
SEPTEMBER 2010

CONTENTS IN THIS ISSUE

IS
S

N
 1

74
9-

70
27

Fighting malware and spam

2 COMMENT

 Breaking the habit

3 NEWS

 ISP in hot water with ICO

 RAP rap?

3 VIRUS PREVALENCE TABLE

 MALWARE ANALYSES

4 The missing LNK

6 Injection as a way of life

11 Chim Chymine: a lucky sweep?

12 TECHNICAL FEATURE

 Anti-unpacker tricks – part twelve

17 FEATURE

 What’s the deal with sender authentication?
 Part 4

22 COMPARATIVE REVIEW

 VBSpam comparative review

30 END NOTES & NEWS

EYE OPENER
‘Why doesn’t Windows tell me when a very
important signature has been tampered with?’ asks
Roel Schouwenberg.
page 2

DUBIOUS LNKS
LNK fi les are everywhere in Windows – so
ubiquitous that they are rarely even recognized
for what they are. While, LNK fi les do not
generally pose a direct threat, there are the LNK
fi les produced by W32/Stuxnet, which allow the
execution of arbitrary code without the need for any
user interaction. Peter Ferrie has the details.
page 4

VBSPAM CERTIFICATION
A new spam feed and an expansion
of the ham corpus ensured that
anti-spam products in this month’s
test were tested to their full abilities.
Martijn Grooten has the results.
page 22

VERIFIED

2 SEPTEMBER 2010

COMMENT

Editor: Helen Martin

Technical Editor: Morton Swimmer

Test Team Director: John Hawes

Anti-Spam Test Director: Martijn Grooten

Security Test Engineer: Simon Bates

Sales Executive: Allison Sketchley

Consulting Editors:
Nick FitzGerald, Independent consultant, NZ
Ian Whalley, IBM Research, USA
Richard Ford, Florida Institute of Technology, USA

BREAKING THE HABIT
It may seem like an age ago but it was only in July that the
world was made aware of the W32/Stuxnet malware. In a
nutshell, Stuxnet is an extremely sophisticated worm that
targets SCADA environments while exploiting a zero-day
vulnerability in all recent versions of Microsoft’s Windows
operating system. To top it all off, the attacks appeared to
target Iranian systems, with by far the majority of incident
reports coming from Iran. All of a sudden, the most
off-the-wall conspiracy theories began to seem plausible.

Stuxnet, much akin to the Google Aurora attack, is
playing a crucial role in a new sense of user awareness
that seems to be developing this year. Aurora and
Stuxnet are tangible cases for different kinds of
cyber-espionage. These ready-made examples will
certainly help to make it clear to the people who aren’t
being attacked – or perhaps who aren’t aware they’re
being attacked – that they need proper protection.

In our industry, we tend to be sceptical about user
education – and rightfully so. And while it’s defi nitely
possible to put up shields against Aurora-type attacks,
I’m extremely doubtful that this is the case with an
attack of Stuxnet’s class. Let’s face it, with the exception
of exfi ltration and botnet infrastructure, it’s hard to see
where the Stuxnet authors could have done better. There
are many lessons to be learned from Stuxnet, but there’s
one which clearly stands out. There’s an extremely
broken model of trust.

With the huge volume of malware we’ve been seeing
in the last couple of years, the anti-malware industry is
relying more and more on automation. That our current
automation is less than perfect is something I pointed out a
year ago in reference to W32/Induc.A (see VB, September
2009, p.2). W32/Induc basically infects the Delphi
compiler so that any fi le created with it contains the virus.
What we ended up with were many different applications
that had contained the virus for quite a long while. A
number of these applications were even digitally signed.

Which brings us back to Stuxnet. The Stuxnet authors
stole VeriSign-issued certifi cates from two reputable
companies – RealTek and JMicron. That’s a double attack
against reputation. Firstly, it’s no easy task to obtain a
certifi cate from VeriSign. Secondly, there’s a long history
of trust in the fi les originating from these companies.

Certifi cate-stealing malware is far from new. The Zeus
trojan has been doing it since 2006. The malware authors
have never needed to use those certifi cates over the years
but that is slowly changing. Stuxnet proves this.

Does this mean we must completely rethink
whitelisting? No, but it will burden us with having to
contact companies directly and whitelisting by the hash
of fi les rather than the hash of digital signatures.

Even beyond Stuxnet, there are other certifi cate-related
issues to worry about. At the beginning of August
this year, there was a report from our friends at Trend
Micro that a variant of Zeus was using a Kaspersky Lab
certifi cate. After the Stuxnet news, it certainly received
a lot of attention. But was it really worth the attention?
The creator of this particular variant had simply copied
a digital signature belonging to one of Kaspersky Lab’s
tools and pasted it into his Zeus variant.

Now this is where it gets really confusing. The security
community places enormous value on digital signatures.
Microsoft Windows, for instance, will tell you when a
valid signature has been found in a fi le and who that
certifi cate belongs to. It will ask you if you trust that
particular publisher. Why, then, doesn’t Windows tell
me that someone has tampered with that very important
signature? Windows will generally treat a fi le with a
tampered or corrupted signature as if it weren’t signed
in the fi rst place and will not warn the user in any way.
That’s an extremely broken model of trust

The issue I’m describing is far from new. But if Aurora
can serve as an eye-opener to Fortune 500 companies,
making them realise that they really shouldn’t have been
running Internet Explorer 6 in 2009, then let’s have
Stuxnet serve indirectly as an eye-opener to Microsoft,
making the company realize that it shouldn’t allow
execution of fi les that have tampered signatures.

‘Why doesn’t
Windows tell me
when that very
important signature
has been tampered
with?’
Roel Schowenberg,
Kaspersky Lab

3SEPTEMBER 2010

VIRUS BULLETIN www.virusbtn.com

NEWS
ISP IN HOT WATER WITH ICO
The UK’s largest ISP TalkTalk has been rapped by the
Information Commissioner’s Offi ce (ICO) over its covert
trials of a new anti-malware system. The initial phase
of TalkTalk’s new security measures involved logging
every URL visited by each of its customers, then visiting
each web page to scan for threats. Master blacklists and
whitelists were then compiled from the information
gathered. When the system is fully operational (which is
expected to be later in the year and will be on an opt-in
basis) the anti-malware service will use the blacklists to
prevent its users from visiting malicious web pages.

TalkTalk began its data gathering in July this year, but
failed to notify its users that it would be logging their
web-browsing movements in this way. It was this lack of
communication that provoked the ire of the ICO. In a letter
to TalkTalk the Information Commissioner Christopher
Graham wrote: ‘I am concerned that the trial was
undertaken without fi rst informing those affected that it was
taking place... You will be aware that compliance with one
of the underlying principles of data protection legislation
relies on providing individuals with information about how
and why their information will be used.’

Just a couple of years ago UK telecoms company BT found
itself in hot water after undertaking a test with Phorm – a
company which used deep packet inspection at the ISP
level to gather information on subscribers’ web-surfi ng
habits and subsequently deliver tailored advertising content.
Although Phorm claimed that it had removed any personally
identifi able information from the content it gathered, there
was widespread outrage that the test had gone ahead without
the knowledge or consent of BT’s user-base. Indeed, the two
companies narrowly avoided criminal investigation after
campaigners compiled a dossier of evidence against the two
companies and presented it to the City of London Police.

TalkTalk has claimed that its technology and the trials it
has undertaken comply with privacy laws – the ICO has
requested documents to support these claims. David Evans
of the ICO will give a presentation on data protection,
privacy and security, outlining the ICO’s view, at the VB
Seminar later this year (in central London, 25 November
2010 – for details see http://www.virusbtn.com/seminar/).

RAP RAP?
Symantec’s latest headline-hitting (possibly for the
wrong reasons) publicity drive involves a collaboration
between the security fi rm and US rap artist Snoop Dogg
who, together, are running a competition to fi nd the best
cybercrime-themed rap. VB challenges its readers to
compose a rap about the VB RAP testing – budding rappers
can upload their entries at http://www.hackiswack.com/.

Prevalence Table – July 2010[1]

Malware Type %

Confi cker/Downadup Worm 10.70%

Autorun Worm 8.24%

FakeAlert/Renos Rogue AV 6.97%

Agent Trojan 5.76%

Heuristic/generic Virus/worm 4.03%

VB Worm 3.74%

Ircbot Worm 3.64%

OnlineGames Trojan 3.49%

Adware-misc Adware 3.27%

Downloader-misc Trojan 3.12%

Mdrop Trojan 2.98%

Injector Trojan 2.60%

Crypt Trojan 2.32%

Zbot Trojan 2.28%

Virut Virus 2.14%

Heuristic/generic Trojan 2.11%

Delf Trojan 1.86%

Alureon Trojan 1.79%

AutoIt Trojan 1.72%

Exploit-misc Exploit 1.58%

Iframe Exploit 1.51%

Hotbar Adware 1.36%

Virtumonde/Vundo Trojan 1.28%

Small Trojan 1.26%

Sality Virus 1.23%

Potentially Unwanted-misc PU 1.08%

Tanatos Worm 0.96%

Bifrose/Pakes Trojan 0.77%

Hiloti Trojan 0.77%

Dropper-misc Trojan 0.75%

Redir Trojan 0.74%

FakeAV-Misc Rogue AV 0.73%

Others[1] 13.23%

Total 100.00%

[1] Figures compiled from desktop-level detections.

[2] Readers are reminded that a complete listing is posted at
http://www.virusbtn.com/Prevalence/.

VIRUS BULLETIN www.virusbtn.com

4 SEPTEMBER 2010

THE MISSING LNK
Peter Ferrie
Microsoft, USA

LNK fi les are everywhere in Windows, so ubiquitous that
they are rarely even recognized for what they are: complex
structures containing pointers to Portable Executable fi les
and, ultimately, executable code.

Some of the icons that appear in the Control Panel are visible
because of LNK fi les. Many of the entries in the Start Menu
and on the Desktop are LNK fi les. In most cases, the LNK
references a fi le, and specifi es an icon to display. When an
application is used to view the LNK fi le, such as browsing a
folder using Windows Explorer, the Windows shell parses the
format and determines what to display. LNKs are not limited
to just fi les, though. They can be shortcuts to drives such
as a shared network location or a fl oppy disk (as used by
the ‘Send To’ menu, for example). The ‘Recent File List’ in
Microsoft Offi ce 2007 applications is composed of LNK fi les.

Overall, LNK fi les do not pose a direct threat. Of course,
some LNK fi les can point to malicious executables that run
when the LNK fi le is clicked, and some LNK fi les can point
to harmless fi les and yet still perform malicious actions
(such as when the command prompt is executed, but given
the instructions to delete some fi les). Some LNK fi les can
themselves be malicious by virtue of their contents (such
as the self-executing LNK fi le virus from several years ago,
where the LNK fi le carried an actual Portable Executable
fi le, and executed it in a rather roundabout fashion). Then
there are the LNK fi les produced by W32/Stuxnet, which
allow the execution of arbitrary code without the need for
any user interaction (other than browsing to a folder that
contains such a fi le, with some further clarifi cation below).

LNKS TO THE PAST
The LNK fi le format has existed since the days of
Windows 95, but it was not documented publicly by
Microsoft until 2009, and even then it was incomplete
and interrupted. After the Stuxnet malware caused quite
some interest in the LNK fi le format, the documentation
was temporarily removed from the Microsoft website, and
then re-released as ‘new’. However, the only difference
between the two versions is some formatting, and the dates
of referenced external fi les. The two versions are equally
useless as far as determining how to parse the LNK fi les
produced by Stuxnet goes, because the section that is being
exploited is not documented in either version.

So, in order to understand what Stuxnet did with LNK fi les,
we fi rst have to understand what is inside a LNK fi le.

LNK LAYER

A LNK fi le begins with a 0x4c-byte-long header. The fi rst
fi eld of the header is the ‘HeaderSize’, which specifi es the
size of the header, including itself. It must contain the value
0x4c. The next fi eld is the ‘LinkCLSID’ (though it resolves
to a registry key called ‘Shortcut’). The CLSID must be
‘{00021401-0000-0000-C000-000000000046}’. That’s
the extent of the constant bytes for the header, as far as
Stuxnet-style fi les go.

There is a ‘LinkFlags’ fi eld, which is supposed to specify
information about the type of link and the presence of
optional structures. Unfortunately, all but two of the fl ags
can be set arbitrarily, despite the fact that the corresponding
structures are missing from the fi le. Only one bit is required
to be set, and that is the HasLinkTargetIDList. When the bit
is set, it specifi es that the fi le is saved with an item ID list,
and the corresponding ‘LinkTargetIDList’ structure follows
the ShellLinkHeader structure immediately.

One important-sounding bit in the LinkFlags fi eld is the
‘IsUnicode’ bit. This is supposed to be set if a fi le contains
Unicode strings, and the documentation states that the bit
‘SHOULD’ (in upper case in the documentation) be set.
However, the ‘should’ apparently refers to the fact that LNK
fi les should be in Unicode format, as opposed to ANSI
format. Unfortunately, the bit is entirely useless because
a fi le can have the bit set and still be in ANSI format.
Alternatively, the bit can be clear and yet the fi le can still be
in Unicode format. The way to determine the format of the
strings will be described below.

The two bits that cannot be set arbitrarily are
‘HasExpString’ and ‘HasDarwinID’. If either bit is set,
then the corresponding structure must be present in the fi le,
but the presence of either of them prevents the use of the
structure that the Stuxnet LNK fi les require.

CUFF LNKS

The LinkTargetIDList structure is an ‘IDList’ structure which
contains a collection of ‘ItemID’ structures. In the case of a
Stuxnet LNK fi le, there are three ItemID structures. Each of
these contains a size fi eld, a type fi eld, and a data fi eld.

The fi rst ItemID structure in a Stuxnet LNK fi le contains
the type and CLSID for the ‘My Computer’ or ‘Computer’
element (the specifi c name depends on the version of
Windows, but the name is not relevant). The type fi eld is
two bytes long, but only one of those bytes is checked by
Windows. The type must be 0x1f, and the CLSID must
be ‘{20D04FE0-3AEA-1069-A2D8-08002B30309D}’.
Although the value in the size fi eld is most commonly 0x14,
the size of the structure is not a constant and the size of the

MALWARE ANALYSIS 1

VIRUS BULLETIN www.virusbtn.com

5SEPTEMBER 2010

structure can be increased in a hand-crafted fi le (though
Stuxnet does not do this), by adding additional data after
the CLSID fi eld. Then the value in the size fi eld can be
increased accordingly. This alteration is known to break
at least one publicly available scanning tool. I attempted
to contact the author of the tool regarding this attack, but
received no reply, so the tool remains unchanged.

The second ItemID structure in a Stuxnet LNK fi le contains
the type and CLSID for the ‘Control Panel’ or ‘All Control
Panel Items’ element (again, the specifi c name depends
on the version of Windows, but is not relevant). As before,
the type fi eld is two bytes long, but only one of those
bytes is checked by Windows. The type must be 0x2e, and
the CLSID must be ‘{21EC2020-3AEA-1069-A2DD-
08002B30309D}’. Again, the size of the structure is not
constant. The presence of the Control Panel CLSID leads us
to the fl aw that Stuxnet exploits.

The third ItemID structure in a Stuxnet LNK fi le contains
an undocumented (to the point that I don’t even know
the correct name) ‘Control Panel applet’ structure, which
contains a size fi eld, an icon index, some truly ‘spare’ fi elds,
as well as a path to the fi le that holds the icon to display.
This is where the magic happens. When the Control Panel
is displayed, Windows queries the corresponding LNK fi les
for the icons to display. Based on the behaviour of the patch
(see below), this was intended to apply only to registered
Control Panel applets (that is, the registry key ‘Software\
Microsoft\Windows\CurrentVersion\Control Panel\Cpls’,
under either ‘HKCU’ or ‘HKLM’, contains subkeys or
values that name them), and ideally they would have been
placed in the ‘%windir%\system32’ directory. Unfortunately,
neither of these conditions was enforced, allowing LNK fi les
to access fi les in arbitrary locations in any context in which
an icon would be displayed. This is why we can reproduce
the problem by simply ‘browsing a folder using Windows
Explorer’. The referenced fi les are Windows DLLs, usually
with a suffi x of ‘.CPL’, and Windows will load them in order
to retrieve the address of an exported function which is used
to display the icon. Of course, in the case of Stuxnet, control
is gained when Windows loads the fi le, and thus no exported
function is necessary. Furthermore, no warning is given
when the named fi le is loaded.

To complicate matters further, the Control Panel applet
structure comes in two forms, as noted above: Unicode and
ANSI. The correct format can be determined by examining
the values in particular locations within the structure. For the
Unicode format, the six bytes beginning at offset 8 must be
‘00 00 00 00 00 6A’. Ten bytes later is the path in Unicode
characters. This is the only format that Stuxnet LNK fi les use.
For the ANSI format, the four bytes beginning at offset 8 can
have almost any value (see below), including all zeroes, and
which, if the following two bytes are not checked, might lead

someone to assume that the Unicode format is in use. For the
ANSI format, four bytes later is the path in ANSI characters.

D-LNKS
As far as the path goes, the typical case is to have a drive
letter, directory and fi lename. Of course, this ties the fi le to
a specifi c drive confi guration. That would be fi ne if the drive
letter were constant, but in the case of Stuxnet, there is no
guarantee of that. Specifi cally, Stuxnet places LNK fi les on
USB removable storage media (among other places). Since
the drive letter is assigned dynamically, because the order of
device insertion can vary, Stuxnet needed a way to refer to
the fi le regardless of the drive letter. This was achieved by
querying the registry for the hardware ID. The result looks
like ‘\\.\STORAGE#RemovableMedia#7&xxxxxxxx&0&
RM#{53f5630d-b6bf-11d0-94f2-00a0c91efb8b}\<fi le>’,
where the ‘x’s are a unique value specifi c to the device, and
the CLSID is the Device Class GUID for a volume.

Furthermore, the path does not need to look like either of
these examples. The path can be in UNC form, allowing a
fi le to be loaded from a remote location, such as a network
share within a corporation. However, since the WebDAV
redirector is also running by default, the location can be very
remote – that is, anywhere on the Internet. This variation is
used by the exploit module in the Metasploit framework.

WEAK LNKS
One virus writer posted a message to a forum claiming
that anti-virus researchers ‘read docs instead of code’ and
that his post contained the ‘*real* format for LNK fi les’.
While his description was mostly correct (even including
the two bits that cannot be set, though he did not name
them and did not describe why they cannot be used),
and he did fi nd something that I did not know (the use of
a relative path without a drive letter was not supported
by my detection at the time), he did manage to get two
things wrong. The two things that were wrong result in
essentially ‘random’ execution of the LNK fi les. Perhaps
he didn’t read the code carefully enough. Or perhaps that
was the intended result.

The fi rst wrong thing relates to the ‘unused’ bytes that live
in the fi eld before the path to the fi le. Two of those bytes
are actually a separate fi eld that is supposed to contain
the size of the path. This is used as a relative pointer to
the description text, and it is used by Windows. If the
fi eld contains a value that is too large (that is, beyond
the end of the LNK fi le), then an exception might occur
while Windows attempts to copy the description string.
In that case, the LNK fi le will not be parsed any further.
That might sound potentially interesting to an attacker,

VIRUS BULLETIN www.virusbtn.com

6 SEPTEMBER 2010

since obviously there is no check that the pointer is valid.
However, what lies beyond the end of the fi le is essentially
random data, and the string copy operation has a limited
length, so it cannot be exploited. The value is not supposed
to be zero, either, since that would cause the fi lename to
become the ‘description’, but such a situation causes no
ill effects.

The second thing the virus writer got wrong relates to the
non-terminated string. If the termination bytes are removed,
then when the LNK fi le is loaded, whatever happened to
be in memory at the corresponding location will be used
instead. The bytes there might not be zero, resulting in a
string that appears to be longer than it was supposed to
be. Again, that might sound potentially interesting to an
attacker, but as before, what lies beyond the end of the fi le
is essentially random data, and the string copy operation has
a limited length, so it cannot be exploited. A further result
is that the check for the existence of the fi le is likely to fail,
since those random bytes will become part of the fi lename
that is examined.

STRONG LNKS

Microsoft patched the behaviour to check for CPL fi les in
several locations, and a list is made of the fi les found for use
later. The locations are the ‘MMCPL’ key in ‘control.ini’
(which is redirected to the registry, but the location is not
constant), ‘%windir%\system32’ and ‘Software\Microsoft\
Windows\CurrentVersion\Control Panel\CPLs’ under
both ‘HKLM’ and ‘HKCU’. Any CPL fi le that is found
is excluded if it is marked as ‘don’t load’ according to its
registry key.

Once the list has been made, the fi le referenced by the LNK
fi le is checked against each entry in the list. If the fi le is
not in the list, then Windows makes a change to the loading
method, to force the use of a default system icon instead
of the requested icon. This also prevents the referenced fi le
from being loaded. Internally, the path is converted to the
form ‘<path>,<icon>,<description>’, where <icon> is zero
in Stuxnet LNK fi les. However, if the fi le is not found in the
list, then the path is converted to ‘<path>,-1,<description>’.
Prior to creating the list, the original path is checked for the
presence of a comma, in order to prevent a path that has the
internal form prior to conversion, since that could have been
used to defeat the other checks in the patch.

CONCLUSION

So now we know what the Stuxnet LNK fi les do. As for
what else Stuxnet does, the details would fi ll a conference
paper (or two!).

INJECTION AS A WAY OF LIFE
Raul Alvarez
Fortinet, USA

Memory-residency is employed by malware to ensure that
it is always active on the system. Techniques have been
tried and tested; the good old DOS infector used Terminate
and Stay Resident – TSR (using the infamous INT 21h
function 31h) – and another well-known technique is
code injection. Injecting code into a process is not a new
technology, but it is still used by most prevalent malware
today.

The main idea behind code injection is that the malware
embeds itself into a running process to maintain residency.
Well, of course we already know that. Behavioural analysis
can tell us that a certain application has been infected;
we use different tools to determine if a thread has been
injected into a certain process. And lots of malware analysis
online will tell us that a given piece of malware injects its
code into a running process. But little has been said about
the actual code-by-code steps that malware uses to inject
its code.

This article will dissect two examples of recent prevalent
malware and show how they inject their code into a running
process. We will start with a variant of Virut, detected by
Fortinet as W32/Virut.CE, which uses Zw*** APIs to
implement code injection. Then we will explain how a
variant of OnlineGames embeds its code into the
Explorer.exe process.

PART I: VIRUT, VIRUT AND VIRUT

Virut’s code injection starts by modifying the access token’s
privilege; the access token contains the security information
for a logon session. Every time a user logs on, the system
generates an access token which is also used by every
process and application executed by the current user.

Virut uses the ZwOpenProcessToken API in order to
get the handle for the access token of the user. After
acquiring the handle of the token, Virut resolves the
address of the LookupPrivilegeValueA API by using the
LoadLibrary and GetProcAddress APIs. Virut calls for
the LookupPrivilegeValueA API to get the locally unique
identifi er (LUID) for SeDebugPrivilege, also known as
SE_DEBUG_NAME; this is a privilege required for
memory modifi cation of a given process, which Virut
needs to freely inject its code. This is immediately
followed by a call to the ZwAdjustPrivilegesToken API,
which adjusts the privilege of the access token based on
the new LUID.

MALWARE ANALYSIS 2

VIRUS BULLETIN www.virusbtn.com

7SEPTEMBER 2010

Setting the privilege of the access token to
SeDebugPrivilege enables Virut to perform code injection
with ease; the malware doesn’t need to concern itself with
any issue regarding the opening of a process, writing to it,
hooking code in its shared memory space, creating threads
and executing instructions. Once the privilege is set to the
proper attributes, Virut proceeds to enumerate the running
processes.

Browsing active processes
Virut is a polymorphic virus, and after decryption and
resolving the necessary APIs we can see that most variants
don’t go far from their intended purpose.

A typical way to enumerate the active processes in a given
system starts with a call to the CreateToolhelp32Snapshot
API; Virut calls the CreateToolhelp32Snapshot API to
get a snapshot of the system. Using this API, a piece of
malware can get a snapshot of every module, thread, heap
and process, all depending on the dwFlags parameter
supplied to it; Virut uses TH32CS_SNAPPROCESS
to include all processes in the system. The malware
enumerates the processes one by one using a single
call to the Process32First API and concurrent calls
to the Process32Next API. These two APIs use the
PROCESSENTRY32 structure generated by the
CreateToolhelp32Snapshot API which was called earlier
(see Figure 1).

While enumerating the list of processes, Virut intentionally
skips the fi rst four processes without even checking their
names. Interestingly, most often, the Winlogon.exe process
is the fi fth on the list. Winlogon is the fi rst process into
which Virut injects its code; Winlogon is infected not by
choice but for the simple reason that it is one of the fi rst
processes available for Virut infection.

The next logical step, after acquiring the handle of the
process to infect, is to open it. Virut opens the process
by calling the OpenProcess API with the CREATE_
THREAD|VM_OPERATION|VM_WRITE access
parameter; this enables the malware to create a thread in the
given process and to write the codes to inject.

Mapping a section of memory
Before the code injection stage, Virut creates a section of
memory named \BaseNamedObjects\houtVt; this contains
the complete code to be injected into the process. This
is evident on any process that has already been injected
with Virut’s code. Process Explorer or any tool that can
show the events, keys, sections and other objects of a
process can be used to determine if the process is already
infected.

Since the section already exists, Virut calls the
ZwMapViewOfSection API to map a copy of
\BaseNamedObjects\houtVt to the current process that it is
working on. The actual Virut code is copied to the process’s
memory space by mapping the section of memory.
Mapping a section of memory is like sharing a DLL in
a process’s memory space, thereby giving Winlogon (or
other process) access rights to the section. Any viable code
within the \BaseNamedObjects\houtVt section can now be
executed by any process that maps it; calling a function
from within the section is just a matter of pointing it to the
right memory address.

Figure 2: The mapped section named \BaseNamedObjects\
houtVt in the Winlogon.exe process.

Hooking NTDLL.dll

Hooking is an old technique used by malware; old DOS
viruses hooked INT functions to redirect calls to their code
and new malware hooks DLL functions in a similar way.
When a call to the hook function is performed, execution
transfers to the malware code, which is executed, and then

Figure 1: Code snippets on enumerating the active
processes and the skipping of the fi rst four processes.

VIRUS BULLETIN www.virusbtn.com

8 SEPTEMBER 2010

control is transferred back to the original function routine;
this is basically what happened to the hooked function.

Virut hooks some APIs from NTDLL, of a given process,
simply by replacing the MOV EAX,yy instruction
with a CALL xxxxxxxx, an address pointed to by the
mapped \BaseNamedObjects\houtVt section. It uses the
ZwProtectVirtualMemory to change the protection mode
of NTDLL attached to the process to PAGE_READWRITE
mode then proceeds to hook it by writing the CALL
instruction using ZwWriteVirtualMemory. The PAGE_
READWRITE mode ensures that the shared NTDLL can be
written to by a call to ZwWriteVirtualMemory.

Virut hooks the following APIs:

• ZwCreateFile

• ZwOpenFile

• ZwCreateProcess

• ZwCreateProcessEx

• ZwQueryInformationProcess

By hooking the APIs above, Virut’s code becomes available
whenever a fi le is read, opened or created, and whenever a
process is opened, created or queried.

Figure 3: The hooked NTDLL.dll; the green boxes are the
normal codes and the red box is the hooked ZwCreateFile

API; the MOV instruction was replaced by a call to the
mapped section.

Running the thread
Once everything is set – privileges have been set up, a
process has been selected to infect, a section of memory has

been mapped, and DLL hooked – the last thing for Virut to
do is to execute a thread remotely.

Virut creates a remote thread using a call to
CreateRemoteThread, with dwCreationFlags equal to 0.
It executes the thread immediately. When a remote thread
is created, it can be suspended or, in this case, executed
immediately. Virut executes the thread as soon as it is
created to speed up the infection process. When all is well,
Virut relinquishes its control to the process and proceeds
to look for a new process to inject its code into. As we now
know, Virut doesn’t only infect the Winlogon.exe process; it
keeps looking for more processes to inject code into.

As discussed earlier, we can easily check if a process is
infected by looking for the presence of the
\BaseNamedObjects\houtVt section. To be certain, we
can browse the process’s memory and look for a sign that
Virut is really there. Most often, Virut’s favourite location
is 7FF90000h and the size is 0A000h; however, some
processes use that location, so Virut uses the next location
on the block, 7FFA0000h, with the same virus size.
Virut’s code within the process’s memory is not encrypted,
thereby giving us the strings to look for. We can see
strings like AV company names, the name of the section,
resolved names of APIs, IRC-related strings, and registry
key strings.

Figure 4: Strings found in services.exe’s process indicative
of Virut’s mapped section.

VIRUS BULLETIN www.virusbtn.com

9SEPTEMBER 2010

Virut’s method of code injection is fairly common amongst
malware. That being said, we will now look at another
method of injecting code.

PART II: ONLINE GAMING
The next piece of malware we will look at is a variant of
OnlineGames. Most malware families have their own style
of decryption routine, and the same is true when it comes
to the process of code injection. We have already noted that
a variant of Virut skips the fi rst four processes and injects
its code into Winlogon.exe and succeeding processes after
that. In this variant of OnlineGames, Explorer.exe is the
sole target.

We will discuss some commonalities of Virut and
OnlineGames when selecting the process for injection, how
codes are copied to the process’s memory space and what the
remote code looks like before it is executed in the process.

Choosing explorer.exe
Like Virut, OnlineGames uses the CreateToolhelp32Snapshot
to enumerate the processes active in the system – using
TH32CS_SNAPPROCESS as the dwFlags parameter.
Although the malware knows what process to infect, it still
uses the same pair of Process32First and Process32Next
APIs to locate the pID (process ID) of Explorer.exe.

Interestingly enough, the malware has a longer code routine
just to copy a string (process name) to a memory location; it
also has a longer code routine comparing the process name
to look for the ‘Explorer.exe’ string. Instead of copying
the string using a single instruction, the malware copies it,
character by character, to the memory. To compare the string,
the malware fi rst counts the number of characters of the name
of the given process and compares it to the length of the
‘Explorer.exe’ string. If the size of the two strings matches,
then it proceeds to check each character of both strings.
After a successful attempt at getting the right process name,
‘Explorer.exe’, the malware captures the pID of the process.

The pID of Explorer.exe is now used by OpenProcess, with
an access parameter of PROCESS_ALL_ACCESS – all
possible access rights.

Writing codes to process
Virut’s method of putting its codes into memory is by
mapping the entire \BaseNamedObjects\houtVt section and
hooking NTDLL.dll APIs linking to the mapped section. In
comparison, OnlineGames uses the WriteProcessMemory
API to write codes into the Explorer.exe process. But in this
respect, the code written to the process’s memory space is
not the whole virus code yet.

Before OnlineGames writes some of its code to the process,
it uses the VirtualAllocEx API to reserve some memory
space from the process; the resulting value is the base
address where OnlineGames can write to. It then proceeds
to write 457h(1111) bytes of code – which, of course, is not
the whole virus code.

Intercepting the remote thread
The WriteProcessMemory API is only called once within
the malware body; it only writes 457h(1111) bytes of code.
We can only assume that there should be more to it than just
writing that small piece of code. Does OnlineGames use
the same technique of mapping a section of memory to the

Figure 5: Code snippet showing the call to the OpenProcess,
VirtualAllocEx and WriteProcessMemory APIs. It also shows

a certain call to a memory location, 00401D20, where the pID
searching can be found. Lastly, it shows where the length of the codes,

457h(1111), is used.

Figure 6: Message displayed when CreateRemoteThread API from OnlineGames was executed.

VIRUS BULLETIN www.virusbtn.com

10 SEPTEMBER 2010

running process as Virut? The answer is no, OnlineGames
doesn’t use memory mapping and it doesn’t hook any
functions in NTDLL, or any DLL for that matter. But
how can OnlineGames copy the whole malware code to
Explorer.exe? The answer lies in the 457h bytes of memory
the malware wrote earlier.

The only logical way to look for the answer is to
intercept the execution of the 457h mystery bytes. A
remote thread is created when OnlineGames uses the
CreateRemoteThread API; it points to the base address,
the starting address of the 457h bytes of code taken from
the call to VirtualAllocEx API earlier. Once the thread
is created and Explorer.exe is within a debugger, such as
OllyDbg, we will see a message box displaying ‘Module
“cvasds0” has entry point outside the code (as specifi ed
in the PE header). Maybe this fi le is self-extracting
or self-modifying. Please keep it in mind when setting
breakpoints!’ (see Figure 6). Note that the message
will only show when Explorer.exe is within a debugger
context.

Knowing that a fi le named ‘cvasds0’ is being accessed by
Explorer.exe, it is safe to say that it is the same malware
fi le that we are looking for. We haven’t intercepted
the code yet, so we need to go back and execute the
CreateRemoteThread API; this time we are in intercept
mode. Figure 8 shows a snippet of the intercepted
code, the 457h bytes of code copied earlier using the
WriteProcessMemory API.

The 457h bytes of code is responsible for loading ‘cvasds0’
into the Explorer.exe process; it calls the LoadLibraryA API
to load the fi le, actually a DLL, that can be found at the
‘c:\DOCUME~1\[varies]\LOCALS~1\Temp\’ folder.
‘cvasds0.dll’ is a DLL fi le dropped by OnlineGames at an
earlier stage of the malware’s execution. The 457h bytes
of code also contains the string ‘Game_start’, which is
encoded character by character.

CONCLUSION

We have seen two different pieces of malware, each
demonstrating different skills in performing code injection.
They both start off by using the basic techniques of
enumerating, searching and opening a process. Then, they
each go a different way when they start preparing the code
to be injected. Virut has chosen to map its code to the
process and hook NTDLL, while OnlineGames has chosen
to inject a small amount of code into Explorer.exe and let it
load its complete code in a library form. There are several
more tricks for code injection out there; we will encounter
them in one way or another, yet they will always have one
thing in common – the process.

Figure 7: Memory map of the ‘Explorer.exe’ process within
OllyDbg. It shows the map view of ‘Explorer.exe’ and the

new fi le ‘cvasdds0’.

Figure 8: Code snippet of 457h bytes of code copied to
the memory space of Explorer.exe, showing the call to the

LoadLibraryA API and the string ‘Game_start’.

VIRUS BULLETIN www.virusbtn.com

11SEPTEMBER 2010

CHIM CHYMINE: A LUCKY
SWEEP?
David Harley
ESET

The class of malware that exploits Autorun/Autoplay as
an infection vector has been an irritating fact of life for a
good while. The malware known as Win32/Stuxnet could
be (and indeed has been [1]) described as a worm of a
different colour. It can propagate making use of a zero-
day vulnerability [2] listed by CVE as CVE-2010-2568
[3]. In a nutshell – or rather the Windows Shell – Windows
can be tricked into executing malicious code presented in
a specially crafted shortcut (.LNK) fi le, linking in turn to
a malicious DLL, allowing compromise of a system even
where Autoplay is disabled. (It should not be forgotten that
USB devices aren’t the only potential entry point: network
and webDAV shares are also an issue.)

MISSING LINKS
There’s already plenty of detailed information available
on both the vulnerability and the very interesting Win32/
Stuxnet family, so I won’t go much beyond the minimum
background in this article. However, apart from generating
detection for Stuxnet, ESET also started to detect its approach
heuristically, as LNK/Autostart.A, and subsequently as
LNK/Exploit.CVE-2010-2568. It was, after all, reasonable
to suppose that as the proof-of-concept code gained currency,
other malware families would adopt the same trick. Sure
enough, our telemetry systems soon picked up some
interesting vibes.

THE OTHER VB
As early as 20 July, our lab was seeing several Autorun
worms written in Visual Basic and experimenting with
LNK fi les. However, by 23 July things were getting really
interesting. We had identifi ed a new family exploiting the still
unpatched vulnerability in order to spread by code execution
through malicious LNK fi les. This was promptly christened
Win32/TrojanDownloader.Chymine.A. At the present time,
this threat is used to download and install a keystroke logger
which we detect as the Win32/Spy.Agent.NSO trojan.

CHINA CHYMINE IN
The server used to deliver the components used in this
attack is presently located in the US, hosted by the
‘Managed Solutions group’. According to RWHOIS data
from the hosting organization, the server IP address was

assigned to a customer in China on 22 July. The DLL
downloaded from here contains a number of strings in
Chinese, translated here courtesy of Google Translate:

Comment: ‘Fire Personal Firewall, building a
fun-fi lled safe network for you’

File description: Fair Personal Firewall, for you to
create a safety net is full of fun.

Company name: Fair Safety Laboratory

Product name: Fair Personal Firewall

At the time of writing, neither Chymine.A nor any of the
related fi les seem to be generating any malicious LNK fi les
themselves. To date, we’ve only found LNKs exploiting
the latest vulnerability and pointing to the downloader,
suggesting to us that since Chymine.A doesn’t spread by
itself, there must be something (or someone) else ‘helping’ it
along [4].

THIS WILL (AUTO)RUN AND RUN
Even while the lab team was in the process of sharing
information about this new threat with other researchers,
they observed a known threat which had been refurbished
to include the CVE-2010-2568 exploit as a new propagation
vector. Win32/Autorun.VB.RP looks very much like an
updated version of the malware written in Visual Basic and
described on 21 July by Adrian de Beaupre [5]. This class of
threat hides folders in the root directory of any drive to which
it has Write access, creates LNKs with the same name as the
hidden folders, and drops autorun.inf, EXE and SRC fi les. It
differs from the Internet Storm Center description, however,
in that it does actually produce new LNK fi les exploiting the
CVE-2010-2568 vulnerability to facilitate its own spreading;
it doesn’t simply rely on Autorun or wait for the victim to
click on a malicious but uncrafted LNK. It now seems to
download and install additional components on infected
machines. The LNKs making use of the CVE-2010-2568
exploit use the following naming convention:
z<two letters>.lnk (for example ‘zTa.lnk’).

There’s not much doubt about which of the present crop
of malware based on the original LNK vulnerability is the
most novel and interesting. Win32/Stuxnet has two major
points of interest.

• One, of course, is the targeting of Siemens control
software on SCADA sites, injecting modules
SystemRoot\inf\oem7A.PNF and SystemRoot\inf\
oem7A.PNF into the address spaces of
CCprojectMgr.exe and S7tftopx.exe processes using
the mrxcls.sys driver, and reading confi guration
information from the registry key ‘HKLM\System\
CurrentControlSet\Services\MRxCLS. (This may

MALWARE ANALYSIS 3

VIRUS BULLETIN www.virusbtn.com

12 SEPTEMBER 2010

account for some of the interesting distribution patterns
that have been noted by some sources [1, 6].)

• The second point of interest is Stuxnet’s use of
legitimate digital certifi cates to sign its device
driver. These were stolen from Realtek and JMicron
Technology Corp [7] and were subsequently revoked by
VeriSign in order to prevent further misuse [8, 9, 10].

THE EARLY BIRD LAYS THE WORM?
However, the newer malware we’re seeing is far less
sophisticated than Stuxnet, and suggests bottom feeders
seizing on vulnerabilities fl agged by others, and hijacking
exploitative techniques developed by the early birds. This
is interesting in its own way (not least for the speed with
which it has appeared). We expect to see plenty more worm
cast [11] on the beach before (and after) Microsoft’s update
[12] appears on the horizon.

This article synthesizes the research and thoughts of many
people, not only within ESET but in the anti-malware
community at large, and too many to mention individually.
However, particular thanks are due to Richard Baranyi, Peter
Košinár, Juraj Malcho, Pierre-Marc Bureau and Aleksandr
Matrosov for sharing their research data and insights.

REFERENCES
[1] http://blog.eset.com/2010/07/17/windows-

shellshocked-or-why-win32stuxnet-sux.

[2] http://www.microsoft.com/technet/security/
advisory/2286198.mspx.

[3] http://www.cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2010-2568.

[4] http://blog.eset.com/2010/07/22/new-malicious-
lnks-here-we-go.

[5] http://isc.sans.edu/diary.html?storyid=9229.

[6] http://blogs.technet.com/b/mmpc/
archive/2010/07/16/the-stuxnet-sting.aspx.

[7] http://blog.eset.com/2010/07/19/win32stuxnet-
signed-binaries.

[8] https://blogs.verisign.com/ssl-blog/2010/07/code_
signing_certifi cates_used.php.

[9] http://blog.eset.com/2010/07/22/why-steal-digital-
certifi cates.

[10] Goretsky, A. http://blog.eset.com/2010/07/22/a-few-
facts-about-win32stuxnet-cve-2010-2568.

[11] http://en.wikipedia.org/wiki/Worm_cast.

[12] http://www.microsoft.com/technet/security/
advisory/2286198.mspx.

ANTI-UNPACKER TRICKS – PART
TWELVE
Peter Ferrie
Microsoft, USA

New anti-unpacking tricks continue to be developed as
older ones are constantly being defeated. This series of
articles describes some tricks that might become common in
the future, along with some countermeasures [1–12].

In this article we look at some anti-unpacking tricks that are
specifi c to a range of debuggers.

Unless stated otherwise, all of the techniques described here
were discovered and developed by the author.

1. HIDETOOLZ-SPECIFIC
HideToolz is an application that can hide another process
under user control. It uses a driver to perform some of
its work. The driver searches blindly within the ntoskrnl
KeAddSystemServiceTable() function code for a particular
instruction using a particular register. This combination
is only present in Windows XP and later versions, so its
presence is an unsafe assumption. The driver hooks many
functions.

When the ntoskrnl NtQueryInformationProcess()
function is called, the hook calls the original
ntoskrnl NtQueryInformationProcess() function, and
then exits if an error occurs. Otherwise, the hook
checks the ProcessInformationClass parameter. If
the ProcessBasicInformation class is specifi ed, and
if the specifi ed process ID is on the hidden list,
then the hook replaces the process ID of the parent
process with the process ID of Explorer.exe in the
InheritedFromUniqueProcessId fi eld. This could be
considered a bug, since the true parent might not
be Explorer. The proper behaviour would be to use the
process ID of the parent process.

If the ProcessDebugPort class is specifi ed, then the hook
zeroes the debug port, but without checking the process
handle. The correct behaviour would be to zero the port
only if the current process is specifi ed.

When the ntoskrnl NtQuerySystemInformation()
function is called, the hook calls the original ntoskrnl
NtQuerySystemInformation() function, and then
exits if an error occurs. Otherwise, the hook checks
the SystemInformationClass parameter. If the
SystemProcessInformation class is specifi ed, then for each
entry in the hidden list, the hook replaces the process ID of
the parent process with the process ID of Explorer.exe in the

TECHNICAL FEATURE

VIRUS BULLETIN www.virusbtn.com

13SEPTEMBER 2010

InheritedFromUniqueProcessId fi eld. Once again, this could
be considered a bug, since the true parent might not be
Explorer. The proper behaviour would be to use the process
ID of the parent process. A separate option exists which, for
each entry in the hidden list, zeroes the entry in the buffer
unless the list is requested by csrss.exe, smss.exe, or any
entry in the hidden list.

If the SystemModuleInformation class is specifi ed, then
the hook walks the returned list and deletes any entry that
contains the name of the driver by copying the entries that
follow it over the top, and then reducing the returned length.

If the SystemHandleInformation class is specifi ed, then
the hook walks the returned list and deletes any handle for
entries in the hidden list by copying the entries that follow
it over the top, and then reducing the returned length. This
change occurs unless the list is requested by csrss.exe,
smss.exe, or any entry in the hidden list.

When any of the following ntoskrnl functions are called:
NtWriteFile(), NtWriteFileGather(), NtShutdownSystem(),
NtRaiseHardError(), NtSetSystemPowerState(),
NtInitiatePowerAction(), or if the csrss ExitWindowsEx()
function is called, the corresponding hook can be directed to
ignore the request.

When the ntoskrnl NtSetInformationThread() function
is called, the hook checks the ThreadInformationClass
parameter. If the HideThreadFromDebugger class is
specifi ed, then the hook simply returns success. There is a
bug in this code, which is that if an invalid handle is passed
to the function, then an error code should be returned. A
successful return would be an indication that HideToolz is
running.

When the ntoskrnl NtClose() function is called, the hook
calls the ntoskrnl NtQueryObject() function to verify that
the handle is valid. If it is, then the hook calls the ntoskrnl
NtClose() function. Otherwise, it returns STATUS_
INVALID_HANDLE (0xC0000008). However, disabling
the exception in this way, without reference to the ‘HKLM\
System\CurrentControlSet\Control\Session Manager\
GlobalFlag’ registry value, means that the absence of the
exception might reveal the presence of HideToolz.

When either the ntoskrnl NtOpenProcess() function or the
ntoskrnl NtOpenThread() function is called, the hook calls
the original ntoskrnl function, and then exits if either an
error occurs, or the resulting handle refers to any entry on
the hidden list.

When the ntoskrnl NtDuplicateObject() function is called,
the hook returns an error if the source handle refers to any
entry on the hidden list.

HideToolz exposes a private interface via the ntoskrnl
NtTerminateProcess() function. The interface is accessed

by passing a handle that is actually a pointer to a memory
block, and specifying a termination status of 0xDFF42AB7.
The contents of the memory block must begin with the
sequence 0x6B 0xB8 0xEC 0x75 0x47 0x46 0x0B 0xFB.
Following that is an index into a table of function pointers.
Only the values 0–5 are accepted. Next is a pointer to the
input buffer, then the size of the input buffer, a pointer to
the output buffer, and fi nally the size of the output buffer.
The output buffer is verifi ed to be writable, and the hook
requires that the buffer is in user-mode memory.

The author of HideToolz could not be contacted.

2. OBSIDIAN-SPECIFIC
Obsidian is an unusual style of user-mode debugger. It
does not attach to a process, but instead uses the kernel32
CreateToolhelp32Snapshot() function, and the kernel32
Thread32First() and Thread32Next() functions to access
threads. It uses the kernel32 ReadProcessMemory() and
WriteProcessMemory() functions to read and write process
memory, including to set and clear breakpoints. Even the
style of breakpoint is unusual. Rather than the common ‘CC’
opcode (short-form ‘INT 3’ instruction) and the T fl ag to raise
single-step exceptions, Obsidian places an ‘EBFE’ opcode
(‘JMP $’ instruction) at the desired location, and uses a timer
with a ‘suffi cient’ delay to allow the execution to complete.

2.1 FindWindow
Obsidian can be found by calling the user32 FindWindow()
function, and then passing ‘ObsidianGUI’ as the window
name to fi nd.

Example code looks like this:
 push offset l1

 push 0

 call FindWindowA

 test eax, eax

 jne being_debugged

 ...

l1: db “ObsidianGUI”, 0

2.2 Escape
Because of the breakpoint style in Obsidian, it is vulnerable
to self-modifying code which is aware of the format of the
breakpoint.

Example code looks like this:
 mov b [offset l1], 0b0h

l1: mov al, 1

 ;execution resumes freely here

This code also functions as a method to detect Obsidian,
since the value in the AL register will be altered from 1 to
0xFE if Obsidian is running.

VIRUS BULLETIN www.virusbtn.com

14 SEPTEMBER 2010

Obsidian does not handle exceptions, but this limitation is
documented already.

Example code looks like this:
 xor eax, eax

 push offset l1

 push d fs:[eax]

 mov fs:[eax], esp

 int 3

 ...

l1: ;execution resumes freely here

The author of Obsidian is investigating the report.

3. UGDBG-SPECIFIC
UGDbg is a user-mode debugger with an interface that
is similar to SoftICE. It can debug both 32-bit and 64-bit
applications. It sets the PEB->BeingDebugged and
PEB->NtGlobalFlag fl ags to zero, and does the same for
the debugging-heap tail (0xBAADF00D, 0xFEEEFEEE),
if it is present. UGDbg also attempts to set the
PEB->Heap->ForceFlags fl ag to zero, however the location
of the ForceFlags fi elds is different in Windows Vista and
later versions, so the change fails on that platform.

UGDbg uses hardware breakpoints for both single-into and
step-over. As a result, it is not vulnerable to the common
step-over attack described in [10], nor to any of the
variations described below.

4. ROCK DEBUGGER-SPECIFIC
Rock Debugger was described in a previous paper [8]. What
follows is a bug that has been discovered since that paper
was published.

4.1 Step-over
When Rock Debugger is asked to step over an instruction,
it checks if stepping over the instruction is a meaningful
request. Rock Debugger allows the stepping over of any
instruction that can be decoded, and which starts with
a REP prefi x. This leaves the breakpoint vulnerable to
self-modifying code.

Example code looks like this:
 rep

l1: mov b [offset l1], 90h

l2: nop

If a step-over is attempted at l1, then execution will resume
freely from l2.

Rock Debugger refuses to disassemble code within 15 bytes
of the end of a page, if the following page is not readable.
Step-over is also disallowed in such cases. This can make it

diffi cult to debug certain applications, since it is possible to
fi t several executable instructions within that space.

The author of Rock Debugger responded very quickly to the
report. He is considering adding a user-defi ned option to
control the behaviour when stepping over instructions that
start with a REP prefi x.

5. TURBO DEBUG32-SPECIFIC
Turbo Debug32 was described in a previous paper [6]. What
follows are bugs that have been discovered since that paper
was published.

5.1 Export table
Turbo Debug32 parses the debuggee’s export table to
identify the offered symbols. It assumes that an ordinal table
always exists, and that the contents are valid, even though
the table is not used if exports are exported by ordinal only.
Turbo Debug32 uses the values inside the ordinal table as
indexes into a memory block within the Turbo Debug32
process. The accesses are performed without any bounds
checking. As such, by placing suffi ciently large values into
the table, it is possible to cause Turbo Debug32 to crash.

5.2 Relocated code
Turbo Debug32 does not place the entrypoint breakpoint
correctly if the executable fi le has been relocated in memory
as a result of an invalid requested ImageBase (such as
loading to offset zero). However, there is no problem if the
image is loaded to a random address as a result of Address
Space Layout Randomization.

When a process is started, a debugger typically wants to
place a breakpoint at the main entrypoint. There are two
common ways to locate this address. The fi rst is to query
the PEB->Ldr->InMemoryOrderModuleList->EntryPoint
fi eld value. Interestingly, Microsoft documentation labels
this fi eld as ‘unsupported’, even though the psapi32.dll uses
it. The second way is to wait for the CREATE_PROCESS_
DEBUG_EVENT event to occur, and then to query the
CREATE_PROCESS_DEBUG_INFO->lpStartAddress
fi eld value.

However, there is a problem with the second method.
Windows has supported the relocation of EXE fi les since
Windows 2000. With the introduction of Windows Vista
and Address Space Layout Randomization, this ‘feature’
came to be supported offi cially. As a result, a fi le can be
loaded to an address other than the one that it requested.
One case in particular is when the requested address is
intentionally invalid, such as zero or greater than 2GB. This
causes Windows to load the fi le to 0x10000. The problem
is that for such fi les, the CREATE_PROCESS_DEBUG_

VIRUS BULLETIN www.virusbtn.com

15SEPTEMBER 2010

INFO->lpStartAddress fi eld value contains the ‘expected’
(and incorrect) entrypoint value, which is calculated by
summing the values from the PE->ImageBase and the
PE->AddressOfEntryPoint. A breakpoint that a debugger
places at that location will not be hit. If the debugger then
resumes the process, the process will run freely. Further,
the incorrect entrypoint can be calculated to point to a
known-writable memory location. The process can then
check for a breakpoint at this location and the presence
of the debugger will be revealed. This is the problem
in Turbo Debug32. Other debuggers, such as OllyDbg,
handle this situation correctly because they use the fi rst
method in one form or another, such as by calling the
psapi GetModuleInformation() function, which queries the
PEB->Ldr->InMemoryOrderModuleList->EntryPoint, and
which contains the correct entrypoint value.

This problem has been documented publicly [13].

5.3 Step-over
When Turbo Debug32 is asked to step over an instruction,
it checks if stepping over the instruction is a meaningful
request. Turbo Debug32 allows stepping over only the
CALL, REP[[N]E] <string>, and LOOP[[N]E] instructions.
The CALL instruction is of particular interest because,
as described in a previous paper [8], it does not support
the SIB encoding. In the previous example, the bug was
exploited to transfer control to an unexpected location.
However, a more effective exploitation of the bug allows
code to escape the control of the debugger. The bug occurs
because Turbo Debug32 assumes that any SIB-encoded
instruction is six bytes long. Thus, if a CALL instruction
followed by a JMP instruction can be encoded in no more
than six bytes, then stepping over the CALL instruction will
allow the JMP to be reached, after which the execution will
resume freely from the destination of the JMP instruction.

Example code looks like this:
 xor ebx, ebx

 push 40h

 mov eax, esp

 push 3000h

 push esp

 push ebx

 push eax

 push -1 ;GetCurrentProcess()

 call NtAllocateVirtualMemory

 mov b [ebx], 0c3h

 call d ds:[1]

 jmp short l1

 nop ;replaced by int 3

l1: ...

Turbo Debug32 has another bug regarding instruction
decoding, which is that it does not override the address-size

(0x67) when applied to a long displacement. As above,
the bug occurs because Turbo Debug32 assumes that any
SIB-encoded instruction is six bytes long. Thus, if a CALL
instruction followed by a JMP instruction can be encoded
in no more than six bytes, then stepping over the CALL
instruction will allow the JMP to be reached, after which
the execution will resume freely from the destination of the
JMP instruction. Example code looks like this:
 xor ebx, ebx

 push 40h

 mov eax, esp

 push 3000h

 push esp

 push ebx

 push eax

 push -1 ;GetCurrentProcess()

 call NtAllocateVirtualMemory

 mov b [ebx], 0c3h

 call d [bx+80h]

 jmp short l1

 nop ;replaced by int 3

l1: ...

Turbo Debug32 ignores errors when a write occurs beyond
writable memory. This bug can also be exploited to allow
execution to resume freely from an arbitrary location, if a
step-over is attempted at the end of a page. Example code
looks like this:
 xor ecx, ecx

 push offset l1

 push d fs:[ecx]

 mov fs:[ecx], esp

 mov eax, offset l2

 mov w [eax], 0fee0h ;loopne $

 jmp eax

l1: ;reached if step-over at l2

 ...

l2: ;place at 2nd-last byte in page

6. WINDBG-SPECIFIC
WinDbg was described in two previous papers [1, 3]. What
follows is a detection method that has been discovered since
those papers were published.

6.1 Step-over
When WinDbg is asked to step over an instruction, it
checks if stepping over the instruction is a meaningful
request. WinDbg allows stepping over of the CALL (0x9A,
0xE8 and 0xFF &38==0x10), INT (0xCC, 0xCD and
0xCE), REP[[N]E] <string> (including INS and OUTS),
LOOP[[N]E] and BOP (0xC4 0xC4) instructions. The
BOP support is especially interesting not least because it is
undocumented, but also because WinDbg knows something

VIRUS BULLETIN www.virusbtn.com

16 SEPTEMBER 2010

about the format. Specifi cally, WinDbg knows that the 0x50,
0x52-0x54, 0x57-0x58 and 0x5D indexes are four bytes
long. For all other BOP indexes, WinDbg knows that the
instruction is only three bytes long. This might appear to
be vulnerable to a step-over bug, since some of the BOP
indexes cause exceptions which the debuggee can intercept.
However, WinDbg takes care to replace the breakpoint with
the original byte value prior to dispatching the exception.

WinDbg also allows the stepping over of unknown
instructions. This is achieved by using the single-step
exception instead of a breakpoint. WinDbg also behaves in
this way for instructions which contain redundant prefi xes.
This leaves WinDbg vulnerable to detection via the T fl ag.
Example code looks like this:
cs:cs:pushfd

pop eax

test ah, 1

jne being_debugged

7. FDBG-SPECIFIC
FDBG is a debugger for the 64-bit platform. It can debug
64-bit executables.

7.1 Step-over
When FDBG is asked to step over an instruction, it checks
if stepping over the instruction is a meaningful request.
FDBG allows the stepping over of any instruction (valid
or not) which starts with a REP prefi x. This leaves the
breakpoint vulnerable to self-modifying code. Example
code looks like this:
 rep

l1: mov b [offset l1], 90h

l2: nop

If a step-over is attempted at l1, then execution will resume
freely from l2.

FDBG refuses to disassemble code within 253 bytes of the
end of a page if the following page is not readable. Step-over
is disallowed within 31 bytes of the end of a page if the
following page is not readable. This can make it diffi cult to
debug certain applications, since it is possible to fi t several
executable instructions within that space.

The author of FDBG responded quickly to the report. A test
version was shared privately, which solves these problems,
and also the ‘rep stos’ problem (and its variations) described
in the ‘Self-modifying code’ section in [10].

8. TITAN ENGINE
TitanEngine is a tool for reverse-engineering applications.
It has a built-in debugger. TitanEngine uses breakpoints for

any step-over request, regardless of the instruction which
is being stepped over. TitanEngine supports three kinds of
breakpoint instruction – the ‘CC’ opcode (short-form ‘INT 3’
instruction), ‘CD03’ (long-form ‘INT 3’ instruction), and
‘0F0B’ opcode (‘UD2’ instruction). Because of the breakpoint
style in TitanEngine, it is vulnerable to self-modifying code
which is aware of the format of the breakpoint.

Example code looks like this:
 mov b [offset l1], 0b0h

l1: mov al, 1

 ;execution resumes freely here

This code also functions as a method to detect TitanEngine
if the breakpoint style is not the ‘CC’ opcode form, since
the value in the AL register will be altered from 1 to either 3
or 0x0B if TitanEngine is running.

The author of TitanEngine is investigating the report.

The next part of this series will look at IDA plug-ins.

The text of this paper was produced without reference to
any Microsoft source code or personnel.

REFERENCES
[1] http://pferrie.tripod.com/papers/unpackers.pdf.

[2] http://www.virusbtn.com/pdf/magazine/2008/
200812.pdf.

[3] http://www.virusbtn.com/pdf/magazine/2009/
200901.pdf.

[4] http://www.virusbtn.com/pdf/magazine/2009/
200902.pdf.

[5] http://www.virusbtn.com/pdf/magazine/2009/
200903.pdf.

[6] http://www.virusbtn.com/pdf/magazine/2009/
200904.pdf.

[7] http://www.virusbtn.com/pdf/magazine/2009/
200905.pdf.

[8] http://www.virusbtn.com/pdf/magazine/2009/
200906.pdf.

[9] http://www.virusbtn.com/pdf/magazine/2010/
201005.pdf.

[10] http://www.virusbtn.com/pdf/magazine/2010/
201006.pdf.

[11] http://www.virusbtn.com/pdf/magazine/2010/
201007.pdf.

[12] http://www.virusbtn.com/pdf/magazine/2010/
201008.pdf.

[13] http://pferrie.tripod.com/misc/lowlevel3.htm.

VIRUS BULLETIN www.virusbtn.com

17SEPTEMBER 2010

WHAT’S THE DEAL WITH SENDER
AUTHENTICATION? PART 4
Terry Zink
Microsoft, USA

In the previous articles in this series [1–3], we’ve seen two
relatively simple methods for authenticating email: SPF
and SenderID. Both can be used to authenticate a sender
and presumably trust a message, and both can also be used
to detect spoofi ng. However, as we have also seen, both
have their weaknesses: SPF can be circumvented by not
using a domain in the P1 From that has SPF records, while
SenderID can be prone to false positives when mail is sent
on behalf of another. Neither technology works when mail
is forwarded. Furthermore, both technologies tie a domain
to a specifi c set of IP addresses.

To illustrate the problem, suppose my friend Tony has
moved to Sacramento. I know that he always sends mail
from Sacramento and so when I get the letter in the mail,
I check the postmark, verify that it’s from Sacramento and
that it has his name on it. But what if Tony moves to St.
Louis? He has to update the postal service. And, if he moves
to Boston, he has to update the postal service again.

Furthermore, what if Tony gives the letter to Frank to
deliver? Frank might have to make a stop in Memphis,
Tennessee before he mails the letter. When I receive it, I see
that it has Tony’s name on it, but it came from Memphis.
I know that Tony always sends mail from Sacramento
or St. Louis. What’s it doing coming from Tennessee? If
that occurred, I would be tempted to think that it was not
actually Tony’s mail. At the very least, I wouldn’t be able to
verify that it was from him.

In email, in the case where I have a complex forwarding
system set up to deliver mail to my personal domain,
suppose I have a forwarding rule so that if Tony sends mail
to my Hotmail account, it forwards to my Gmail account. I
then have all of my Gmail sent to my personal domain.

The problem is that since the SPF or SenderID check is
performed on the perimeter, the originating IP looks to
my mail servers like Gmail’s IP. I cannot rely on header
traversal to walk through IPs and search for the actual
originating IP because received headers can be forged. A
SenderID or SPF check will fail in this case, and it should
fail; SPF and SenderID are only done on the headers that
you can trust.

What would be handy would be if Tony put some sort of
stamp of authenticity into his letter. What if Tony had a
personal seal which he could dip into wax and stamp onto
the bottom of his letter, and he was the only one in the
world with this stamp? When I got the letter, rather than
seeing where it came from, I could instead look for the seal
at the bottom of his letter. Since Tony is the only one in the
world that has this seal, I could be sure that the letter came
from him.

In the postal system, and in letter writing, it would not
be all that diffi cult to forge a seal that looked like Tony’s.
Fortunately, when it comes to technology, we can do better.

ENCRYPTION

Before we get into the technology used to establish identity,
we fi rst need to understand the basics of encryption. In
the olden days, people needed ways of communicating
messages securely between one another. At fi rst, they
simply sent their trusted companions on horseback. For
example, a king would send a message with his assistant
to the general out on the front lines. As time passed and
technology moved on, people began sending messages
electronically because this was much quicker and you could
push through more data in a shorter period of time. Generals
who can communicate between each other and transmit
information faster have an advantage over those who can’t.
But the problem was security; if the message in transit was
sensitive, then if somebody intercepted the message the
secret information would no longer be secret.

The idea behind encryption is to encode the contents of
the message such that even if the message is intercepted in
transit, the person who intercepted it would be unable to
read its contents. Consider the following message:

Ifmmp, J bn bo fodszqufe nfttbhf.

This text appears to be a bunch of gobbledygook but it is
actually an example of a substitution cipher. The key is that
each letter is actually the subsequent letter in the alphabet.
In other words, B is substituted for A, C is switched for B,
and so forth. For the above, the decrypted message is the
following:

Hello, I am an encrypted message.

tony @ tony.ne t

te rry @ tz ink.com

M ail forw arding

IP 1

IP 2

IP 3

Figure 1: The original sending IP is IP1, but the SPF check

is performed on IP3, which results in a fail.

FEATURE

VIRUS BULLETIN www.virusbtn.com

18 SEPTEMBER 2010

Different types of substitutions can be used. Above, I used
a one-character algorithm, but others can be used such as a
three-character substitution or an 11-character substitution.
A three-character substitution would be the following:

khoor, L dp dq hqfubswhg phvvdjh.

While a substitution cipher is easy to implement, it is
also very easy to break. The more text you have, the more
you can use statistical analysis to break the cipher. For
example, in the English language, the most common letter
is ‘e’. If you were to intercept a message in transit without
knowing the substitution algorithm, you would look for
the letter that occurs the most often and that would be
pretty likely to be the letter ‘e’. You could then look for a
bunch of three-letter-words and make a guess that the fi rst
letter is ‘t’ and the second letter is ‘h’. In this way, you’ve
guessed the letters for the word ‘the’. Other commonly
occurring consonants are r, s, l and n. Small, two-letter
words are likely to be words such as in, of, on, at, it, and
so forth. Once you start getting the smaller words you can
use a process of elimination to work your way backwards
in order to fi nd the rest of the letters. Sometimes it is a
process of trial and error to fi nd the words that fi t, but with
enough iterations you can do it.

Computers are very good at iterating algorithms to fi nd out
patterns like this. Rather than using a simple substitution
cipher, you could use a more complicated algorithm – for
example by substituting the fi rst letter of the message with
the letter that follows it in the alphabet, the second with the
letter that appears two letters after it in the alphabet, the
third with the letter that appears three letters after it in the
alphabet, and then repeating the sequence.

I a m a c o o l d u d e

J c p b e r p n g v f h

+1 +2 +3 +1 +2 +3 +1 +2 +3 +1 +2 +3

Figure 2: Example of a more complicated substitution

algorithm.

However, given enough time, a computer could break
this algorithm as well. It wouldn’t take very long because
substitution ciphers that work by switching one letter
for another are not complicated to reverse engineer. An
encryption-breaking algorithm works by trying every
possible combination and then running the decrypted text
against a text recognition program that detects recognizable
word patterns in plain text. The swapping around of letters

at various fi xed points in the example above would be
deciphered in a trivial fashion because this is something that
computers can do extremely quickly.

Enter the concept of one-way functions. A one-way function
is a mathematical function that is easy to calculate one way
but very diffi cult to calculate in the inverse. For example,
consider the process of squaring a number. It is easy to
calculate x2 but it is more diffi cult to calculate the square
root of x, √x. The algorithm for a square root is more
complicated than squaring a number and takes longer to
evaluate. Another example would be a logarithm. It is easier
to calculate 10x than it is to evaluate log

10
x.

A good encryption algorithm makes use of these one-way
functions. A message sender would encrypt his message
using a one-way function and send it to the receiver and
even if somebody intercepted the message in transit, they
would have a diffi cult time decrypting it. The algorithm
is computationally intensive, which makes breaking it
cost-prohibitive (in terms of time). The non-intended
recipient could break the message since all it takes to
break it is a matter of time and enough computing power,
however, the idea is that by the time they did this, the
contents of the message would be stale. In other words,
it would not be useful to the non-intended recipient. For
example, if a military commander was going to organize
his troops for a surprise attack on the enemy in a week’s
time, he might send a message and encrypt it using an
algorithm that is breakable but which would take a long
time to break, at least two months on average. In transit, the
message is intercepted and the enemy proceeds to attempt
to break it. The enemy will eventually be successful but by
the time they do, the original commander will have made
his attack and the information will be stale-dated and no
longer useful.

Thus, if you wanted to encrypt the contents of an email
message such that it was resistant to people who might try
to intercept it, you would use an algorithm that takes a long
time to decrypt.

This is all well and good for the people who you don’t want
reading your message, but what about the person who you
do want to read it? What good is it if it takes them forever to
read the message? You might as well not send it at all.

This is where secret key encryption comes in. With secret
key encryption, you use a mathematical algorithm to encode
your message, and use a secret key to do it. So, a message
would be scrambled by using the mathematical function that
returns a different result each time you use a different key.

Here’s a very basic example. Suppose you wanted to encode
the number sequence:

4 8 15 16 23 42

VIRUS BULLETIN www.virusbtn.com

19SEPTEMBER 2010

Let’s suppose your secret key, n, is 2 and you are using the
algorithm f(x) = xn. We’d encode the sequence this way:

16 64 225 256 529 1764

If our secret key were 4, we would encode the sequence this
way:

256 4096 50625 65536 279841 3111696

The recipient would receive the encoded message and
would also know the algorithm. Therefore they also would
know the decryption algorithm (in our case, the square
root of x or the 4th root of x). Secret key encryption works
not by keeping the algorithm secret (as is the case of a
substitution cipher) but by keeping the key secret. If you
don’t know the key, it will take you a long time to fi gure out
the contents of the message. By the time you do, the data
will no longer be useful. In my example above, that doesn’t
look too diffi cult to break. What would happen if our secret
key were 8? Or 16? Or 3.14159? There are still algorithms
out there that are computationally expensive for computers
to break.

77.70847 685.0189 4930.904 6038.607 18872.32 125026.7

Someone who intercepted this piece of cipher text wouldn’t
know what the algorithm for encryption was so they would
start trying every possible combination. They might suspect
that it is an exponential function and so start by attempting
to decrypt using the square root of x, then the cube root
of x, and then the fourth root of x. When none of those
worked they might start working on decimal points, and so
forth. While modern computers today can blaze through
mathematical functions in the blink of an eye, it does take
more CPU time to evaluate these mathematical functions. If
the mathematical function is more complicated, then even
powerful computers can start to slow down and take a long
time to process it.1

This brings me to my next point: in order to increase the
security of an encrypted message, you don’t need to change
the algorithm; you only need to increase the length of the
key. For example, it is easier to calculate the inverse of
x4 than x4.5, which is easier still than x4.59, which is easier
than x4.591234, and so forth. Knowing what the secret key is
makes it possible to decrypt the secret message in a shorter
time frame, but it is always going to take longer than it
did to encrypt it. For example, encrypting it might take
two seconds but decrypting it takes three seconds. On the
other hand, without knowing the secret key, the amount of
computational processing time makes decryption infeasible

1 Modern encryption algorithms do not rely exclusively on
mathematical functions. They swap bits around and make use of
prime numbers. Furthermore, standard algorithms get reviewed by the
encryption community looking for weaknesses (back doors that make
them easy to reverse engineer).

from a usefulness perspective because of stale-dating of
information.

DISTRIBUTION

The basic idea behind secret key encryption is the
following:

1. The encryption algorithm should be secure (i.e.
one-way).

2. You don’t have to keep the algorithm a secret.

3. It should only be able to be decrypted by use of a secret
key.

4. You do need to keep the key a secret.

5. To increase the security of the contents, you lengthen
the size of the key.

The next question arises: how do you distribute the key to
your recipients? And what do you do if you want to update
your key? Do you have to send them a letter containing
it, talk on the telephone and verbalize it, or maybe send a
representative on horseback carrying a new key? That’s a bit
of a hassle.

This is where public key encryption comes in. Whereas with
secret key encryption, the same key is used to encrypt the
message as to decrypt it, with public key encryption, you
use two different keys in the process: one to encrypt and one
to decrypt. The public key algorithm is similar to secret key
encryption except that the keys are pairs and are designed to
work together. You cannot decrypt a message encoded with
one key without the other (if you lose one, you’re out of
luck). The keys are unique (or nearly unique) to each other.
Suppose that Bob wanted to send an encrypted message to
Alice. Here’s how the process works:

1. Alice picks two keys and makes one public and keeps
the other private.

2. Bob asks Alice for her public key, and Alice gives it to
him.

3. Bob encrypts the message with Alice’s public key and
transmits the message to Alice.

4. Alice receives the message and decrypts it with her
private key. Alice is the only one that can decrypt the
message with her private key.

Note that after Bob encodes his message, he can’t decrypt it
with the public key to double-check its contents. Once it’s
encoded, it’s encoded and he can’t check it over. So, Bob
can transmit the message to Alice and, just like secret key
encryption, without the secret key to decrypt the message,
the message contents are protected if it is intercepted in

VIRUS BULLETIN www.virusbtn.com

20 SEPTEMBER 2010

transit by an unintended party. Eventually, it could be
broken but it would be time-prohibitive to do so.

Public key encryption solves the problem of key distribution.
Using public key encryption, you don’t have to worry about
distributing your key to others, they simply ask you for
your public key, you give it to them and then they send you
the message. Note that you can use either key to encrypt or
decrypt, but you have to keep one of them secret. Again, the
strength of this process is that you don’t have to keep the
algorithm or the public key secret, only your private key.

DIGITAL SIGNATURES
However, recall that either key can be used to encrypt and
decrypt. That is, we can encrypt with the private key and
decrypt with the public key. This means that anyone can
intercept the message, and anyone (with knowledge of the
public key) can then read the message. Why would we
want to do this? Don’t we always want to keep the message
contents a secret? As it turns out, there are times when we
don’t care about keeping the contents a secret, we only care
about who encrypted the message.

This brings us to the concept of a digital signature. In real
life, a signature is something that does the following:

1. Provides proof that a person authorized the contents of
the document.

2. Is unique to the individual.

If a document is signed with a person’s signature (such as
Tony’s signature), I am not concerned about the contents of

Figure 3: Public key encryption2.

2 Image from http://www.data-processing.hk/uploads/images/public_
key_encryption%281%29.jpg.

the document (his letter to me), I am only concerned that
Tony authorized the letter, and that the signature is unique
to him.

Public key encryption allows us to digitally sign a
document. Here is how the process of authentication works
between Bob and Alice:

1. Bob creates a document and signs it with his signature
(i.e. ‘I am Bob and I signed this document’).

2. Bob encrypts the document with his private key and
sends it to Alice.

3. Alice receives the message, reportedly from Bob, and
asks Bob for his public key. Bob sends it to Alice.

4. Alice takes the public key and decrypts the message.
The contents of the message contain Bob’s signature,
which verifi es that the message came from Bob.

What would happen if Bob sent a key that was not part of
the public/private key pair? Assume someone claims to be
Bob and sent Alice a message. Alice asks the real Bob for his
public key, who sends it to Alice. Alice decrypts the message,
but because Bob’s public key only works with his private key,
the contents of the message do not decrypt properly. Alice
judges that the message did not actually come from Bob.

If the contents of the message did decrypt properly, then
Alice could have judged that the message did come from
Bob. Since the keys can only work in pairs, only the private
key that was used to encrypt the message could have been
the one used to create the signature, and only the public
key could have decrypted it. In other words, encrypting a
message with a private key allows others with a public key
to verify (authenticate) the original signer of a message.

In the world of email, if Tony were to send a message to me,
it might look something like the following3:

1. Tony decides that he will proceed to sign all of his
messages with the following signature: ‘I am Tony and
I approve this message’. He uploads the signature to his
public DNS at diamond.net as well as his public key4.

2. Tony next wants to send me a message. At the bottom
of it, he adds a signature – ‘I am Tony and I approve
this message’. He places it between two XML tags
which makes it easy for me to parse:

From the desk of <person>tony@diamond.net</person>

Hey Terry, you’re an awesome person.

<signature>
I am Tony and I approve this message.
</signature>

3 There is no actual protocol that uses this fl ow of events, it is for
illustrative purposes.
4 This means that there are two entries in DNS – a secret key and a clear
text signature establishing Tony’s identity.

VIRUS BULLETIN www.virusbtn.com

21SEPTEMBER 2010

3. Tony encrypts the signature with his private key using
the TZFA5 algorithm. He does not encrypt the entire
message, only his signature. It now looks like the
following:
From the desk of <person>Tony</person>

Hey Terry, you’re an awesome person.

<signature>
ksxal;q1254naa;lkasdf\a;kz7a890asd\2;
</signature>

 He then proceeds to send me the email.

4. I receive the message and I don’t bother to do an SPF
check. Instead, I see that Tony has placed his name
between the <person> XML tags. I extract the signature
between the <signature> tags, trimming any leading
and trailing white space. I see that the message is
purportedly from tony@diamond.net and since there is
a signature at the bottom, I attempt to decrypt it.

5. I retrieve Tony’s public key which is stored in public
DNS at diamond.net. I run the TZFA algorithm on the
contents of the signature and it reads the following: ‘I
am Tony and I approve this message’.

6. I proceed to retrieve Tony’s clear text signature from
DNS. I compare the signature from the email against
the one from DNS. The two of them match, and I
decide that the message really did come from Tony. My
day has just got better because my friend has told me
I’m an awesome person.

In this example, nobody could ever send me a message
where the signature decrypts to ‘I am Tony and I approve
this message’ while claiming to be from the person
tony@diamond.net. The public key only works to decrypt
messages encrypted with Tony’s private key. If someone
attempted to forge the message and encrypt it with a
different secret key, then when I decrypted the signature it
would be a different string of text and it would not match
Tony’s signature which he had uploaded to DNS.

Digital signatures solve the problem of email forwarding;
you no longer have to identify the correct source IP address
of the mail. So long as the originator of the message always
adds their signature and the signature can be extracted6,
you will be able to validate it. Mail can be forwarded
any number of times, but as long as the contents of the
signature are not modifi ed, it will always be properly
validated. The message is validated securely and reliably by
the contents, not the sending IP. It is not spoofable in any
practical sense.

Similarly, with digital signatures, a domain doesn’t have to
tie all of its outbound mail to a particular set of IPs, it only

5 Terry Zink’s Fictional Algorithm.
6 A signing algorithm generally specifi es how to extract the signature.

needs to ensure that it signs with the same private key. If IPs
change, it won’t matter because it is with the private/public
key pair that mail is validated, not a rotating set of IPs. To
be sure, keys need to be rotated every so often, but you can
add more servers and outbound IPs with less overhead. The
receivers of your mail will be able to validate it with a DNS
query to the sending domain without worrying about your
IP addresses.

A word of caution, however. Digital signatures work to
establish identity and trust. They do not necessarily work to
establish forgery:

1. If a message comes to me purportedly from Tony and
does not contain a signature, it doesn’t mean that the
message didn’t come from him (i.e. is being spoofed).
He may have not signed this particular message.
Perhaps he forgot, or perhaps he is in the process of
rotating keys, or doing server maintenance and didn’t
have time to update the keys.

2. If a message comes to me purportedly from Tony and
does contain a signature, but the signature doesn’t
validate properly (i.e. doesn’t match what he has
uploaded in DNS), it doesn’t mean that the message
didn’t come from him. The signature may have the
wrong private/public key pair (i.e. a misconfi guration),
or it could mean that the message was modifi ed in
transit since changing characters in a string affects
how it is decrypted. Modifi cations in transit can be
intentional (such as line wrapping by a mail transfer
agent) or unintentional (such as line noise that changes
the bit stream).

This example of digital signature validation is essentially
what is done in the actual world of email. The discussion
on the main technology used to do it, Domain Keys
Identifi ed Mail, or DKIM, will have to wait until next
month.

REFERENCES

[1] Zink, T. What’s the deal with sender authentication?
Part 1. Virus Bulletin, June 2010, p.7.
http://www.virusbtn.com/pdf/
magazine/2010/201006.pdf.

[2] Zink, T. What’s the deal with sender authentication?
Part 2. Virus Bulletin, July 2010, p.16.
http://www.virusbtn.com/pdf/
magazine/2010/201007.pdf.

[3] Zink, T. What’s the deal with sender authentication?
Part 3. Virus Bulletin, August 2010, p.16.
http://www.virusbtn.com/pdf/
magazine/2010/201008.pdf.

VIRUS BULLETIN www.virusbtn.com

22 SEPTEMBER 2010

VBSPAM COMPARATIVE REVIEW
SEPTEMBER 2010
Martijn Grooten

My spam isn’t the same as your spam, which then isn’t the
same as the spam of the man playing with his iPhone next
to you on the bus. That isn’t too surprising: our respective
email addresses may have ended up on different spammers’
lists, and different spammers send different spam. But
spam sent to addresses on one domain also differs from that
sent to addresses on a different domain, and even groups
of domains – where one might expect such differences to
average out – receive spam that differs signifi cantly.

We have always kept this in mind when running our
anti-spam tests. Since we wanted the tests to provide a
measure of performance that would be relevant to any
organization, we didn’t want to use the spam sent to a
single domain, or even group of domains. This is the reason
why we have been using Project Honey Pot’s spam feed
for our tests. Project Honey Pot receives spam sent to a
large number of spam traps on a large number of domains,
distributed all over the world. By using this feed, we can be
sure that products are being tested against spam that isn’t
any more likely to be received by someone in the UK than
by someone in, say, New Zealand.

However, we always like to see things from a different
perspective, and this is why we are very pleased to have
developed a relationship with Abusix, a German company
that also manages a large number of spam traps. From this
test onwards, Abusix will provide us with a second spam
corpus; in this test, and in all future tests, products will see
spam from both streams (as well as a number of legitimate
emails) and will be required to fi lter all of these emails
correctly.

This month’s test included 19 full solutions and one partial
solution. For various reasons, a number of products that
have participated in previous tests decided to sit this one
out, but most of them expect to be back on the test bench
next time. All of the full solutions tested this month
achieved a VBSpam award. However, for several products
there is still signifi cant room for improvement and no
doubt their developers will be working hard to see their
products move towards the top right-hand corner of the
VBSpam quadrant.

THE TEST SET-UP
The test methodology can be found at
http://www.virusbtn.com/vbspam/methodology/. Email
was sent to the products in parallel and in real time, and
products were given the option to block email pre-DATA.
Five products chose to make use of this option.

As in previous tests, the products that needed to be installed
on a server were installed on a Dell PowerEdge R200,
with a 3.0GHz dual core processor and 4GB of RAM. The
Linux products ran on SuSE Linux Enterprise Server 11;
the Windows Server products ran on either the 2003 or the
2008 version, depending on which was recommended by
the vendor.

To compare the products, we calculate a ‘fi nal score’,
defi ned as the spam catch (SC) rate minus three times the
false positive (FP) rate. Products earn VBSpam certifi cation
if this value is at least 96:

SC - (3 x FP) ≥ 96

THE EMAIL CORPUS
The test ran from midnight on 29 August 2010 to midnight
on 6 September 2010, a period of eight full days. This was

COMPARATIVE REVIEW

Average spam catch rate throughout the test.

VIRUS BULLETIN www.virusbtn.com

23SEPTEMBER 2010

a shorter testing period than usual. A number of system
crashes had caused the test network to be unreliable for
several days after the test was initially started, and rather
than using results from periods between the crashes when
the network appeared to be working well, we decided
to err on the side of caution and restart the whole test.
The addition of a second spam stream and an increase
in the size of the ham corpus gave us quantities of email
comparable to those of previous tests despite the shorter
test period.

The corpus contained 211,968 emails, 209,766 of which
were spam. Of these spam emails 148,875 were provided
by Project Honey Pot and 60,891 were provided by Abusix;
in both cases they were relayed in real time, as were all
legitimate messages, of which there were 2,202. The
introduction of some new mailing lists (see VB, May 2010,
p.24 for details), some of which are in foreign languages
not previously included, means that seven out of the ten
most commonly spoken languages in the world are now
represented in the ham corpus.

The graph on the previous page shows the average spam
catch rate for all products during every hour that the test ran
(with the best and worst performing products removed from
the computation of the averages). The graph shows that
spam was harder to fi lter in certain periods than in others;
for instance new spam campaigns tend to be harder to fi lter
than ones that have been running for a while.

RESULTS

Anubis Mail Protection Service

SC rate: 99.93%

SC rate (image spam): 99.77%

SC rate (large spam): 99.63%

SC rate pre-DATA: N/A

FP rate: 0.05%

Final score: 99.80

Lisbon-based AnubisNetworks, the largest
email security provider in Portugal, made
a good debut in the previous test. The
product’s developers, however, were only
mildly satisfi ed with the test results as
they believed the product was capable of
better. They were right – this month the
product’s spam catch rate increased, and
the false positive rate was reduced to just a
single missed email. With the second highest fi nal score of
this test, the developers should be very pleased with these
results and the accompanying VBSpam award.

BitDefender Security for Mail Servers 3.0.2

SC rate: 99.91%

SC rate (image spam): 99.81%

SC rate (large spam): 99.20%

SC rate pre-DATA: N/A

FP rate: 0.00%

Final score: 99.91

I like it when developers have confi dence in
their product, and BitDefender’s developers
demonstrated plenty of confi dence when
they were among the fi rst to submit their
product to the VBSpam tests in the early
days. Despite this, they have never stopped
trying to fi nd ways to improve the product
and have always been eager to hear
feedback on its performance. BitDefender
is the only product to have won a VBSpam award in every
single VBSpam test – and with one of the highest catch rates
in this test, and no false positives, it outperforms all other
products and achieves the highest fi nal score this month.

Fortinet FortiMail

SC rate: 98.44%

SC rate (image spam): 97.34%

SC rate (large spam): 95.98%

SC rate pre-DATA: N/A

FP rate: 0.05%

Final score: 98.30

One of the products that has been fi ltering
mail quietly ever since its introduction to
the tests, FortiMail wins its eighth VBSpam
award in as many attempts. It does so
with a nicely improved performance,
demonstrating that the product’s developers
are keeping up with the latest spam
campaigns.

Kaspersky Anti-Spam 3.0

SC rate: 98.30%

SC rate (image spam): 98.25%

SC rate (large spam): 97.37%

SC rate pre-DATA: N/A

FP rate: 0.05%

Final score: 98.16

Neither the new ham nor the new spam
stream proved to be a problem for Kaspersky.

VERIFIED

VERIFIED

VERIFIED

VERIFIED

VIRUS BULLETIN www.virusbtn.com

24 SEPTEMBER 2010

The company’s Linux product saw its false positive rate
improve, while barely compromising on the spam catch rate.
Kaspersky easily wins another VBSpam award.

Libra Esva 2.0

SC rate: 99.96%

SC rate (image spam): 99.92%

SC rate (large spam): 99.71%

SC rate pre-DATA: 97.93%

FP rate: 0.32%

Final score: 99.01

Once again, Libra Esva had one of the
highest spam catch rates of all products.
Compared to previous tests, the product
scored a slightly higher false positive
rate – whilst this is something for the
developers to pay attention to, the FP rate
was still only average. With another very
respectable fi nal score, the Italian product
wins its third consecutive VBSpam award.

M86 MailMarshal SMTP
SC rate: 99.97%

SC rate (image spam): 99.96%

SC rate (large spam): 99.93%

SC rate pre-DATA: N/A

FP rate: 0.5%

Final score: 98.47

M86’s MailMarshal blocked the second
largest amount of spam of all the products
in this test, which is quite an achievement.
Unfortunately, the product also missed
almost a dozen legitimate emails, which
lowered its fi nal score quite signifi cantly. It
was still decent though, earning the product
its sixth VBSpam award, but the developers
will need to concentrate on reducing the FP
rate, while not compromising too much on the amount of
spam caught.

McAfee Email Gateway (formerly IronMail)
SC rate: 97.81%

SC rate (image spam): 93.08%

SC rate (large spam): 96.85%

SC rate pre-DATA: N/A

FP rate: 0.45%

Final score: 96.45

McAfee’s Email Gateway Appliance
suffered what appeared to be a
temporary glitch during this test – with a
disappointing spam catch rate towards the
start of the test improving to see scores
of over 99% during the fi nal days of the
test. Despite a small number of false
positives, the product still earns a VBSpam
award, but the product’s developers will
no doubt be working hard to determine the cause of the
earlier problems and to ensure its spam catch rate remains
consistently high in future.

McAfee Email and Web Security Appliance

SC rate: 99.05%

SC rate (image spam): 92.98%

SC rate (large spam): 90.20%

SC rate pre-DATA: N/A

FP rate: 0.27%

Final score: 98.23

McAfee’s Email and Web Security
Appliance achieved a VBSpam award
in the previous test, but with a rather
low fi nal score. It was good to see that
this appears to have been a one-off
dip, rather than a serious problem with
the installation; a high spam catch rate
combined with a small handful of false
positives easily earns the product its
seventh VBSpam award.

MessageStream

SC rate: 99.08%

SC rate (image spam): 99.68%

SC rate (large spam): 99.56%

SC rate pre-DATA: N/A

FP rate: 0.09%

Final score: 98.81

As a product whose customers are based
mostly in the Anglo-Saxon world, correctly
fi ltering email in foreign languages may
not be a high priority for MessageStream.
However, in an industry where the devil
is in the details, the developers have taken
good care of even these details: a spam
catch rate of over 99%, combined with just
two false positives, means that the hosted
solution more than deserves its eighth VBSpam award.

VERIFIED

VERIFIED

VERIFIED

VERIFIED

VERIFIED

VIRUS BULLETIN www.virusbtn.com

25SEPTEMBER 2010

Messaging Architects M+Guardian

SC rate: 99.95%

SC rate (image spam): 99.94%

SC rate (large spam): 99.85%

SC rate pre-DATA: 94.89%

FP rate: 0.91%

Final score: 97.22

Quite understandably, M+Guardian’s
developers were not happy with their
product’s performance in the last test
– in which it failed to achieve a VBSpam
award. They looked into the settings of
the appliance and among the changes they
made was to turn on XCLIENT; this way
they could use pre-DATA fi ltering, which
they believe is one of the core benefi ts of
the product.

Indeed, almost 94.9% of the spam was blocked this way,
while the subsequent content fi ltering left less than 0.1%
of spam unfi ltered. An excellent spam catch rate, and
M+Guardian easily reclaims its VBSpam award. However,
there will be some disappointment for the developers over
an incorrectly blocked domain which accounted for 15 of
the 20 false positives.

Pro-Mail (Prolocation)

SC rate: 98.28%

SC rate (image spam): 99.66%

SC rate (large spam): 93.93%

SC rate pre-DATA: N/A

FP rate: 0.05%

Final score: 98.15

Like several anti-spam solutions, Pro-Mail, the hosted
solution that debuted in the last test, classifi es email into not

VERIFIED

True negative
False

positive
FP rate False negative True positive SC rate Final score

AnubisNetworks 2201 1 0.05% 144 233321 99.93% 99.80

BitDefender 2202 0 0.00% 192 233232 99.91% 99.91

FortiMail 2201 1 0.05% 3281 229721 98.44% 98.30

Kaspersky 2201 1 0.05% 3567 229709 98.30% 98.16

Libra Esva 2195 7 0.32% 76 233387 99.96% 99.01

M86 MailMarshal 2191 11 0.50% 60 233408 99.97% 98.47

McAfee Email Gateway 2192 10 0.45% 4587 207284 97.81% 96.45

McAfee EWS 2196 6 0.27% 1999 231362 99.05% 98.23

MessageStream 2200 2 0.09% 1931 231179 99.08% 98.81

Messaging Architects
M+Guardian

2182 20 0.91% 111 233291 99.95% 97.22

Pro-Mail 2201 1 0.05% 3607 229309 98.28% 98.15

Sophos 2199 3 0.14% 173 233273 99.92% 99.51

SPAMfi ghter 2199 3 0.14% 2795 230473 98.67% 98.26

SpamTitan 2188 14 0.64% 1942 231321 99.07% 97.17

Symantec Brightmail 2202 0 0.00% 745 232511 99.64% 99.64

The Email Laundry 2197 4 0.18% 392 233014 99.81% 99.27

Vade Retro 2194 8 0.36% 1175 232230 99.44% 98.35

Vamsoft ORF 2194 8 0.36% 1418 231616 99.32% 98.24

Webroot 2188 14 0.64% 18 233294 99.99% 98.08

Spamhaus ZEN 2202 0 0.00% 18119 211304 91.36% 91.36

VIRUS BULLETIN www.virusbtn.com

26 SEPTEMBER 2010

two but three categories: ham, spam and
‘possibly spam’. Messages that fall into the
‘possibly spam’ category are not blocked
by the product but, as a header is added,
can be put into a separate folder. Emails
in this category were considered to have
been marked as ham in this test, which may
explain the product’s relatively low spam
catch rate. It was still decent enough for the
product to win a VBSpam award though, and with just one
false positive, it would be interesting to see what effect a
stricter fi ltering policy would have.

Sophos Email Appliance

SC rate: 99.92%

SC rate (image spam): 99.64%

SC rate (large spam): 99.78%

SC rate pre-DATA: N/A

FP rate: 0.14%

Final score: 99.51

There is a reason why we run an anti-spam test every
two months: while one decent performance is certainly
a promising sign, what really matters is that a product

VERIFIED

Project Honey
Pot

Abusix Image spam* Large spam* pre-DATA† St. dev‡

FN SC rate FN SC rate FN SC rate FN SC rate FN SC rate

AnubisNetworks 138 99.91% 6 99.99% 11 99.77% 5 99.63% 0.14

BitDefender 112 99.93% 80 99.87% 9 99.81% 11 99.20% 0.15

FortiMail 2449 98.36% 832 98.63% 126 97.34% 55 95.98% 0.89

Kaspersky 2680 98.21% 887 98.54% 83 98.25% 36 97.37% 2.38

Libra Esva 58 99.96% 18 99.97% 4 99.92% 4 99.71% 4452 97.93% 0.09

M86 MailMarshal 39 99.97% 21 99.97% 2 99.96% 1 99.93% 0.11

McAfee Email
Gateway

4576 96.94% 11 99.98% 328 93.08% 43 96.85% 2.10

McAfee EWS 1891 98.73% 108 99.82% 333 92.98% 134 90.20% 1.38

MessageStream 1066 99.29% 865 98.58% 15 99.68% 6 99.56% 0.69

Messaging Architects
M+Guardian

100 99.93% 11 99.98% 3 99.94% 2 99.85% 10970 94.89% 0.13

Pro-Mail 2886 98.07% 721 98.82% 16 99.66% 83 93.93% 1.60

Sophos 144 99.90% 29 99.95% 17 99.64% 3 99.78% 0.22

SPAMfi ghter 1567 98.95% 1228 97.98% 139 97.07% 94 93.12% 2.55

SpamTitan 1423 99.05% 519 99.15% 2 99.96% 24 98.24% 1.10

Symantec
Brightmail

429 99.71% 316 99.48% 4 99.92% 4 99.71% 0.36

The Email
Laundry

336 99.78% 56 99.91% 2 99.96% 4 99.71% 11136 94.82% 0.24

Vade Retro 645 99.57% 530 99.13% 10 99.79% 27 98.02% 0.81

Vamsoft ORF 1232 99.18% 186 99.69% 46 99.03% 40 97.07% 0.51

Webroot 15 99.99% 3 100.00% 2 99.96% 9 99.34% 77506 63.92% 0.05

Spamhaus ZEN 10749 92.69% 7370 86.55% 378 92.03% 126 90.78% 18119 91.36% 3.35
* There were 4,743 spam messages containing images and 1,367 considered large; the two are not mutually exclusive.
† Pre-DATA fi ltering was optional and was applied on the full spam corpus.
‡ The standard deviation of a product is calculated using the set of its hourly spam catch rates.

VIRUS BULLETIN www.virusbtn.com

27SEPTEMBER 2010

manages to perform well repeatedly.
With four good sets of results in as many
VBSpam tests – each time achieving a fi nal
score among the top seven in the test – the
Sophos Email Appliance certainly satisfi es
that criterion and adds another VBSpam
award to its collection.

SPAMfi ghter Mail Gateway

SC rate: 98.67%

SC rate (image spam): 97.07%

SC rate (large spam): 93.12%

SC rate pre-DATA: N/A

FP rate: 0.14%

Final score: 98.26

It has been a while since I last needed
to log into the admin interface of
SPAMfi ghter. That is a good thing, but
what is even better is that the product’s
developers have been working on their
product in the meantime and upgrades
have been downloaded automatically. This
test saw improvements to both the spam
catch rate and the false positive rate and,
consequently, a signifi cant improvement to the product’s
fi nal score, winning SPAMfi ghter its sixth consecutive
VBSpam award.

SpamTitan

SC rate: 99.07%

SC rate (image spam): 99.96%

SC rate (large spam): 98.24%

SC rate pre-DATA: N/A

FP rate: 0.64%

Final score: 97.17

SpamTitan is one of several products that
suffered from more than a handful of false
positives in this test. False positives are
undesirable and customers are unlikely to
accept them unless the spam catch rate of
the product is exceptional. SpamTitan’s
spam catch rate is very good – pushing
the product’s fi nal score up to above the
VBSpam threshold – but the developers
will no doubt be spending some time scrutinizing the false
positive samples in an attempt to improve the product’s
position on the VBSpam quadrant.

Symantec Brightmail Gateway 9.0

SC rate: 99.64%

SC rate (image spam): 99.92%

SC rate (large spam): 99.71%

SC rate pre-DATA: N/A

FP rate: 0.00%

Final score: 99.64

A product that manages to increase an
already excellent spam catch rate, while
eliminating the single false positive that
pestered it in the previous test clearly
deserves a VBSpam award. Symantec’s
Brightmail Gateway virtual appliance did
exactly that, completing this test with the
third highest fi nal score and the product’s
fi fth VBSpam award.

The Email Laundry

SC rate: 99.81%

SC rate (image spam): 99.96%

SC rate (large spam): 99.71%

SC rate pre-DATA: 94.82%

FP rate: 0.18%

Final score: 99.27

The signifi cant drop in The Email
Laundry’s pre-DATA catch rate since the
last test deserves some explanation. The
drop does not necessarily mean that the
product’s spam-fi ltering performance has
worsened, but that spam has changed and,
consequently, blocking on senders’ domains
and IP addresses wasn’t as effective this
month as it was in previous months.

What matters to the user is the percentage of spam that
makes it to the inbox and this has decreased a fraction.
There were a few false positives this time, but not enough
to stop the hosted solution from achieving the fi fth highest
fi nal score and earning a VBSpam award.

Vade Retro Center
SC rate: 99.44%

SC rate (image spam): 99.79%

SC rate (large spam): 98.02%

SC rate pre-DATA: N/A

FP rate: 0.36%

Final score: 98.35

VERIFIED

VERIFIED

VERIFIED

VERIFIED

VERIFIED

VIRUS BULLETIN www.virusbtn.com

28 SEPTEMBER 2010

Vade Retro is the market leader in France,
but international spam is no problem
for the product and it saw its catch rate
improve signifi cantly this month. With a
small number of exceptions, legitimate
email in foreign languages proved no
problem either. The product thus wins its
third VBSpam award in as many tests and
with its best results to date.

Vamsoft ORF
SC rate: 99.32%

SC rate (image spam): 99.03%

SC rate (large spam): 97.07%

SC rate pre-DATA: N/A

FP rate: 0.36%

Final score: 98.24

No doubt ORF’s developers will be
frustrated with two senders in this month’s
ham corpus, each of which caused four
false positives, thus breaking their zero
false positive record to date. However,
it should be seen as a gentle reminder to
all developers that no one can ignore the
problem of false positives. Moreover,
an improved spam catch rate means the
product still achieved a decent fi nal score and thus wins its
third VBSpam award.

Webroot Email Security Service

SC rate: 99.99%

SC rate (image spam): 99.96%

SC rate (large spam): 99.34%

SC rate pre-DATA: 63.92%

AnubisNetworks

BitDefender

FortiMail
Kaspersky

Libra EsvaM+Guardian
M86 MailMarshal

McAfee Email Gateway

McAfee EWS

MessageStream

Pro-Mail

Sophos

SPAMfighter

SpamTitan

Symantec Brightmail

The Email Laundry

Vade Retro

Vamsoft ORF

Webroot

97.50%

97.75%

98.00%

98.25%

98.50%

98.75%

99.00%

99.25%

99.50%

99.75%

100.00%

0.00%0.20%0.40%0.60%0.80%1.00%

Sp
am

 c
at

ch
 r

at
e

False positive rate

VBSpam quadrant September 2010

VERIFIEDVERIFIED

VIRUS BULLETIN www.virusbtn.com

29SEPTEMBER 2010

FP rate: 0.64%

Final score: 98.08

Webroot was one of fi ve products fi ltering
email pre-DATA. It did not block as many
emails during this stage as other products
did, but this is not a sign that something is
wrong with the product: it refl ects a choice
made by the developers as to where spam
is fi ltered. And with more spam blocked
than any other product, Webroot’s choice
appears to be a good one. Unfortunately,
there were a number of false positives this time, but the
product easily earned another VBSpam award – its seventh
to date.

Spamhaus ZEN

SC rate: 91.36%

SC rate (image spam): 92.03%

SC rate (large spam): 90.78%

SC rate pre-DATA: 91.36%

FP rate: 0.00%

Final score: 91.36

We owe an apology to The Spamhaus Project, as a bug on
our side caused the Spamhaus DBL – the domain blacklist
that in previous tests worked so well alongside Spamhaus’s
ZEN blacklist – to fail during the running of this test. This is
a shame, especially since Spamhaus ZEN – which combines
three IP blacklists – performed signifi cantly less well here
than in previous tests.

It is important to realize that Spamhaus is a partial solution
and is not supposed to be applied on its own. And while,
together with the DBL, it is still recommended that the
blacklists be supplemented with a content fi lter, the DBL
is supposed to work especially well together with the
organization’s IP blacklists. What we can see is that during
a period when pre-DATA fi ltering has produced worse
results than during previous periods, Spamhaus is still a
reliable fi rst line of defence against spam – in particular
because, once again, no legitimate emails were blocked.

CONCLUSION

For some products, the addition of a second spam stream
and/or the new emails added to the ham corpus this month
has given them something to work on; developers of other
products will be trying to repeat this month’s performance.
As always, we will be working hard too – perhaps even
harder than before. After nine successful tests, the VBSpam
set-up is ready to go ‘2.0’.

For readers of the comparative reviews, little to nothing
will change, but the new set-up will ensure greater
system stability and allow room for the tests to grow
bigger. Moreover, the provision of feedback on products’
performance to the participants – most of which has been
done manually until now – will be semi-automated, saving
considerable time.

The next test is due to run throughout October, with
results published in the November issue of Virus Bulletin.
The deadline for submission of products will be Friday
24 September. Any developers interested in submitting a
product should email martijn.grooten@virusbtn.com.

VERIFIED

Products ranked by
fi nal score

Final
score

BitDefender 99.91

AnubisNetworks 99.80

Symantec Brightmail 99.64

Sophos 99.51

The Email Laundry 99.27

Libra Esva 99.01

MessageStream 98.81

M86 MailMarshal 98.47

Vade Retro 98.35

FortiMail 98.30

SPAMfi ghter 98.26

Vamsoft ORF 98.24

McAfee EWS 98.23

Kaspersky 98.16

Pro-Mail 98.15

Webroot 98.08

M+Guardian 97.22

SpamTitan 97.17

McAfee Email Gateway 96.45

SEPTEMBER 2010

VIRUS BULLETIN www.virusbtn.com

END NOTES & NEWS

30

ADVISORY BOARD
Pavel Baudis, Alwil Software, Czech Republic

Dr Sarah Gordon, Independent research scientist, USA

Dr John Graham-Cumming, Causata, UK

Shimon Gruper, NovaSpark, Israel

Dmitry Gryaznov, McAfee, USA

Joe Hartmann, Microsoft, USA

Dr Jan Hruska, Sophos, UK

Jeannette Jarvis, Microsoft, USA

Jakub Kaminski, Microsoft, Australia

Eugene Kaspersky, Kaspersky Lab, Russia

Jimmy Kuo, Microsoft, USA

Costin Raiu, Kaspersky Lab, Russia

Péter Ször, Independent researcher, USA

Roger Thompson, AVG, USA

Joseph Wells, Independent research scientist, USA

SUBSCRIPTION RATES
Subscription price for 1 year (12 issues):

• Single user: $175

• Corporate (turnover < $10 million): $500

• Corporate (turnover < $100 million): $1,000

• Corporate (turnover > $100 million): $2,000

• Bona fi de charities and educational institutions: $175

• Public libraries and government organizations: $500
Corporate rates include a licence for intranet publication.

See http://www.virusbtn.com/virusbulletin/subscriptions/ for
subscription terms and conditions.

Editorial enquiries, subscription enquiries, orders and payments:
Virus Bulletin Ltd, The Pentagon, Abingdon Science Park, Abingdon,
Oxfordshire OX14 3YP, England
Tel: +44 (0)1235 555139 Fax: +44 (0)1865 543153
Email: editorial@virusbtn.com Web: http://www.virusbtn.com/
No responsibility is assumed by the Publisher for any injury and/or
damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods,
products, instructions or ideas contained in the material herein.
This publication has been registered with the Copyright Clearance
Centre Ltd. Consent is given for copying of articles for personal or
internal use, or for personal use of specifi c clients. The consent is
given on the condition that the copier pays through the Centre the
per-copy fee stated below.
VIRUS BULLETIN © 2010 Virus Bulletin Ltd, The Pentagon, Abingdon
Science Park, Abingdon, Oxfordshire OX14 3YP, England.
Tel: +44 (0)1235 555139. /2010/$0.00+2.50. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted in any
form without the prior written permission of the publishers.

The 6th International Conference on IT Security Incident
Management & IT Forensics will be held 10–12 May 2011 in
Stuttgart, Germany. See http://www.imf-conference.org/.

SOURCE Seattle 2011 will be held 16–17 June 2011 in Seattle,
WA, USA. For more details see http://www.sourceconference.com/.

VB2011 will take place 5–7 October 2011 in Barcelona, Spain.
See http://www.virusbtn.com/conference/vb2011/.

The 8th German Anti Spam Summit takes place 15–16
September 2010 in Wiesbaden, Germany. The event – covering
a number of spam and other Internet-related topics – will be held
mainly in English. Participation is free of charge, but registration is
required. See http://www.eco.de/veranstaltungen/7752.htm.

SOURCE Barcelona will take place 21–22 September 2010 in
Barcelona, Spain. See http://www.sourceconference.com/.

VB2010 will take place 29 September to 1 October 2010 in
Vancouver, Canada. For the full conference programme including
abstracts for all papers and online registration, see
http://www.virusbtn.com/conference/vb2010/.

A Mastering Computer Forensics masterclass will take place
4–5 October 2010 in Jakarta, Indonesia. For more information see
http://www.machtvantage.com/computerforensics.html.

MAAWG 20th General Meeting takes place 4–6 October 2010 in
Washington, DC, USA. MAAWG meetings are open to members
and invited guests. For invite requests see http://www.maawg.org/
contact_form.

Hacker Halted USA takes place 9–15 October 2010 in Miami, FL,
USA. For more information see http://www.hackerhalted.com/.

HITBSecConf Malaysia takes place 11–14 October 2010 in
Kuala Lumpur, Malaysia. For more information see
http://conference.hackinthebox.org/hitbsecconf2010kul/.

RSA Conference Europe will take place 12–14 October 2010 in
London, UK. For details see http://www.rsaconference.com/2010/
europe/index.htm.

The fi fth annual APWG eCrime Researchers Summit will
take place 18–20 October 2010 in Dallas, TX, USA. For more
information see http://www.ecrimeresearch.org/.

Malware 2010, The 5th International Conference on Malicious
and Unwanted Software, will be held 20–21 October 2010 in
Nancy, France. For details see http://www.malware2010.org/.

CSI 2010, takes place 26–29 October 2010 in National Harbor,
MD, USA. For details see http://www.csiannual.com/.

The Computer Forensics Show takes place 1–2 November 2010
in San Francisco, CA, USA. For more information see
http://www.computerforensicshow.com/.

Infosecurity Russia takes place 17–19 November 2010 in Moscow,
Russia. See http://www.infosecurityrussia.ru/.

AVAR 2010 will be held 17–19 November 2010 in Nusa Dua, Bali,
Indonesia. See http://www.aavar.org/avar2010/.

The VB ‘Securing Your Organization in the Age of Cybercrime’
Seminar takes place 25 November 2010 in London, UK. The
seminar gives IT professionals an opportunity to learn from and
interact with security experts at the top of their fi eld and take away
invaluable advice and information on the latest threats, strategies and
solutions for protecting their organizations. For programme details
and to book online see http://www.virusbtn.com/seminar/.

The 26th Annual Computer Security Applications Conference
will take place 6–10 December 2010 in Austin, TX, USA. See
http://www.acsac.org/2010/.

SOURCE Boston 2011 will be held 20–22 April 2011 in Boston,
MA, USA. For more details see http://www.sourceconference.com/.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

