus – upon infection it attaches the original
executable under its body. The string ‘-=supernatural=-’ is
used as a delimiter to mark the beginning of the original
fi le, as well as a marker to signify that a fi le has been
infected.

MALWARE ANALYSIS 1

VIRUS BULLETIN www.virusbtn.com

5DECEMBER 2011

Induc.C also uses a simple encryption algorithm for the
original executable: xor 5, add 7. Our analysis (described
in the next section) revealed that this second .exe infection
vector is only used for infecting executables on removable
drives. This fulfi ls the purpose of distributing the virus to
other computers.

Virus body analysis

The malware code begins with a procedure containing
some curious API function calls. There are a couple of
multimedia functions (MCI Functions and PlaySoundA)
about whose purpose we can only speculate. The virus
executable tries to play a sound from its resources, called

‘my_global_sound’, and if it’s successful, the virus
terminates its execution. The execution doesn’t take this
path under normal circumstances, obviously, and the virus
samples that we have analysed are fully functional. The fi rst
possible explanation that comes to mind is anti-emulation,
or a way for the virus to defend itself from sandboxes.
Another possibility is some residual debugging (or plain
junk) code used by the author.

The main payload function is shown in Figure 5.

At the beginning of the function, there is a check as
to whether the executable has been launched with the
-autorun parameter, and one of two execution paths is
chosen. The fi rst execution of the virus is without the
parameter. Two tasks are performed in this program
branch:

• The virus ‘schedules’ itself to run with the -autorun
parameter after the next system restart. It does so
by copying itself to the Application Data\APMV\
directory with APMV.exe as its fi lename. Then a
shortcut (.lnk fi le) is crafted, pointing to this fi le with
the -autorun parameter, and placed in the Startup
folder.

• Next, Induc.C checks whether there is another
executable in the overlay (the original executable
that has been infected, as explained in the previous
section). The virus searches for the string
‘-=supernatural=-’ and then decrypts (sub 7, xor 5) the
original PE fi le if it is present, and drops it into the
current directory as ~.exe. Afterwards, Induc creates
a shortcut to this fi le (~.lnk), executes it, deletes the
shortcut, and when the original executable terminates,
the ~.exe fi le is deleted as well. (This is accomplished
by calling the DeleteFile API in a cycle until it is
successful.)

When executed with the -autorun parameter, the
main payload is delivered: infecting Delphi, infecting
executables on removable drives, and downloading other
malware onto the system. There is even a very simple
self-defence thread. Let’s take a closer look at these
functions:

• There is one shared function for going through
the directory structure that is used when infecting
both Delphi and .exe fi les. Which task to carry out
is determined by the value in the AL register. At
the beginning of the function, there is a call to the
GetLogicalDriveStrings API to enumerate the drives
on the system and, for drives that satisfy specifi c
conditions, Induc.C searches the directory structure
for fi les to infect. When infecting Delphi, the drive
type DRIVE_CDROM is excluded, and the System

Figure 3: Induc’s .exe fi le infection.

Figure 4: Executable infected with Win32/Induc.C.

VIRUS BULLETIN www.virusbtn.com

6 DECEMBER 2011

Volume Information folder must be present. For the
.exe infections, the drive types must not be DRIVE_
NO_ROOT_DIR, DRIVE_CDROM, or DRIVE_
UNKNOWN and the System Volume Information
folder must not be present. (USB sticks, for example,
satisfy these conditions.) It is interesting that the author
didn’t use the DRIVE_REMOVABLE drive type for
this purpose.

• The directory structure is traversed recursively using
the standard method of FindFirstFile and FindNextFile.

In order to locate the Delphi installation folder, Induc.C
searches for the following fi le paths:

bin\dcc32.exe
lib\sysinit.dcu
rtl\sys\system.pas

 When they are found, the Defi nes.inc fi le is dropped,
and the virus writes two lines to the rtl\sys\sysinit.pas
source fi le:
{$I Defi nes.inc}

CreateMyFile(@my_array,sizeof(my_array),‘~.exe’);

Figure 5: Main payload function of Induc.C.

VIRUS BULLETIN www.virusbtn.com

7DECEMBER 2011

 This is explained in the ‘Delphi library infection’
section.

 When the malicious modifi cations are made, Induc
compiles the libraries using the following command:
%Delphi_path%\bin\dcc32.exe –Q “%Delphi_path%\
rtl\sys\system.pas” –M –Y –Z -$D- -0

 Afterwards the compiled .dcu fi les are moved to the
correct directory and the SysInit.pas source fi le reverts
to its original form.

• The infection of .exe fi les is implemented in a separate
thread and repeats in a cycle every fi ve seconds – so
that when a USB stick is inserted into the computer,
it will become infected. When traversing the directory
structure, fi les with the .exe extension are fi rst checked
to see whether they have been infected already (by
searching for the ‘-=supernatural=-’ string). The second
condition for infection is that the fi le size must be
between 100KB and 50MB.

Figure 6: File size condition for infection.

 As described earlier, the virus appends the original
executable to its body after encrypting it with xor 5,
add 7. The virus also takes the icon of the executable.

• Another thread is dedicated to the downloader feature
– the main payload of Induc.C. We’ll look at it more
closely in the next section, as the techniques used are
quite unusual.

• The last of the three CreateThread calls implements
a very primitive self-defence mechanism. Every 0.5
seconds, the virus checks whether the Task Manager
is running, and if it is, the virus terminates itself.
This way, the user will not see the malicious process
in the list of running processes. The method is very
simple, and the author could instead have chosen
rootkit techniques to hide the virus process from
process listing. However, avoiding the use of rootkit
techniques allows the malware to look a lot less
suspicious and since this is a virus and will probably
be executed again, this trick works (almost) as well.
The API functions used for the process enumeration
are the standard CreateToolhelp32Snapshot,
Process32First, etc.

The downloader
The downloader thread contains a loop and a 15-minute
sleep before it tries to download fi les from the Internet.
The virus body contains three hard-coded URLs, which
are also encrypted using the simple xor 5, add 7 ‘cipher’.
The same encryption is also used for obfuscating the names
of WinINet functions. Now things get really interesting.
The URLs point to JPEG images – user avatars on three
different discussion forums.

You might be wondering: why on earth is a virus
downloading avatars? This is a trick that the virus author
uses to dynamically store the URLs of other malware to
download and execute. If we take a look inside the JPEG
fi le, this is what we see:

Figure 7: Encrypted URL hidden in downloaded image.

An encrypted URL is stored at the beginning of the JPEG
fi le (where EXIF data is stored). The start of this fi eld is
indicated by the ‘x’ character. Following that is a WORD
value which contains the length of the encrypted URL,
and then the URL itself. The encryption algorithm is – you
guessed it – xor 5, add 7, but the string is also encoded with
Base64.

The virus then downloads the executable at that address to
a randomly named fi le in the Temp directory and executes
it, deleting it after it terminates. One particular piece of
malware that Induc.C downloads is a password stealer
that ESET detects as Win32/PSW.Delf.NQS. This has the
capability to extract passwords from various applications,
including FTP clients.

A couple of additional details on the downloader procedure:

• In the main cycle with the 15-minute delay, the virus
attempts to download a fi le from the fi rst URL and tries
the other URLs if that one fails.

VIRUS BULLETIN www.virusbtn.com

8 DECEMBER 2011

• Before downloading the JPEG fi le, Induc fi rst
checks its timestamp and compares it with the one
it has recorded before. This way, the virus avoids
downloading the same malware repeatedly.

• Induc verifi es that the downloaded avatar is really a
JPEG fi le:

Figure 8: JPEG fi le type check.

• When downloading the avatar, the following URL
parameter string is added to the HTTP request:
?uid=%id%&l=%random%

 This simple feature enables the virus operator to track
the infected computers – effectively creating a botnet.

Induc.C uses three supporting fi les:

• %virus_fi lename%.id – stores a (random) ID of the
infected computer

• %virus_fi lename%.dat – stores an encrypted timestamp
of the avatar

• %virus_fi lename%.fl ag – marks that Delphi has already
been infected.

DIFFERENCES IN INDUC.A
There are several major differences between the fi rst variant
of the Induc virus and its latest iteration:

• The Delphi infection didn’t take place in the SysInit.pas
library, but in SysConst.pas.

• Delphi versions 4 to 7 were affected.

• The Delphi installation directory was read from the
Windows registry, not by searching the hard drive.

• All the virus code was in plain Delphi and was written
to the infected SysConst.pas, and was clearly visible for
analysis (after some beautifi cation).

• There was no payload at all, apart from the Delphi
infection itself. Induc.A didn’t contain the .exe
infection capability introduced by Induc.C.

Even though Induc.A received a lot of attention two years
ago, it is now apparent that it was only an Alpha version of
the virus.

DIFFERENCES IN INDUC.B
Induc.B appears to have been an improved version of
Induc.A. The functionality was the same as before – there

was no payload, only the infection of Delphi through
SysConst.pas. However, a few anti-debugging tricks were
added in this version, and the author made the code slightly
harder to analyse by encrypting it. Some unused functions
were also present – apparently the virus writer was
experimenting.

CONCLUSION

The Induc virus has been spreading successfully around the
world since its fi rst appearance in 2009 [4], even though
at that time it did not contain a malicious payload. Now,
however, the author appears to have passed the Alpha
testing stage and the virus poses a real threat to computer
users – even though it is not polymorphic and its code is
rather simple. Following the trend of modern malware, it
acts as a vector to download and execute more malicious
code on the infected system, and incorporates botnet
capabilities.

I wonder what Induc.D will look like…

(ESET’s detection statistics for the Induc family can be
found in [6] and a technical write-up of Induc.C is given in
[7].)

REFERENCES

[1] ESET. Global Threat Report August 2011.
http://go.eset.com/us/resources/threat-trends/
Global_Threat_Trends_August_2011.pdf.

[2] ESET Threat Encyclopaedia: Win32/Induc.A.
http://www.eset.eu/encyclopaedia/win32-induc-a-
virus?lng=en.

[3] Abrams, R. The Retro Virus. ESET Threat Blog
August 2009. http://blog.eset.com/2009/08/19/
the-retro-virus.

[4] Bortnik, S.; Borghello, C.; Harley, D. W32/Induc.A
FAQ. ESET Threat Blog. August 2009.
http://blog.eset.com/2009/08/23/w32induc-a-faq.

[5] Thompson, K. Refl ections on Trusting Trust
(1984). Communications of the ACM Vol. 27,
No. 8.

[6] Lipovský, R. The Induc Virus is back! ESET Threat
Blog. September 2011. http://blog.eset.com/2011/
09/14/the-induc-virus-is-back.

[7] ESET Threat Encyclopaedia: Win32/Induc.C.
http://www.eset.eu/encyclopaedia/win32-induc-c-
virus-lg-2?lng=en.

http://go.eset.com/us/resources/threat-trends/Global_Threat_Trends_August_2011.pdf
http://www.eset.eu/encyclopaedia/win32-induc-a-virus?lng=en
http://blog.eset.com/2009/08/19/the-retro-virus
http://blog.eset.com/2009/08/23/w32induc-a-faq
http://blog.eset.com/2011/09/14/the-induc-virus-is-back
http://www.eset.eu/encyclopaedia/win32-induc-c-virus-lg-2?lng=en

VIRUS BULLETIN www.virusbtn.com

9DECEMBER 2011

AS ABOVE, SOBELOW
Peter Ferrie
Microsoft USA

In June 2009, an interesting article describing ‘Heaven’s
Gate’ appeared on a popular VX website. This is an
undocumented feature used by the 32-bit Windows
environment when running on 64-bit versions of Windows,
which allows for the transition between 32-bit and 64-bit
code. In August 2011, we saw the fi rst virus to make use of
it: W32/W64.Sobelow.

32-BIT PLATFORM
In infected 32-bit fi les, the virus begins by identifying
the platform. It does this by checking the value of the
GS selector. On 32-bit versions of Windows, the value of
the GS selector is always zero and in this case the virus
immediately passes control to the host. On 64-bit versions,
the GS selector is always non-zero. If a 64-bit version of
Windows is detected, the virus aligns the stack to a multiple
of eight bytes, if necessary (because the 64-bit environment
requires a 64-bit aligned stack, just as the 32-bit
environment requires a 32-bit aligned stack). Then the virus
uses a tricky method to jump to 64-bit mode.

A jump to 64-bit mode requires the ‘magic’ 64-bit gate
selector (‘Heaven’s Gate’) and the offset that serves as the
location from which to resume execution. Since the size of
the selector is only 16 bits, that leaves 16 bits unused on
a 32-bit platform. The virus takes advantage of this with a
single instruction that combines two required elements. The
instruction pushes a value onto the stack that corresponds
to the selector, and also carries the opcode for a far return
instruction. The virus then performs a near call to that far
return instruction (which implicitly saves the offset on the
stack). The far return passes through the gate, causing the
switch to 64-bit mode, and resumes execution at the fi rst
instruction after the call instruction – all in a completely
position-independent manner. This is a very effi cient way to
do it.

CURRENT DIRECTORY
Now the virus is in 64-bit mode, but there is still one small
change that must be made to the environment to make
it usable: the current directory must be set. On 64-bit
versions of Windows, the 32-bit environment exists as a
sub-environment of the 64-bit environment, and a transition
to the kernel often requires a traversal through the 64-bit
environment to get there. As a result, many of the common
data structures exist in two places: one used by the 32-bit

mode, and the other used by the 64-bit mode. The current
directory is one of these – but since the 32-bit environment
can query and set the current directory without invoking the
kernel, the 64-bit version is unused in normal circumstances.

Though it is unused in 32-bit mode, the 64-bit version
of the current directory would be used in 64-bit mode if
related 64-bit APIs were called, and it is not undefi ned – it
is always set to ‘%windir%’. However, using this directory
would pose a problem for the virus because ‘%windir%’
is no longer a great location for fi nding fi les to infect.
Furthermore, there is no 64-bit version of kernel32.dll in
this mode (and it cannot be loaded), so there is no typical
user-mode API to change it. In any case, the 32-bit
version of the API alters the 32-bit data structure. The
64-bit version of the API is available only to native 64-bit
applications. Even if the API were available, the virus
would need to know its current location from the 32-bit
mode in order to make it the same in the 64-bit mode,
which would normally require calling an API from the
32-bit mode.

Instead of all of that, the virus digs straight into the
RTL_USER_PROCESS_PARAMETERS structure for the
32-bit and 64-bit modes, thus avoiding the need for any
APIs at all. This structure holds the pointer to the current
directory. However, instead of simply copying from one to
the other, as we might expect, the virus heads straight to an
undocumented location nearby and copies the pointer there
instead. It turns out that this undocumented location is used
by the ntdll RtlDosPathNameToRelativeNtPathName_U()
function while resolving the current directory, despite the
existence of the offi cial location. This can lead to interesting
results if they somehow become unsynchronized – a query
of the current directory might return a location other than
the actual current directory, along with all of the mischief
that implies.

At this point, we reach the start of the ‘really’ native 64-bit
code, and the entrypoint for an infected 64-bit fi le.

64-BIT PLATFORM
In an infected 64-bit fi le, the fi rst instruction constructs
a pointer to the host entrypoint for execution later. In an
infected 32-bit fi le, the fi rst instruction at this location
constructs a pointer to the same far return instruction that
was used to enter 64-bit mode. When called from 64-bit
mode with the proper parameters (the regular 32-bit code
selector and the offset that serves as the location from which
to resume execution, as before), it can be used to leave
64-bit mode.

The next instruction saves a value from an undocumented
location in memory. In this case, the value corresponds to

MALWARE ANALYSIS 2

VIRUS BULLETIN www.virusbtn.com

10 DECEMBER 2011

the stack pointer in the 64-bit context structure that is active
when an exception occurs. Whenever an exception occurs,
the context is fi lled in to allow it to resume afterwards, and
a mode switch occurs if necessary. However, in order to
prevent recursive calls into the code that performs a mode
transition, the value in the undocumented stack location is
set to zero.

Since the virus uses exceptions intentionally and intercepts
them when they occur, on return to the host, the value in
that location would always be zero. If an exception occurred
later in the host code (intentional or not), then the exception
handler dispatcher in Windows would see that the saved
stack pointer was invalid and terminate the application. The
virus makes sure this value is restored before transferring
control to the host.

IMPORT-ANT DETAILS
The virus resolves the address of ntdll.dll by walking some
data structures in a way that is compatible with Windows 7.
As noted above, the 64-bit version of kernel32.dll
is not available in this mode, so the virus restricts itself to
functions that are available from ntdll.dll, to the extent that
no other DLLs are loaded. This includes the System File
Checker DLL, so the virus is not able to avoid protected
fi les that meet the infection criteria.

The virus uses the CRC32 method to avoid the need to
store the strings, and stores the results onto the stack.
The checksums are sorted alphabetically according to
the strings they represent, allowing the virus to perform a
single pass of the export table in order to resolve all of the
APIs required. After resolving the APIs, the virus begins a
search for fi les. The virus searches for fi les in the current
directory and all subdirectories, using a linked list instead
of a recursive function. It examines every fi le that is found,
regardless of its extension.

The virus author likes to combine many push instructions
for multiple API calls, perhaps as some kind of
optimization, but perhaps just to make the code more
diffi cult to analyse. Fortunately, due to some details
related to the calling convention that Microsoft chose
to implement on the 64-bit platform, this is mostly no
longer possible. Despite that, we still have the following
monstrosity:

push rdi

push rsi

push rax

push rcx

push rsp

pop rax

push rbp

push rbp

push rbp

push rsp

pop rdi

push rbp

push rbp

push rbp

push rax

push ...

push OBJECT_ATTRIBUTES_size

push rsp

pop rsi

push ...

push rbp

sub esp, 20h

mov r9, rsp

mov r8, rsi

mov edx, FILE_WRITE_ATTRIBUTES | SYNCHRONIZE

push rdi

pop rcx

TOUCH AND GO

When a fi le is found that meets the infection criteria, it will
be infected. Files are considered candidates for infection
if they are Windows Portable Executable (PE) format,
character mode or GUI applications for the Intel 386+ CPU
or the AMD64-compatible CPU, with a non-zero entrypoint
if they are DLLs. The fi les must have no digital certifi cates,
and they must have no bytes outside of the image. The latter
condition is the infection marker. Interestingly, despite its
reliance on exceptions during the infection process, the
virus does not check that exceptions are allowed by the host
– the NO_SEH (No Structured Exception Handling) fl ag
is not cleared in the header. If the fl ag is not cleared, then
Windows will terminate the application at the moment that
an exception occurs.

INFECTION

When infecting a fi le, the virus removes the read-only
attribute, if it is present. The virus resizes the fi le by a
random amount in the range of 4–6KB in addition to the
size of the virus. This additional data will exist outside of
the image, and serve as the infection marker. The virus
registers a Vectored Exception Handler to protect against
problems, which also intercepts the end of infection
exception.

If relocation data is present at the end of the fi le, the virus
will move the data to a larger offset in the fi le, and place
its code in the gap that has been created. If no relocation

VIRUS BULLETIN www.virusbtn.com

11DECEMBER 2011

data is present at the end of the fi le, the virus code will
be placed here. The virus checks for the presence of
relocation data by checking a fl ag in the PE header.
However, this method is unreliable because Windows
ignores the fl ag, and relies instead on the base relocation
table data directory entry.

The virus increases the physical size of the last section of
the fi le by the size of the virus code, then aligns the result.
If the virtual size of the last section is smaller than its new
physical size, then the virus sets the virtual size to be equal
to the physical size, and increases and aligns the size of the
image to compensate for the change.

It also changes the attributes of the last section to include
the executable and writable bits. The executable bit is set
in order to allow the program to run if DEP is enabled,
and the writable bit is set because the virus needs to save
the current stack pointer in its body in order to intercept
exceptions.

The virus alters the host entrypoint to point to the last
section, to the code that is appropriate to the fi le format. The
virus saves the difference between the current entrypoint
and the original entrypoint. This allows a transfer of control
in a position-independent manner, and allows it to work
on fi les that have Address Space Layout Randomization
enabled.

When the infection routine has fi nished, the virus
recalculates the checksum, if necessary, and then forces
an exception to occur. This is an elegant way to reduce
the code size, in addition to functioning as an effective
anti-debugging method. Since the virus has protected
itself against errors by installing a Vectored Exception
Handler, the simulation of an error condition results in the
execution of a common block of code to exit a routine.
This avoids the need for separate handlers for successful
and unsuccessful code completion. The common code
restores the fi le date and time, and the read-only attribute
if it was set previously. Then the virus searches for another
fi le to infect.

When there are no more fi les to be found, the virus restores
the stack pointer and undocumented value, and then returns
to the saved entrypoint. For infected 32-bit fi les, the stack
is further restored to account for any alignment that was
performed originally.

THE GATE TO ...
Code that passes through ‘Heaven’s Gate’ is currently
immune to most, if not all, anti-malware emulators, but
the act of using the gate in this way is suspicious in itself.
Perhaps that will be enough to stop the technique before it
becomes widespread.

MOBILE BOTNETS FOR
SMARTPHONES: AN UNFOLDING
CATASTROPHE?1

Hasan Ijaz, Muddassar Farooq
nexGIN RC, Pakistan

Syed Ali Khayam
NUST, Pakistan

The number of users subscribing to the voice, Internet
and messaging services of cellular networks is increasing
exponentially worldwide. The development of cellular
botnets, therefore, poses a serious threat because of
their potential to incapacitate and bring down cellular
networks. These bots may launch SMS fl oods leading to
DoS attacks, carry out identity theft, send SMS spam,
download malicious executables and carry out illegitimate
fi nancial transactions. Since the core of a cellular network
processes an enormous volume of traffi c, the application
of traditional security measures such as fi rewalls is not
practical – thus posing unique challenges for detecting such
mobile bots. In this paper we present a fully functional
cellular botnet for Symbian smartphones with an effi cient
and effective command and control centre. Using a formal
model, we show that with a zombie army of just 66
compromised cell phones, a botnet can incapacitate a cell
site (BTS tower), resulting in complete denial of service
to voice and SMS traffi c. In a preliminary study, by using
numbers in the phonebook of a mobile phone our bot sent
an install service message to 150 users – 90 of whom
downloaded the (fake, non-malicious) binary and installed
it on their phones.

1. CELLULAR BOTNETS DEMYSTIFIED
In the last decade, cellular mobile networks have caused a
paradigm shift in the world of computing. Contemporary
2.5/3/4G cellular networks have been deployed worldwide
and now form the core for offering integrated services of
voice, text and data at reasonably high data rates. To use
these services effectively, mobile phones have evolved
into full-blown computing platforms which offer data
services and applications comparable to those on desktop
computers2. As a result, they are becoming an attractive
target for imposters and intruders. McAfee recently reported
a more than 100% increase in malware, phishing and DoS
attacks against mobile devices since 2006 [3]. On a similar

1 This work is supported by the Pakistan National ICT R&D Fund.
2 In 2008, the number of mobile phones in the world was estimated at
4.1 billion [1], while the estimated number of computers was just one
billion [2].

FEATURE

VIRUS BULLETIN www.virusbtn.com

12 DECEMBER 2011

note, a recent paper by Traynor et al. [4] used analytical and
simulation results to highlight the signifi cant damage that
can be caused by a cellular botnet; i.e. a botnet comprising
mobile phones as zombies.

In this paper, we report our experiences of developing
SymBot3, a fully functional botnet of mobile smartphones
for the popular Symbian OS4. Our research effort is inspired
by the Morris worm, one of the fi rst publicly known
computer worms [6]. While this worm opened the door
for other malware which continues to plague the Internet
to this day, many experts feel that the Morris worm did
some good in that it exposed the inherently vulnerable
designs of computer operating systems and the Internet and
catalysed a serious security-centric rethinking of OS and
networking design philosophies. Using our experiences of
developing SymBot as a baseline, we argue that a similar
reality check is required to enhance the security of mobile
devices and networks.

2. BACKGROUND & RELATED WORK
In the last decade, botnets have emerged as one of the
greatest threats to IP network availability and information
confi dentiality. As a result, detection of botnet activity has
received signifi cant attention in network security research
[7, 8].

While botnets on the Internet are well studied, there is
surprisingly little research literature on botnets for mobile
devices and networks. There has been some research on
how wireless links can be saturated to cause denial of
service or how the open functionality of certain cellular
services can help in a DoS attack [9]. However, to the
best of our knowledge, there is only one paper on cellular
botnets in which the zombies comprise mobile phones
inside the cellular network. Traynor et al. [4] showed that
botnets of as few as 11,750 phones can cause a reduction
of throughput of more than 90% to area-code sized regions
supported by most currently deployed systems.

In this paper, we provide a proof-of-concept
implementation of a cellular bot – SymBot – for Symbian
smartphones which is capable of launching prominent
IP-based attacks.

The following section provides background on the Symbian
OS and its development SDK, with details of the structures,
facilities and API calls that were used to develop a cellular
bot.

3 The architecture of SymBot is generic and can be realized on other
platforms (such as Android) and networks (3G).
4 Symbian is reported to have had a 36.4% share of the mobile phone
market in 2009, which is almost twice the market share of the second
biggest phone vendor (Samsung) [5].

3. EXPLOITING SYMBIAN OS FOR SYMBOT
DEVELOPMENT
In this section, we fi rst provide an overview of the Symbian
OS security framework. This is followed by details of how
we implemented different attacks and communication
modules in SymBot.

3.1 Symbian security framework
A number of security measures are adopted in the Symbian
OS that deny installation of malicious applications. A
developer has to explicitly state the desired capabilities
of its application and hard-code them in the header of the
executable image. The developer must also specify the
system API calls that the application will use to achieve the
desired functionality; this information is provided in a .mmp
fi le. With this information, the developer submits the source
code of his application and .mmp fi le to the Symbian Signed
website5. This site issues a code signing certifi cate to the
developer which he subsequently uses to create an install
SIS package. The available signing options and capabilities
are shown in Figure 1.

Using the SIS package, a developer can install his
application on a Symbian smartphone with the help of an
install server. The install server allows or disallows the
installation by checking the capabilities required by the
binaries, comparing them with the confi guration of the
device, and verifying the signature of the SIS package
which contains all the binaries, resource fi les and the
metadata required for installation. Once the application is
started, the header of the executable image is loaded into
memory and the loader associates the new process with the
capabilities specifi ed in the header. The capabilities are set
only once and cannot be changed at runtime [10].

If an application makes a system call which is incompatible
with its capabilities, Symbian OS does not allow the call to
execute. This is the main security premise adopted by the
Symbian OS to disallow installation of malware on-the-fl y.
However, the top left corner of Figure 1 shows capabilities
(in shaded blocks) that can be given to an application through
self-signing; i.e. there is no need to get a code signing
certifi cate from the Symbian website. We now discuss
the architecture of our SymBot, emphasizing how these
capabilities can be misused to perform different exploits.

3.2 Architecture of SymBot
We have developed a GUI application – Currency Converter
– which converts a given amount from one currency to
another. Since the application needs to connect to the

5 http://www.symbiansigned.com/.

http://www.symbiansigned.com/

VIRUS BULLETIN www.virusbtn.com

13DECEMBER 2011

Internet to receive daily foreign exchange rates, a user
can easily be tricked into granting the application access
to NetworkServices. The application is designed as a
self-signed, multi-threaded process. Once the user launches
the application, the bot starts working in the background.
The main modules of SymBot are:

1. Central processing module

2. Watchdog module

3. Threat-invoking module

4. Encryption module

5. Communication module.

The remainder of this section describes each of these
components.

Central processing module (CPM)
This module handles the fl ow of data and decision making
for the bot. After infection, the CPM opens a TCP port
and an SMS socket connection. Currently, the phone
number of the C&C is hard-coded in the bot. The central

processing module queries its location from the location
update module. On receiving the location information, it
is forwarded to the encryption module and an encrypted
message is sent to the C&C. Depending on the commands,
the CPM invokes the following sub-modules:

1. Location update. SymBot retrieves the GPS location
of a phone using the CLocation API call defi ned in
lbs.lib, which is enabled by the Location capability.
Using this API call, SymBot periodically sends the
location of the infected mobile phone to its C&C
centre. The C&C aggregates the information to
compute the number of zombies in a given site and
if the number exceeds a threshold value, it has the
capability to launch an effective DDos attack.

2. Financial data stealing. Most of the cellular
operators in Pakistan allow users to share their
credit via an SMS [11]: users send a template SMS
containing a recipient phone number and amount
of credit, and the credit is automatically transferred
to the recipient. When the command for stealing
fi nancial data is received, this module checks the
network operator to which the user is subscribed.

Figure 1: Symbian Signed grid [10].

VIRUS BULLETIN www.virusbtn.com

14 DECEMBER 2011

This is done by checking the default SMS message
centre. Depending on the service provider, the
template SMS is constructed and sent to the
communication module. In order to evade detection,
transfer could happen through a chain of zombies
between the victim and the bot master.

3. Personal information stealing. SymBot accesses
the phonebook using the CContactDataBase API
call in the cntmodel.lib library. This API call is
enabled by the ReadUserData and WriteUserData
capabilities. Using this API call, an attacker
can also access the additional information for
contacts in the phonebook: name, email address,
home phone numbers, etc. SymBot sends the
complete set of information to the C&C, as this
can be sold to telemarketing and advertisement
companies. Moreover, the contact information
could be exploited by scammers to launch phishing
attacks on phonebook contacts by acting as bank
employees, promotion managers for cellular
operators, or other persons of trust. Interested
readers can fi nd information related to closure of a
major online cellular phone directory at [12].

Watchdog module
The watchdog module stores the date and time of the attack,
which is given to it by the CPM. It runs a thread which
continuously matches the current system date and time with
the attack date and time and accordingly commands the
threat-invoking module to launch attacks.

Threat-invoking module
This module launches SMS spam or a DoS attack depending
on the commands received from the watchdog module. The
spam generator basically creates SMS messages containing
a link to the website on which the bot SIS fi le is placed.
(According to a survey of 2,150 UK mobile phone users
[13], two thirds of the users received SMS spam, and 38%
of the users received a text containing a link to another site.)
Thus SMS spam can also use social engineering to trick a
user into installing malicious applications. The DoS attack
module launches an SMS fl ood on the network which is
explained in detail in Section 4.

Encryption module
The C&C defi nes the mode of communication with the
bot. If the C&C demands encrypted communication, the
encryption module sends a binary SMS in Packet Data
Unit (PDU) mode. The payload of the PDU contains binary

information, e.g. an image, encrypted text, etc. A binary
SMS can hold 140 bytes of data, allowing any block cipher
– like AES or DES – to be applied to it. By using encrypted
SMSs SymBot can hide its communication from a sniffi ng
IDS which may be deployed to monitor the activities of
potentially malicious applications. Using a 256-bit AES key,
this module encrypts its data and sends it back to the main
module in the following format: Encrypt(Length of Message |
Message | Padding Bytes). The length of the message is used
so that the receiver can extract only the original message
without the padding that was used to enable encryption.

Communication module
The communication module handles the exchange of
information to/from the networks outside the GSM. Most
of the time, the communication activities are related to the
exchange of information with the C&C.

Using the RSocketServ and RSocket API calls – defi ned in
esock.lib and enabled by the NetworkSevices capability –
the communication module opens a TCP or UDP port.
This port can be utilized by the bot master to send
malicious binaries containing platform security hacks – the
latest platform security hacks are reported on
www.symbianfreak.com. Once a mobile phone is
compromised, the attacker can install malicious applications
without the need for signature certifi cates. These applications
can launch attacks on the critical core network entities (e.g.
Home Location Register (HLR), Visited Location Register
(VLR), SMS gateway, etc.) through meta commands [4].

An effective botnet must have the ability to exchange
information among an army of zombies in a stealthy fashion.
The communication module does this by sending SMSs
through sockets, which are enabled by the RSocketServ,
TSmsAddr, CSmsBuffer and RSmsSocketWriteStream API
calls defi ned in esock.lib, smsu.lib, smu.lib and estor.lib,
respectively. This approach has two inherent advantages:
(1) communication takes place under the hood without
alerting the user or raising any alarm, and (2) cheaper
communication ensures that the user’s credit depletes
gradually, once again avoiding raising any alarm.

MMS is another option available to realize intra
botnet communication. To send MMSs, we use the
CMmsClientMtm API calls defi ned in mmscli.lib. Using
this feature, a bot can download command fi les embedded
in JPEG images and share them with other bots, making
detection of malicious activity a signifi cant challenge.
However, MMS services are relatively expensive, so
SymBot does not use them.

Table 1 shows a summary of SymBot’s exploits, associated
API calls and libraries.

VIRUS BULLETIN www.virusbtn.com

15DECEMBER 2011

Exploit Library
used

Capabilities
required

Signing

Stealing
personal info

cntmodel.lib ReadUserData SelfSigned

Opening
proxies

esock.lib NetworkServices SelfSigned

Botnet
communication

smu.lib NetworkServices SelfSigned

Financial data
stealing

smcm.lib NetworkServices SelfSigned

Spamming smcm.lib NetworkServices SelfSigned

Location
tracking

lbs.lib Location SelfSigned

Table 1: SymBot exploits.

3.3 Command and control mechanism
An effi cient command and control structure is
fundamentally important for botnet operation. This
requirement for effi ciency is amplifi ed in cellular
environments where the data rates are typically much lower
than on the Internet. Thus a cellular bot master has to devise
intelligent methods to exchange information with the bots
without being detected. Most of the methods used to disrupt
IP botnets focus on detecting the command and control
structure and disrupting the communication. The two
well-known C&C mechanisms for IP botnets are P2P and
centralized. For SymBot, we have developed a centralized
C&C structure for three reasons:

1. In a P2P C&C mechanism, bots have to
continuously search their neighbours for the search
keys and command fi les. Moreover, the bots have
to send keep-alive messages throughout the botnet.
For cellular bots, such communication will lead
to prohibitively high overheads. In particular, as
the number of zombies in the botnet increases,
the number of concurrent fl ows for the keep-alive
messages and the searching mechanism will cause
signifi cant unwanted competition for scarce cellular
resources which are not designed for concurrent
fl ows [14].

2. Likewise, when the bots are submitting stolen
information from the compromised mobile phones,
the data fl owing from all the neighbours would
cause the smartphone memory to be depleted very
quickly. This would not only alert the user but also
lead to detection of the malware.

3. DDoS attacks cannot be successfully carried out
with a P2P structure because estimation of the

number of active bots within a cell using P2P
communication has a very high overhead.

We have developed a generic C&C architecture which
communicates with the bot through a GSM/CDMA/UMTS
modem connected to a computer. In this way the C&C is
placed in the cellular network. It has two advantages: (1) the
C&C can utilize all the communication methods described
earlier, and (2) the limitations faced by smartphones are
eliminated by the use of a computer.

The C&C builds and maintains a vector space in which it
saves the location of all bots connected to it. The columns
of the vector space represent the sites in the city and the
rows represent the number of bots in each site. Once the
C&C fi nds that it has the necessary population in each site
to launch an effective attack, it sends the attack commands
to all bots.

4. DISTRIBUTED DENIAL OF SERVICE
ATTACK
We have used existing models by Traynor [9] and enhanced
them to calculate the number of zombies required to
saturate the control channels of a GSM network, which
results in denial of voice and messages services. Using our
enhanced model, we found that an army of 66 zombies is
required to launch DDoS at a site (BTS). Our analysis was
based on the core network of Telenor in Islamabad that
consists of 40 sites and 300,000 users. We discovered that
we would need just 3,000 zombies (just 0.1% of the total
subscribers) to launch a complete denial of service in the
metropolitan area of Islamabad.

Using the model, we concluded (for the sake of brevity, we
skip the calculations) that with approximately 22 bots in
a single sector, and with 66 bots in a single cell, our GSM
botnet could incapacitate the cellular core network for
legitimate voice and text messaging services. Our botnet is
location-aware and hence can trigger the DDoS attack once
it fi nds 66 bots in a single sector. It is interesting to consider
the fact that during the daytime, the universities and offi ces
are crowded with people. In such a scenario, the botmaster
could easily recruit the required number of zombies to
launch a successful DDoS attack.

4.1 Preliminary user study of infection
propagation

While designing our user study, we had to be mindful of the
security and privacy of the subjects. To this end, we created
a benign version of our currency conversion application
and uploaded it on a website. The authors’ mobile phones
were then used to send SMS service messages, containing

VIRUS BULLETIN www.virusbtn.com

16 DECEMBER 2011

the URL of the website, to the phone contacts, inviting
them to download and install this useful application for
free. This SMS message was sent to a total of 150 contacts.
Interestingly, 90 of them downloaded and installed the
benign application on their mobile phones. This preliminary
study demonstrates that an alarming infection rate of 60%
could be achieved even using this rudimentary infection/
distribution strategy.

We then asked the users some questions about the choice they
made. Based on their answers, we conclude that, although
few of these users would download and install a piece of
software referred to them through an Internet email, the same
message on a mobile phone SMS can achieve a much higher
infection rate. This is mainly because people still think that
cellular networks and mobile phones are inherently ‘safe’
from malware; as a consequence, they are less wary about
installing new applications on mobile phones. This prevalent
mindset results in a very effective and easy distribution
mechanism for malware which can use trivial SMS and
MMS communication media to infect smartphones.

5. CONCLUSION AND FUTURE WORK

In this paper, we have presented our experiences of
developing a fully functional botnet for the Symbian OS.
We have shown that most of the malicious activities of a
botnet can easily be implemented on the Symbian platform.
The underlying communication media also provides the
capacity to remotely control the botnet and to launch
crippling attacks on the cellular infrastructure. Our analytical
and experimental models have shown that 66 zombie
smartphones can incapacitate a cell site through voice and
SMS DoS attacks. We have also revealed some alarming
infection rates that can be achieved in cellular networks
using trivial distribution mechanisms like SMS and MMS.
We believe that our fi ndings will challenge the existing belief
(or fallacy): mobile phones are inherently safe because of a
reliable core of cellular networks. As a result, we hope that
security countermeasures will receive their due attention.

REFERENCES
[1] ITU Corporate Annual Report 2008.

http://www.itu.int/osg/csd/stratplan/AR2008 web.
pdf.

[2] Gartner Forecast: PC Installed Base, Worldwide,
2004-2012. http://www.gartner.com/DisplayDocum
ent?id=644708.

[3] McAfee Mobile Security Report 2009.
http://www.mcafee.com/us/resources/reports/rp-
mobile-security-2009.pdf.

[4] Traynor, P.; Lin, M.; Ongtang, M.; Rao, V.; Jaeger,
T.; McDaniel, P.; La Porta, T. On cellular botnets:
Measuring the impact of malicious devices on a
cellular network core. Proceedings of the 16th ACM
Conference on Computer and Communications
security, 2009, pp. 223–234.

[5] De La Vergne, H.; Milanesi, C.; Zimmermann,
A.; Cozza, R.; Huy Nguyen, T.; Gupta, A.; Lu,
C.K. Competitive Landscape: Mobile Devices,
Worldwide, 4Q09 and 2009.

[6] Spafford, E. The Internet worm program:
an analysis. ACM SIGCOMM Computer
Communication Review, vol. 19, no. 1, p. 57, 1989.

[7] Gu, G.; Zhang, J.; Lee, W. BotSnier: Detecting
botnet command and control channels in network
traffi c. Proceedings of the 15th Annual Network and
Distributed System Security Symposium (NDSS),
2008.

[8] Gu, G.; Porras, P.; Yegneswaran, V.; Fong, M.; Lee,
W. Bothunter: Detecting malware infection through
ids-driven dialog correlations. Proceedings of the
16th USENIX Security Symposium, 2007, pp.
167–182.

[9] Enck, W.; Traynor, P.; McDaniel, P.; La Porta, T.
Exploiting open functionality in SMS-capable
cellular networks. Proceedings of the 12th ACM
Conference on Computer and Communications
Security, 2005.

[10] Mueller, B. From 0 To 0Day On Symbian:
Finding Low Level Vulnerabilities On Symbian
Smartphones. 2009. https://www.sec-consult.com/
fi les/SEC_Consult_Vulnerability_Lab_Pwning_
Symbian_V1.03_PUBLIC.pdf.

[11] http://hulchul.urdupoint.com/HC/topic/151931-
mobilink-telenor-ufone-warid-paktel-balance-
share/.

[12] Working Cell Phone Number Directory Worries
Privacy Advocate. http://www.pr-inside.com/
working-cell-phone-number-directory-worries-
r1550881.htm.

[13] Savvas, A. Two thirds of Britons say they have been
victims of mobile spam.
http://www.computerweekly.com/news/
2240085822/Two-thirds-of-Britons-say-they-have-
been-victims-of-mobile-spam.

[14] Traynor, P.; McDaniel, P.; La Porta, T.; et al. On
attack causality in internet-connected cellular
networks. Proceedings of the 16th USENIX
Security Symposium, 2007, pp. 307–322.

http://www.itu.int/osg/csd/stratplan/AR2008 web.pdf
http://www.gartner.com/DisplayDocument?id=644708
http://www.mcafee.com/us/resources/reports/rp-mobile-security-2009.pdf
https://www.sec-consult.com/files/SEC_Consult_Vulnerability_Lab_Pwning_Symbian_V1.03_PUBLIC.pdf
http://hulchul.urdupoint.com/HC/topic/151931-mobilink-telenor-ufone-warid-paktel-balance-share/
http://www.pr-inside.com/working-cell-phone-number-directory-worries-r1550881.htm
http://www.computerweekly.com/news/2240085822/Two-thirds-of-Britons-say-they-have-been-victims-of-mobile-spam

VIRUS BULLETIN www.virusbtn.com

17DECEMBER 2011

BOOK WORM
Paul Baccas
Sophos, UK

Title: Worm: The First Digital
World War

Author: Mark Bowden

Publisher: Atlantic Monthly
Press

ISBN: 978-0-8021-1983-4

‘The bad guys are on the
Confi cker Working Group
email lists.’ Gunter Ollmann
(paraphrased).

I read this book on the fl ight
from London to Barcelona for
VB2011, and when I heard

the above quote in the fi nal panel discussion at the end of
the conference I was left reeling. The book is about the
team who worked together to combat the Confi cker worm
and focuses on some of the main players in the Confi cker
Working Group.

The author – who has a journalistic background and has
written several other journalistic history books, most
notably Black Hawk Down – treads lightly over the
technical aspects of the worm and concentrates more on
the history and the group dynamics of the multidisciplined
group, or cabal, that countered Confi cker.

According to the author the principal members of the
Confi cker cabal were: TJ Campana, John Crain, Andre
DiMino, Rodney Joffe, Chris Lee, Andre Ludwig, Ramses
Martinez, Phil Porras, Hassen Saidi, Paul Twomey, Paul
Vixie and Rick Wesson. The book uncovers their stories
over the nine months of Confi cker’s activity.

THE CHAPTERS

The 11 chapters are self-contained and can be read
separately but really ought to be read in order. The fi rst
chapter, ‘Zero’, begins in November 2008 when Confi cker
fi rst popped up on the radar of malware researchers and no
anti-malware solution providers were able to detect it. This
chapter introduces one of the main protagonists, Phil Porras,
and it is here that the book is most technical, explaining in
general ways about bots, IPs and some malware history.

Then we segue into the second chapter, ‘MS08-067’,
in which we are introduced to TJ Campana, the PM of
security at the MS Digital Crimes Unit. Here, the book

details how Microsoft needed to release an out-of-band
patch for the RPC vulnerability a month before Confi cker
appeared.

Next, in ‘Remote Thread Injection’, we encounter Hassen
Saidi and the packing and encryption of the Confi cker
worm. A description is included here of the Domain
Generating Algorithm which was used by the worm to
connect to 250 pseudorandom websites a day. This chapter
also analyses the name ‘Confi cker’ – a mixture of the letters
from ‘traffi cconverter.biz’ (a website Confi cker.A tried to
contact) and a German expletive.

In ‘An Ocean of Suckers’, we are treated to a potted history
of computer worms: from Brunner’s The Shockwave
Rider through the Morris or RTM worm to Code Red and
Blaster. The author looks at how Confi cker combined
the techniques used by these worms with some botnet
technology.

In ‘The X-Men’ we see the more formal beginnings of
the Confi cker Working Group, aka the Confi cker cabal,
where the group starts to coalesce and with the rest of the
world waking up to the fact that something was lurking on
the Internet in December 2008. The book is riddled with
references to the Marvel Comics creation from which this
chapter takes its title, with the cabal as the superheroes and
the malware authors the agents of evil.

The book follows the threads of the story and the chapters
overlap chronologically. In ‘Digital Detectives’ we are
introduced to more of the ‘X-Men’ with some history of the
evolution of Confi cker from Gimmiv, one of its precursors.
This chapter also explains how researchers in different
locations and from different companies were already
sinkholing Confi cker domains.

In ‘A Note from the Trenches’ the arrival of the B variant is
detailed, with a listing of some of the differences between
the two versions. The cabal was sinkholing A variant
domains, mainly via the use of Amazon S3 and personal
credit cards, but the B variant was a game changer, adding
more TLDs. An estimate of the cost of pre-registering
the URLs involved in both variants is given as $100,000
per month. The cabal began to contact registrars. All this
happened against a backdrop of press awareness and the
faltering interest of governmental agencies.

At the beginning of 2009, most of the members of the
cabal met at a conference in Atlanta, Georgia. In ‘Another
Huge Win’, the conference is discussed with the ‘win’
referring to the fact that ICANN agreed to help sinkhole
the Confi cker domains. It was in this meeting that
contacting China, where a large proportion of the infection
existed, was discussed. This rather formal reaching out
was trumped by the fact that one of the cabal members was

BOOK REVIEW

VIRUS BULLETIN www.virusbtn.com

18 DECEMBER 2011

already sharing the data from the mailing lists with the
Chinese. This seeming betrayal of the group caused a split
that permeates the rest of the book.

The split, which happened when the group was on a
high and thought that the worm had been beaten, was
compounded by the arrival of the next variant. Whether
by chance or design the Confi cker authors knew when to
‘put the boot in’. The big difference was that instead of
250 domain names this variant could poll 50,000. Rumours
abounded that the Confi cker author was actually a member
of the cabal:

‘This is starting to stink of an inside job.’

‘The people behind this are us.’

Suggestions were made that tackling this piece of malware
was too much for a group of loosely affi liated researchers,
and that they should get the government involved. In
‘Mr. Joffe goes to Washington’, the author describes how
Rodney Joffe attempted to do just that (and in doing so
trod on a few toes within US CERT), but despite presenting
the problems to many government agencies he left
disillusioned after a week.

The last two chapters, ‘Cybarmageddon’ and ‘April Fools’,
work up to and beyond the malware’s 1 April trigger date.
This date turned out to be a damp squib thanks to the efforts
of the cabal and other parts of the anti-malware industry in
successfully combating it.

While we will never know why Confi cker was created or
what it originally meant to do, the sophistication of the code
and the complexity of the effort needed to combat it was
staggering. Was this a criminal gang? Or a governmental
or quasi-governmental weapons test? Whatever it was, it
highlighted the importance of working together and trusting
one another.

VERDICT

The book is not a technical analysis of Confi cker, though
it may add to your knowledge. It is an analysis of the
personalities and social interactions of some of the movers
and shakers behind the Confi cker Working Group.

The book is very readable; I was annoyed when my fl ight
arrived 15 minutes earlier than scheduled because I was
left with 10 pages to read! The individual chapters are each
self-contained stories, which means that you do not have
to read the book all in one go. The style is journalistic and
the high quality writing is what one would expect from
an author with Bowden’s credentials. I would be more
than happy to fi nd this book under the Christmas tree this
holiday season.

‘Securing your Organization in
the Age of Cybercrime’

A one-day seminar in association
with the MCT Faculty of

The Open University

- Are your systems SECURE?

- Is your organization’s data at
RISK?

- Are your users your greatest
THREAT?

- What’s the real DANGER?

Learn from top security experts
about the latest threats, strategies
and solutions for protecting your

organization’s data.

For more details:

www.virusbtn.com/seminar
or call 01235 555139

SEMINAR
19 April 2012
Milton Keynes, UK

http://www.virusbtn.com/seminar

Takedowncon 2 – Mobile and Wireless Security will be held 2–7
December 2011 in Las Vegas, NV, USA. EC-Council’s new technical
IT security conference series aims to bring industry professionals
together to promote knowledge sharing, collaboration and social
networking. See http://www.takedowncon.com/ for more details.

Black Hat Abu Dhabi takes place 12–15 December 2011 in
Abu Dhabi. Registration for the event is now open. For full details
see http://www.blackhat.com/.

FloCon 2012 will be held 9–12 January 2012 in Austin, TX, USA.
For more information see http://www.fl ocon.org/.

RSA Conference 2012 will be held 27 February to 2 March 2012
in San Francisco, CA, USA. Registration is now open with an early
bird rate available until 18 November. For full details see
http://www.rsaconference.com/events/2012/usa/index.htm.

Black Hat Europe takes place 14–16 March 2012 in Amsterdam,
The Netherlands. For details see http://www.blackhat.com/.

SOURCE Boston 2012 will be held 17–19 April 2012 in Boston,
MA, USA. For further details see http://www.sourceconference.com/
boston/.

The 3rd VB ‘Securing Your Organization in
the Age of Cybercrime’ Seminar takes place
19 April 2012 in Milton Keynes, UK. Held
in association with the MCT Faculty of The

Open University, the seminar gives IT professionals an opportunity
to learn from and interact with top security experts and take away
invaluable advice and information on the latest threats, strategies
and solutions for protecting their organizations. For details see
http://www.virusbtn.com/seminar/.

Infosecurity Europe 2012 takes place 24–26 April 2012 in
London, UK. See http://www.infosec.co.uk/.

The 21st EICAR Conference takes place 7–8 May 2012 in Lisbon,
Portugal. The theme for this event will be ‘“Cyber attacks” – myths
and reality in contemporary context’. For full details see
http://www.eicar.org/17-0-General-Info.html.

NISC12 will be held 13–15 June 2012 in Cumbernauld, Scotland.
The event will concentrate on ‘The Diminishing Network Perimeter’.
For more information see http://www.nisc.org.uk/.

The 24th annual FIRST Conference takes place 17–22 June 2012
in Malta. The theme of this year’s event is ‘Security is not an island’.
For details see http://conference.fi rst.org/.

Black Hat USA will take place 21–26 July 2012 in Las Vegas, NV,
USA. For details see http://www.blackhat.com/.

The 21st USENIX Security Symposium will be held 8–10 August
2012 in Bellevue, WA, USA. See http://usenix.org/events/.

VB2012 will take place 26–28 September 2012
in Dallas, TX, USA. More details will be revealed
in due course at http://www.virusbtn.com/
conference/vb2012/. In the meantime, please

address any queries to conference@virusbtn.com.

VB2013 will take place 2–4 October 2013 in
Berlin, Germany. More details will be revealed
in due course at http://www.virusbtn.com/
conference/vb2013/. In the meantime, please

address any queries to conference@virusbtn.com.

END NOTES & NEWS
ADVISORY BOARD
Pavel Baudis, Alwil Software, Czech Republic

Dr Sarah Gordon, Independent research scientist, USA

Dr John Graham-Cumming, Causata, UK

Shimon Gruper, NovaSpark, Israel

Dmitry Gryaznov, McAfee, USA

Joe Hartmann, Microsoft, USA

Dr Jan Hruska, Sophos, UK

Jeannette Jarvis, McAfee, USA

Jakub Kaminski, Microsoft, Australia

Eugene Kaspersky, Kaspersky Lab, Russia

Jimmy Kuo, Microsoft, USA

Chris Lewis, Spamhaus Technology, Canada

Costin Raiu, Kaspersky Lab, Romania

Péter Ször, McAfee, USA

Roger Thompson, Independent researcher, USA

Joseph Wells, Independent research scientist, USA

SUBSCRIPTION RATES
Subscription price for Virus Bulletin magazine (including

comparative reviews) for one year (12 issues):

• Single user: $175

• Corporate (turnover < $10 million): $500

• Corporate (turnover < $100 million): $1,000

• Corporate (turnover > $100 million): $2,000

• Bona fi de charities and educational institutions: $175

• Public libraries and government organizations: $500

Corporate rates include a licence for intranet publication.

Subscription price for Virus Bulletin comparative reviews

only for one year (6 VBSpam and 6 VB100 reviews):

• Comparative subscription: $100

See http://www.virusbtn.com/virusbulletin/subscriptions/ for
subscription terms and conditions.

Editorial enquiries, subscription enquiries, orders and payments:

Virus Bulletin Ltd, The Pentagon, Abingdon Science Park, Abingdon,
Oxfordshire OX14 3YP, England

Tel: +44 (0)1235 555139 Fax: +44 (0)1865 543153

Email: editorial@virusbtn.com Web: http://www.virusbtn.com/

No responsibility is assumed by the Publisher for any injury and/or
damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods,
products, instructions or ideas contained in the material herein.

This publication has been registered with the Copyright Clearance
Centre Ltd. Consent is given for copying of articles for personal or
internal use, or for personal use of specifi c clients. The consent is
given on the condition that the copier pays through the Centre the
per-copy fee stated below.

VIRUS BULLETIN © 2011 Virus Bulletin Ltd, The Pentagon, Abingdon
Science Park, Abingdon, Oxfordshire OX14 3YP, England. Tel: +44
(0)1235 555139. /2011/$0.00+2.50. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

VIRUS BULLETIN www.virusbtn.com

19DECEMBER 2011

DALLAS
2012

SEMINAR

2013
BERLIN

http://www.virusbtn.com/seminar
http://www.takedowncon.com/
http://www.blackhat.com/
http://www.flocon.org/
http://www.rsaconference.com/events/2012/usa/index.htm
http://www.blackhat.com/
http://www.sourceconference.com/boston/
http://www.infosec.co.uk
http://www.eicar.org/17-0-General-Info.html
http://www.nisc.org.uk/
http://conference.first.org/
http://www.blackhat.com/
http://usenix.org/events
http://www.virusbtn.com/conference/vb2012
mailto:conference@virusbtn.com
mailto:conference@virusbtn.com
http://www.virusbtn.com/conference/vb2013
http://www.virusbtn.com/virusbulletin/subscriptions
http://www.virusbtn.com/
mailto:editorial@virusbtn.com

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

