
Editor: Edward Wilding

Technical Editor: Fridrik Skulason, University of Iceland

Editorial Advisors: Jim Bates, Bates Associates, UK, Phil Crewe, Fingerprint, UK, Dr. Jon David, USA, David Ferbrache, Information Systems Integrity & Security
Ltd., UK, Ray Glath, RG Software Inc., USA, Hans Gliss, Datenschutz Berater, West Germany, Ross M. Greenberg, Software Concepts Design, USA, Dr. Harold
Joseph Highland, Compulit Microcomputer Security Evaluation Laboratory, USA, Dr. Jan Hruska, Sophos, UK, Dr. Keith Jackson, Walsham Contracts, UK,
Owen Keane, Barrister, UK, Yisrael Radai, Hebrew University, Israel, John Laws, RSRE, UK, David T. Lindsay, Digital Equipment Corporation, UK, Martin
Samociuk, Network Security Management, UK, John Sherwood, Sherwood Associates, UK, Dr. Peter Tippett, Certus International Corporation, USA, Dr. Ken
Wong, PA Consulting Group, UK, Ken van Wyk, CERT, USA.

VIRUS BULLETIN ©1991 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

THE AUTHORITATIVE INTERNATIONAL PUBLICATION
ON COMPUTER VIRUS PREVENTION,

RECOGNITION AND REMOVAL

CONTENTS

EDITORIAL 2

TECHNICAL NOTES 3

THE VB CONFERENCE

Final Programme 4

INTEGRITY CHECKING

The Flawed Six Byte Method 6

PROGRAM TACTICS

Developing a Virus Scanner 7

IBM PC VIRUSES (UPDATES) 9

SOFTWARE STRATEGY

Defining Executable Code in the
Advent of Windows 10

VB PRESENTATIONS 11

VIRUS ANALYSES

1. INT13 - A New Level of
Stealthy Sophistication 12

2. Casino - Gambling With
Your Hard Disk 15

OPINION

TSR Monitors and Memory
Scanners - The ‘Playground’
Approach to Virus Detection 18

END-NOTES & NEWS 20

ISSN 0956-9979March 1991

VIRUS BULLETINPage 2

VIRUS BULLETIN ©1991 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

March 1991

EDITORIAL

The Fundamental Things Apply...

If patriotism is the last refuge of a scoundrel then fundamental
principles are the last refuge of the editor. Providing accurate,
reliable information and advice is a burden and a responsibil-
ity, particularly so if that information appears in a journal such
as VB which arrogantly defines itself as ‘authoritative’. To
commend the use of products, methods and procedures which
are not attested, and which could actually exacerbate the
problem, would be foolhardy in the extreme.

Dr. Harold Highland, commenting on the recent proliferation
of self-confessed virus ‘experts’ and exotic anti-virus gadgetry,
(Computers & Security, February 1991) quotes Mark Twain:

‘‘Be thankful for the fools for without them we could not
exist.’’

It is a singularly apt quotation to describe the attitude of those
software developers who take advantage of public ignorance in
the pursuit of a ‘quick buck’. A large number of anti-virus
software developers subscribe to VB, so the following discus-
sion may help their marketing departments and PR men avoid
potential battles with the Advertising Standards Authority or
equivalent advertising ‘watchdogs’ worldwide.

There follows a brief discourse on the sort of hyperbole and
potentially misleading statements which should set the alarm
bells ringing. As a brief aside, prospective purchasers should
summarily dismiss any promotional literature which incorpo-
rates selective quotations from VB product reviews, or other
evaluations which infer unqualified support for their product.
At least two product manufacturers have employed this ‘VB
endorsed’ tactic by the use of highly selective quotations. A
sound academic approach is appropriate here - always refer to
original sources!

A cursory examination of the most common claims often shows
them to be illusory - features cited as advantageous often
conflict with fundamental security practices while many
statements, when analysed, are meaningless.

Consider the following statements:

Detects all Known Viruses!

Prospective purchasers should cast a jaundiced eye over any
virus-specific product which ‘detects all known viruses’.
Known to whom and at what time? Presumably the virus is
known to the person who wrote it before the anti-virus product
developer. If not, they are obviously in league or one and the
same person. The statement is obviously fatuous - at any one
time the research community is oblivious to the development
and circulation of numerous computer viruses.

Detects all Unknown Viruses!

Many packages proceed with a highly contentious statement to
the effect that the software will ‘detect all unknown viruses’.
How do the developers know this? It is by no means impossible
for software to detect unknown viruses with a high degree of
assurance. One UK package has even gained certification to
this effect. However, any software claiming this capability will,
by necessity, employ a secure and extremely well-implemented
integrity checking system which must be configured properly
and maintained carefully. Given the relative complexity of this
approach, awkward questions are more than warranted in the
face of such claims.

Detects Viruses in Memory!

Certain software is said to detect viruses in memory. Again,
this is by no means impossible (although it is becoming
increasingly impracticable), but without access to the viruses
themselves, the user will be unable to test this claim. The
unsuspecting user is entirely at the mercy of the programmer’s
judgement, skill and quality-assurance procedures. To avoid
undertaking a lengthy vetting process (let alone the potential
embarrassment of failing to detect a resident virus), it is best to
invest in a clean write-protected system disk!

Disinfects all Viruses!

These products boast that they can ‘disinfect’ files. Some
disinfection programs overwrite infected files which is a
proven and effective method of destroying virus code. Other
programs adopt ‘surgical’ practices and attempt to remove the
virus and restore the infected file. Positive erasure (multiple
overwriting) is a sound practice in computer security, other
tactics are questionable. If a package uses ‘surgical’ disinfec-
tion, the infected file must be returned to its exact state prior to
its becoming infected. Overwriting viruses cannot be disin-
fected in this way. Again, the user is at the mercy of the
programmer and will have no way of proving these claims.

Ambiguous and misleading statements traditionally emanate
from marketing departments and it is, perhaps churlish to
decry even their more extreme assertions as scandalous.

However, anti-virus software developers are in the privileged
position of being able to issue statements with virtually no
possibility of their claims ever being put to the test. In this
respect they are unique within the software industry. The user
has little recourse to independent advice and cannot avail
himself of the virus code with which to test their products.

Only by preserving a healthy scepticism and sticking to
fundamental truths some of the more absurd assertions be
invalidated before they have any chance to gain credibility.

Finally, not to our great surprise “the universal anti-virus PC
security product” was received at the VB offices recently -
maybe this mean that all our problems are over.

Page 3

VIRUS BULLETIN ©1991 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

March 1991 VIRUS BULLETIN

TECHNICAL NOTES

Viruses in Disguise

The use of LZEXE, PKLITE, DIET and other compression
programs to hide viruses from scanners presents a continuing
threat. Reports of infected programs which have been packed
by these utilities and uploaded to Bulletin Board Systems have
become more common in the past few months.

Some anti-virus programs are able to unpack and scan com-
pressed files, but if they are not able to do so, they should at
least identify the file as “packed”, and alert the user to the
fact that it cannot be scanned for viruses.

One method used to disguise the MIX-2 virus was particularly
devious. The attacker took a pornographic text file, created a
self-extracting archive containing it and infected it with the
virus. The resulting file was then uploaded to a BBS. When the
program was run, it would only seem to create a text file named
SISTERS.TXT, but the virus was installed in memory, ready to
infect any program executed. The attacker assumed (correctly)
that people would not suspect a ‘text file’. Beware of self-
extracting archives, pornographic or otherwise!

Detecting V2P6

The encryption method used by the V2P6 is by far the most
variable of any known virus. Even the Whale virus with its 30
or more possible encryption methods can be detected with a set
of identification strings, but this is not practical for V2P6, as
the number of possible decryption routines is in the thousands.
The virus is a determined attempt to expose the vulnerability
of virus-specific scanning programs and has come close to
rendering this approach to virus detection obsolescent.
Detecting the virus is, nevertheless, still possible. A highly
technical algorithmic detection method has been developed by
VB’s Technical Editor, Fridrik Skulason. The information is
considered unsuitable for publication, but it will benefit bona
fide anti-virus software developers who should contact VB in
the UK or Skulason at the University of Iceland.

Write-Protection for Diskettes

Ray Glath of RG Software Systems in the United States has
submitted the following report:

“We regularly receive diskettes for analysis of suspected
viruses. Often, the diskettes are write-protected, or shall
we say, the user thinks they are write-protected because
they have placed tape over the write-enable notch on the
diskette.

Transparent Scotch Tape over the notch does not write-
protect a diskette. Neither does a piece of red tape write-
protect the diskette.The reasons for these methods being

ineffective are that floppy drives mostly use a technique of
shining a light on the area where the notch appears and
registering whether or not the light passes through. If the
light is “seen”, the diskette is write-enabled. Otherwise,
it is write-protected.

Similarly, there are drives that use a red Light Emitting
Diode for this decision process. In this type of drive, a red
coloured tab will write-enable the diskette.

To write-protect a diskette, use the silver or black write-
protect tabs which are usually supplied with new disk-
ettes. Or purchase write-protect tabs from your favourite
office supplies dealer. Don’t take short cuts.”

Glath’s advice to avoid short-cuts is unassailable. On 5.25 inch
floppy disks the application of the write-protect tab means that
nothing can be written to that disk. On 3.5 inch disks the
appearance of an open window on the sliding shutter indicates
that the disk is write-protected. Write-protection of diskettes is
a hardware function and, properly implemented, makes
software manipulation impossible.

However, there have been conflicting reports regarding the
(in)effectiveness of silver (or black) write-protect tabs on 5.35
inch floppy disks. Older drives use a mirror under the floppy
disk notch to reflect light back to the photo-sensitive element
next to the light source. Using a silver (or shiny black) write-
protect tab can reflect light and make the drive believe that the
disk is not write-protected. No such associated problems
have been reported with matt black write-protect tabs.

The best rule, if in doubt, is to attempt to copy a file onto a
disk write-protected with a tab (silver or black) of your
choosing. Take heed of Ray Glath’s warning, Scotch Tape
and other ‘home-brew’ remedies are not recommended!

Revolutionary Techniques?

There is the ever-present danger of being misled by the
announcement of ‘revolutionary’ but fundamentally flawed
new techniques. One such method was recently announced
which was based on an analysis of INT 21H calls, the register
values when the function is performed and the approximate
distance between the INT 21H calls in bytes.

At a recent conference, the developer of the technique de-
scribed how he had created numerous variants of the Jerusalem
virus, none of which were detected by existing scanners, but
which were consistently detected by his method.

Apart from the fact that not all viruses use INT 21H calls, it
must be noted that by modifying these viruses, for example by
swapping entire blocks of code, one could easily produce a
variant which would not be detected by this method, but which
would continue to be detected by the overwhelming majority of
pattern scanning programs.

As ever, the search for an all-encompassing solution goes on.

VIRUS BULLETINPage 4

VIRUS BULLETIN ©1991 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

March 1991

THE VIRUS BULLETIN CONFERENCE

Hotel de France, St. Helier, Jersey
12th-13th September 1991

CONFERENCE PROGRAMME

Thursday 12th September

8.15 - 9.15 Registration

9.15 - 9.30 Opening Address, Edward Wilding, Editor, Virus Bulletin, UK.

9.30 - 10.20 Dr. Jan Hruska, Sophos, UK.

Introduction to MS/DOS Viruses: Virus types, virus structure, payloads, hiding mechanisms, viruses on networks.

10.20 - 11.00 Vesselin Bontchev, Bulgarian Academy of Sciences.

The Bulgarian and Soviet Virus Factories: The sabotage mentality, methods by which East Bloc virus writers distribute
computer viruses to the West, the availability of virus source code, the impact on the national software industry.

11.00 - 11.30 Coffee

11.30 - 12.10 Ross Greenberg, Software Concepts Design , USA.

MS-DOS Anti-Virus Tools and Techniques: Specific defences against viruses - scanning programs, TSR monitors, static
analysis of malicious code, disinfection and inoculation routines.

12.10 - 12.50 Yisrael Radai, Hebrew University of Jerusalem , Israel.

Integrity Checking Methods: Checksumming techniques for anti-viral purposes - cryptographic checksums versus CRC
programs.

12.50 - 2.10 Lunch

2.10 - 2.50 Jim Bates, Computer Crime Unit , UK.

Disassembly, Forensics and Recovery: Tools and techniques to analyse the exact effects of virus code under test conditions,
‘armoured code’ to prevent disassembly, the hazards of analysis, disk utilities and post-attack recovery.

2.50 - 3.30 Steve White, IBM T. J. Watson Research Center , USA.

IBM’s Response: IBM’s anti-virus strategy, internal research and development efforts, worldwide monitoring of virus attacks
and the role of IBM’s High Integrity Research Laboratory.

3.30 - 4.00 Tea

4.00 - 4.30 Dr. Simon Oxley, Reuters, UK.

A Corporate Strategy: A worldwide education, training and awareness programme to minimise the virus problem - the
tactics to prevent, isolate and recover from virus attacks.

4.30 - 5.00 Mike Perryman, Manufacturers Hanover Trust , UK.

Software Control: Secure global distribution of anti-virus software from an office responsible for software security. Guide-
lines, controls and the software quality assurance process.

5.00 - 5.45 Fridrik Skulason, Technical Editor, Virus Bulletin, University of Iceland .

Future MS-DOS Viruses: An assessment of subversive programming techniques likely to be found in future generations of
computer viruses. Evasion and damage maximization techniques and their implication for detection and recovery.

Page 5

VIRUS BULLETIN ©1991 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

March 1991 VIRUS BULLETIN

Thursday Evening

7.30 - 8.00 Drinks reception, Hotel de France.

8.00 Gala Dinner, Hotel de France. Speaker: Sqn Ldr Martin Smith MBE, Royal Air Force.

Friday 13th September

9.30 - 10.10 John Norstad, North Western University , Illinois, USA.

The Macintosh Virus Threat: A survey of Macintosh viruses and anti-virus tools. Examination of probable future develop-
ments in virus programming and generic defences.

10.10 - 10.50 Ken van Wyk, CERT, USA.

CERT, The Computer Emergency Response Team: CERT was established in the wake of Robert Morris’s infamous worm
program which crippled the U.S. Internet network in 1988. The lessons learned from this incident are explained and the
organisation, structure and communications of a computer ‘SWAT team’ are outlined.

10.50 - 11.20 Coffee

11.20 - 12.00 David Ferbrache, Heriot Watt University , UK.

Unix: Trust and Mistrust: The Unix environment is used to demonstrate the weakness of discretionary access controls
(DAC) and the inadequacy of ‘Orange Book’ mandatory access controls (MAC) to prevent virus and worm propagation. Data
integrity and availability are shown to be low priorities under ITSEC criteria while formal software development and control is
proposed as the key to Unix security.

12.00 - 12.40 Professor Eugene Spafford, Purdue University , Indiana, USA.

Securing Unix: It is commonly believed that Unix systems are inherently insecure. This is largely because of the way the
systems are configured and administered rather than intrinsic shortcomings in the systems themselves. An examination of
standard Unix features which, when implemented correctly, will diminish the threat from malicious software and human
intrusion.

12.40 - 2.00 Lunch

2.00 - 2.40 Kent Anderson/Steve Rowley, European Security Programme Office, Digital UK .

Protecting Distributed Systems - The Digital Approach: Digital tools, procedures and guidelines to prevent virus and worm
attacks on distributed systems with particular reference to VAX/VMS, Unix and the management of PCs.

2.40 - 3.20 Martin Samociuk, Network Security Management , UK.

The Enemy Within: An examination of blackmail, extortion and espionage through logic bombs, Trojan horses and covert
channels, including case studies of criminal programming and corrupt work practices. The methods to combat and react to
these incidents are highlighted.

3.20 - 3.50 Tea

3.50 - 4.50 Panel Session

The speakers will answer questions from the floor.

4.50 Close of Conference

Full details are available from Petra Duffield, Conference Manager, Virus Bulletin Conference , 21 The Quadrant, Abingdon Science
Park, Oxfordshire OX14 3YS. Tel 0235 531889, Tel International +44 235 531889, Fax 0235 559935, Fax International +44 235
559935.

VIRUS BULLETINPage 6

VIRUS BULLETIN ©1991 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

March 1991

INTEGRITY CHECKING

The Flawed Six-Byte Method

An integrity checking program can be run periodically in order
to check the integrity of a system and its software. Under
normal circumstances the program, upon finding no anomolies,
simply displays a single “OK” indication to the user. How-
ever, under suspicious circumstances it will typically display a
(configurable) message similar to the following:

A virus infection is suspected on this computer -
please call PC-support (phone XXXX-XXXX)

Integrity checking programs determine whether system and
program file lengths, attributes and composition have been
altered in any way. If suspicious changes are detected the user
is informed, so he may diagnose the problem. V-ANALYST
(VB, October 1990) and VACCINE (VB, December 1990) are
examples of well-implemented programs of this type.

As an example of a flawed approach to integrity checking
which highlights the difficulties involved in developing a
secure program of this nature, one simple method will be
described. It was developed by A. Padgett Peterson, Computer
Security Plus, Suite 890, 200 East Robinson Street, Orlando,
Florida 32801, USA. This particular method is very limited
and, as will be seen, the method is transparently insecure.

The idea behind the six-byte method is simple - a virus which
wants to remain resident in memory must somehow allocate a
block of memory to itself. The method involves obtaining the
values of three words which contain information about memory
allocation and comparing their values to the values they have
when the system is known to be in a “clean” state.

The following words are used:

The return from the INT 12H call which indicates the total
amount of conventional memory (up to 640K).

The amount of memory in use by DOS, device drivers and
resident programs. This is determined by the CS value of
the checking program.

The amount of free memory, obtained by INT 21H, function
48H, with BX = FFFFH.

This method will detect viruses such as Brain and most other
boot sector viruses which decrease the amount of memory, for
example reducing it from 640K to 636K. It will also detect
viruses which use conventional TSR methods to allocate
memory, such as Jerusalem. Finally, Padgett Peterson’s
method will detect viruses such as Datalock, which reduce the
last memory block thus creating “free” space near the top.

Superficially, the method appears attractive as most common
viruses belong to one of these three groups and will be

detected. However, this technique is of no use against most
Trojans or non-resident viruses, as the memory allocation will
not have changed after they have executed.

The real ‘acid-test’ is whether this simple check is sufficient to
detect resident viruses, as it is intended to. Specifically,
several currently known memory-resident viruses will evade
detection by the six-byte method.

The Stupid/Do-nothing virus is not detected because it does
not allocate memory to itself. Instead it just copies itself to a
fixed area in memory, starting at 9800:0000, a method which
has several drawbacks - the virus will only work on computers
with at least 640K memory, and some programs may overwrite
this area, causing a system crash.

A virus may evade detection if it hides above the 640K
memory boundary. The E.D.V. virus searches for free RAM at
E800:0000 and moves downward, until it finds a free block.

The Number of the Beast virus will not be detected, as it
occupies a 512-byte block within the area allocated to DOS. A
similar method is used by the Micro-128 virus, and several
other recent samples from Bulgaria, which hide the virus code
in the upper half of the Interrupt Table.

Another major weakness of the six-byte method is its inability
to distinguish between a normal TSR program and a virus
which uses the standard TSR techniques to allocate memory
for itself. The six-byte check can detect that some program has
allocated a block of memory, but it remains for the user to
determine whether this is a legitimate TSR or not. This
problem disappears if the user only runs a fixed set of TSR
programs and they are all loaded in AUTOEXEC.BAT. The
method would be of little or no use to anyone using a large and
variable set of TSR programs.

A well-implemented integrity checking program should include
the capacity to take a “snapshot” of the Interrupt Table on a
clean system in its standard configuration. If no changes are
introduced by a virus, the “snapshots” are identical; con-
versely, any changes would indicate suspicious activity. This
cabability will be sufficient to detect the Micro-128 virus as it
overwrites 128 bytes of the Interrupt Table, and also the
Stupid/Do-nothing virus, which hooks into INT 21H.

Further steps are necessary to detect all resident viruses. Full
integrity checking should address not only memory allocation
and the Interrupt Table - it should also verify the integrity of
the operating system itself. For example, it is easy to detect the
Number of the Beast virus by checking the number of the disk
buffers in use by DOS, as it will be too low. Thus a compre-
hensive integrity checking program should also compute a
checksum for the copy of DOS in memory, which would detect
any attempts to patch it.

It is not easy to write a foolproof integrity checking
program - the six-byte method is adequate testimony to this
fact.

Page 7

VIRUS BULLETIN ©1991 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

March 1991 VIRUS BULLETIN

PROGRAM TACTICS
Fridrik Skulason

Developing a Virus Scanner

Most, if not all, anti-virus products include a virus scanner, the
purpose of which is to check programs and boot sectors for
infection by known viruses. A comprehensive Virus Bulletin
review of eleven prominent virus scanning programs is
currently underway and we hope to publish our findings in
April. This article, the first in a series on software develop-
ment, will serve as background reading to supplement the
upcoming review. Throughout, I adopt the programmer’s
perspective and consider some of the design and implementa-
tion issues involved in writing this type of program.

The Hex Pattern

Almost all viruses known today can be detected with a simple
identification pattern in hexadecimal, but a good scanner is
more than just a search engine with a database of virus
patterns. The programmer must consider several factors which
affect the speed and accuracy of the scanner.

Selecting the Search Pattern

The selection of a reliable identification pattern is critically
dependent on selecting a suitable area of the virus code from
which to extract it. Unfortunately it is not possible to give any
fixed set of rules on how to select a pattern. An immediate
concern is the avoidance of false alarms. The selected pattern
should minimise the prospect of false-positive indications
whereby a virus is indicated in a clean file which happens to
contain an identical code sequence to that of the virus. VB
occasionally publishes amended patterns when informed of
such false alarms. It is impossible to select a pattern from a
virus and state categorically: “this is the best identification
pattern for this particular virus”. The programmer should look
for an unusual code fragment typically indicative of viral
behaviour and unlikely to occur in legitimate software routines.

The length of the pattern is a key concern - a lengthy pattern
reduces the danger of false-positives, but is more likely to be
invalidated by an intentional modification to the virus.

Detecting Variants

Several approaches are possible when dealing with different
variants of the same virus. An extreme approach is to select a
highly specific identification pattern, which enables an exact
identification of the variant, but it is also possible (and more
practicable) to select a “family” pattern, which can be found
in many related viruses.

A highly specific search pattern will not guarantee that a
variant can be identified with absolute certainty, as changes
might have been introduced elsewhere in the virus code. A
scanner could, theoretically, contain a copy of every variant,
and perform a bit-by-bit comparison with an infected file.
However, this is an unrealistic proposition in light of the
abundance of virus code in existence.

A more practical tactic is to identify the areas of every variant
which contain invariant code - the code which is identical in
all instances of a particular virus. A checksum would then be
computed for the invariant area of each variant and the
corresponding areas in any sample under investigation.

Why should a software developer expend such effort in trying
to identify an offending virus with such exactitude? If the user
deletes all infected files and replaces them from write-
protected backup copies of master software, it really does not
matter which variant, or even which virus infected his system.
Most users will have little interest in such details; they will be
anxious about the effects caused by a virus, but will remain
quite indifferent as to whether the culprit was, for example,
Jerusalem-A or Jerusalem-C.

While this is generally true, precise identification is of vital
importance if the anti-virus program attempts to disinfect the
file. The 4096 byte variants of AntiCAD/Plastique are good
examples to explain the difficulties in developing disinfec-
tion software - three different variants of the same virus, but of
the same length. Most identification patterns which detect one
of the variants will detect them all. A disinfection program
must be able to distinguish between them because they store a
part of the original host program at entirely different locations
internally. A failure to differentiate between the variants will
result in a corruption of the files if any attempt is made to
remove them using disinfection software.

Prospective developers of disinfection software, and anyone
currently using such software, should be aware that no
margin for error is permissible when adopting this strat-
egy.

Precision Scanning or the ‘Brute Force’ Approach?

Normally any search pattern will always be found at the same
location in every copy of the same variant. A scanner may store
information on where the identification pattern is expected to
be found - relative to the beginning of the infected program,
the virus’ entry point or the end of the infected program,
depending on the structure of the virus.

Instead of laboriously searching throughout the infected file,
the scanner can just check whether the identification pattern is
present at its expected location. This is a faster but far less
secure tactic than scanning the entire file for the identification
pattern (the ‘brute force’ approach) or scanning code segments
near the beginning and the end of the file. Reference to last
month’s VB product review of Turbo-Antivirus (particularly to

VIRUS BULLETINPage 8

VIRUS BULLETIN ©1991 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

March 1991

the variation in scanning times between the ‘turbo’ and ‘non-
turbo’ modes) will prove informative on this point.

Precision scanning substantially reduces the likelihood of
detecting variants of the virus. If the virus code is disas-
sembled, changes made and the resulting code assembled
again to produce a working virus, the offset of the pattern
(which is an essential parameter to precision scanning) may
change. Precision scanning can also be undermined by
unexpected viral behaviour or anomalies. Unless developed
with extreme attention to detail, precision scanners will fail in
the event of unusual program behaviour typified by overlay
files (*.OV?) (Technical Notes, VB, February 1991). More-
over, ‘virus sandwiches’ such as the Plastique-Jerusalem-
Plastique phenomenon (Technical Notes, VB, October 1990,
pp.4-5) are likely further to confuse precision scanners.

Multiple Patterns

Any modification to an existing virus may invalidate the
identification pattern used to detect it. The Bulgarian virus
writers have expended much time and effort in subverting John
McAfee’s SCAN program through patching sections of the
search patterns contained in the program within the original
virus code. Changes may also be accidental, caused by a
random memory error, but are usually deliberate moves to
prevent detection by a specific scanner. There is also the
possibility that such patching is incorporated to collect a

reward offered by an anti-virus company for any “new” virus
submitted!

One possible method to increase the chance of detecting new
variants is to use multiple search patterns. For every variant a
set of patterns is defined and if all the patterns can be found
the scanner will assume it has correctly identified the virus. If
only some of the patterns are found, the scanner may report an
infection by a previously unknown variant of the virus. The
drawback of using multiple patterns is obvious - a marginal
increase in scanning time.

Speed

From a security stance, the accuracy of the scanner is the over-
riding consideration, but practicality demands that a reasonable
scanning speed is maintained - nobody wants to wait for an
hour while a relatively small disk is being scanned. Various
methods can be adopted to enhance scan-speed - some of which
apply equally to other types of software, other methods are
exclusive to virus scanners.

An obvious tactic is to write the scanner, or the most time-
critical parts of it, in assembly language. It is also possible to
enhance scanning speeds by knowing when not to search for a
virus. It is patently obvious that searching programs for boot
sector virus identification patterns is inane! Searching ‘target-
rich’ areas can be refined. For example, if a large .COM file
starts with a JMP to a location near the end of the file, all

Program 2

VirusCarrier program

Program 3 DE!"334%^dfs6456

Program 1 DEYu*&81lp[@#

Figure 1. Three programs infected with an encrypting virus. Here the letter ‘DE’ in the virus code symbolise a static
decryption key which provides a suitable code fragment from which to extract a search pattern. Cascade is an example of
such a virus. The greatest threats are those viruses which employ a self-modifying (variable) decryption key offering no
such opportunity. A recent virus example, V2P6, is close to being undetectable by virus-specific scanning programs.

DE132{+as$5\%6

Page 9

VIRUS BULLETIN ©1991 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

March 1991 VIRUS BULLETIN

viruses which infect the beginning of .COM files can be
excluded from further consideration. Storing the first byte of
the virus code for each virus, and comparing it to the first byte
of the file being scanned (or the first byte in the code section,
in the case of .EXE files) optimises scan-speeds. (To quote
Alan Solomon “You don’t search for London buses at the
bottom of the Atlantic Ocean”. Ed.)

When a Pattern is Inadequate

Although simple identification patterns are usually sufficient to
detect viruses, there are a few exceptions. The encrypted
viruses may cause problems, as the search pattern can only be
taken from the decryption routine, which may be very small. In
the case of viruses like Cascade this is not a problem, but
viruses using self-modifying encryption are more difficult to
handle. In some cases only a single byte in the decryption code
may vary from one sample to another, so it is possible to
provide a search string where one byte is marked as a ‘??’ or
“DON’T CARE” flag. The Ontario and USSR-1594 viruses
are examples. In other cases a set of standard hex patterns may
be provided for a multiply-encrypting virus - for example, one
pattern for each decryption routine as in the case of the Whale
virus (which results in thirty such patterns, see VB, December
1990).

In a few cases even these tactics are not practical - the 1260,
Casper, V2P2 and V2P6 viruses are the best examples of self-
modifying encrypting viruses from which no pattern is ex-
tractable. An algorithmic approach is necessary to detect these
viruses, as their decryption code is too variable to use any
search pattern. (V2P6 is the closest any virus has come to
being undetectable by a scanner - for security reasons our
original intention to publish data to detect this virus have been
cancelled. The arrival of an undetectable virus adopting a
‘sparse infection strategy’ appears to be imminent. For a
discussion of ‘sparse infection’, see ‘1260 Revisited’, VB,
April 1990, p.10. Ed.)

Summary

Algorithmic methods are the only option in a few rare cases,
but are they practical for more general use? The authors of
current virus scanners generally avoid them and employ
identification patterns predominantly or even exclusively.

However, the continuing appearance of ‘research viruses’
(mostly written by Mark Washburn) which confound conven-
tional detection have accelerated research into algorithmic
detection methods.

Searching for identification patterns is still the fastest and most
effective method to detect current computer viruses (and is
liable to remain so for the forseeable future), but several other
methods are nevertheless feasible and research and develop-
ment into these methods is underway by a number of software
developers.

IBM PC VIRUSES
Amendments and additions to the Virus Bulletin Table of
Known IBM PC Viruses as of 24 February 1991. The full table
was published in the January 1991 edition of VB.

Hexadecimal patterns can be used to detect the presence of the
virus with the ‘search’ routine of disk utility programs or,
preferably, can be added to virus scanning programs which
contain pattern libraries.

Dutch-555 - CER: A compact 555 byte virus from Holland.
The virus contains no side-effects.
555 5B58 072E FF2E 0500 813E 1200 4D5A 7406 ;

Offset 19E

Casino - CR: Virus infects COM files increasing their lengths
by 2330 to 2345 bytes. Upon triggering on the 15th January,
April or August (any year), the virus plays an interactive game
of Jackpot, the loss of which results in the destruction of the
file allocation table in the default drive. (VB, Mar 91)
Casino 594B 7504 B866 06CF 80FC 1174 0880 FC12

INT13 - CR: A 512 byte stealth virus which is virtually
immune to detection when memory-resident. The following
search pattern will be found in infected files but only if the
INT13 virus is not resident in memory. (VB, Mar 91)
INT13 E200 50BF 4C00 5733 ED8E DDC4 1DBF 7402 ;

Offset 0

Micro-128 - CR: This virus from Bulgaria is the smallest
memory-resident virus known. It occupies a portion of the
Interrupt Table. The virus contains no side-effects.
Micro 4231 C931 D2CD E0B1 03B6 03C3 E90A 0080 ;

Offset 030

Number One - CN: An old, simple overwriting Pascal virus
which was originally published in Computer Viruses: A High
Tech Disease by Burger. The length of the virus is dependent
on the compiler used. 11980 and 12032 byte examples have
been isolated. As with many other high level language viruses,
a single search pattern is not possible.

Sex Revolution - MR: Two variants of this virus are known
but both contain the text:

EXPORT OF SEX REVOLUTION

The virus is a minor modification of the New Zealand virus
and is detected by the New Zealand (2) pattern last published
in VB, January 1991.

Swedish Disaster - MR: The name is derived from a text
string inside the virus. Awaiting analysis.
Swedish 0102 BB00 02B9 0100 2BD2 9C2E FF1E 0800 ;

Offset 04A

Vienna-622 - CN: A new variant of the Vienna virus from
Bulgaria. It is detected by the Vienna (4) search pattern (VB,
January 1991).

VIRUS BULLETINPage 10

VIRUS BULLETIN ©1991 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

March 1991

SOFTWARE STRATEGY
Dr. Jan Hruska

Defining Executable Code in the Advent of
Windows

Arguably, the single most important characteristic of a
computer virus is that its code must execute before it can
replicate.

The executable path used by viruses is normally covert and
exploits one or more features of the operating system. For
example, boot sector viruses execute when the PC is (acciden-
tally) booted from an infected disk, parasitic viruses execute in
advance of a legitimate program to which they are attached,
while companion viruses execute when the operating system
executes the COM version of a program instead of the legiti-
mate EXE version.

It is of paramount importance to bear this in mind during any
anti-virus activity, ranging from planning an anti-virus strategy
to dealing with a virus outbreak. Almost any physical or logical
storage device can contain a virus, but if the virus hopes to be
executed at some stage, it must also modify an item which
would normally be executed by the operating system or other
executables.

For example, a virus may hide itself in Track 40 of a floppy
disk, but since Track 40 is neither executable nor normally
reachable by the operating system, it must also place a
‘bootstrapping’ link somewhere in the executable code. An
obvious place is the boot sector, which is executed at startup.

Taking this argument further, let us once again clarify the
recent confusion in the popular press regarding the possible
infection of data files by computer viruses.

The 4K virus (see VB, November 1990, p.5) is an example of a
data infector. The virus does, indeed, infect any file in which
the sum of characters in the extension is 223 or 226. Apart
from COM and EXE files, this includes files such as
WITCH.OLD, MONKEY.MEM, PHUT.PIF etc. All of these
files will contain the virus code, but only COM and EXE files
will become carriers in the true sense of the word, and, hence,
pose a threat. All other files will probably be diagnosed as
corrupt if accessed on another (uninfected) PC.

It is important to differentiate between the ‘inactive’ virus code
(such as that carried in the data file MONKEY.MEM infected
with 4K) or ‘active’ code (such as that carried in the infected
executable file ZOO.EXE). Typing ‘MONKEY’ at the C:>
prompt will not infect the computer, while typing ‘ZOO’ most
certainly will.

Fortunately, with MS-DOS it has traditionally been easy to
identify executable items by following the PC bootstrap
process (see VB, April 1990, p.11).

The executable items are:

1. Master Boot Sector (sector stored at absolute Track 0,
Head 0, Sector 1).

2. DOS Boot Sector (logical sector 0 in each DOS partition).
On floppy disks, this is the same as the Master Boot Sector.

3. Operating system files (first two files in the root directory,
normally called IBMBIO.SYS and IBMDOS.SYS or similar).

4. Device drivers specified in the CONFIG.SYS file, which by
itself is not executable.

5. COMMAND.COM - command line interpreter (a special
COM file).

6. AUTOEXEC.BAT - a sequence of batch commands
executed on every power-on (a special BAT file).

7. COM, EXE and BAT files executed at the command line
level, for example WS.COM executed by typing ‘WS’ or
SEX.BAT executed by typing ‘SEX’.

8. Overlay files - executable code pulled into memory by
COM and EXE files as and when necessary. They are usually
called OVL, OV1 etc.

In addition, an executable file can execute ‘Macros’, which are
a form of interpreted code. This comprises Lotus 1-2-3
macros, interpreted Basic programs and so on.

The overwhelming majority of viruses, both in the number of
individually identifiable specimens as well as the number of
infections, are transmitted by DOS boot sectors, COM files and
EXE files. That is understandable, as those items are readily
exchangeable between computers - the first as a part of floppy
disks and the second and the third in the form of applications
software.

From the point of view of the virus-writer, success is measured
in the number of infected systems, and the more a particular
item is exchanged, the more likelihood there is of the virus
spreading.

This probably accounts for the comparative paucity of BAT file
viruses (although there are a few around) as well as viruses
designed to exploit other executable items such as Lotus
macros in spreadsheets.

In addition, the virus needs a common mass-platform in order
to spread. There is little point in a writing a virus which runs
on 31-bit ‘Goof’ processors, of which there are only three in
existence. Some 36 million IBM-PCs and compatibles, used in
developed and developing nations worldwide, all supporting a
common disk format and capable of executing the same code
are a much more suitable platform.

Page 11

VIRUS BULLETIN ©1991 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

March 1991 VIRUS BULLETIN

Fortunately, the IBM-PC architecture and the PC-DOS
operating system (unlike the Apple Macintosh) allow a
reasonably straightforward definition of what is executable and
what is not. However, this clearly defined situation could
become more complicated in the near future with the increase
in popularity of Microsoft Windows , which seems to be well
on the way to becoming a de-facto standard GUI platform.

Unfortunately, Windows will inevitably prove to be a tempting
target for virus-writers. The potential threat cannot be ignored
and the traditional concept of what is executable under PC-
DOS must be augmented by additional items which are
executed by Windows.

Specifically, Windows adds two further vulnerable groups of
files to the established list of potential target items:

• PIF files

• Dynamic Link Libraries

PIF files are normally created during the installation of the
software, but are sometimes also copied between PCs. They
describe command line arguments for various applications and
in that sense resemble BAT files. It would be easy for a
modified PIF file to implement the Windows equivalent of a
companion virus. The integrity of these files is extremely
important. It should be noted that the 4K virus already corrupts
PIF files - albeit as a result of an unusual infection method
rather than as an intentional effect.

Dynamic Link Libraries are files which can have any exten-
sion, although DLL and DRV are the most common. They
contain executable code which is common to applications
residing in memory and which can be shared between them. It
is unlikely that DLL files will be copied between PCs to the
same extent as EXE and COM files, so the threat of virus
infection carried in them is reduced. However, a virus specifi-
cally targeted to spread via Dynamic Link Libraries is feasible.

The Implications

What are the readily apparent implications of Microsoft
Windows for anti-virus software and anti-virus policies?

First, scanning software will not be affected until the first
Windows-specific virus is discovered. After that happens, the
affected groups of files will have to be added to the list of file
extensions inspected by default by this type of program.

Second, checksumming software should be adapted to include
PIF and Dynamic Link Library files in the list of items to be
fingerprinted. This addition is relatively easy on most of the
better checksumming software packages and should be
undertaken on any PC running Windows. A Windows-specific
virus may be a year of two away. Nevertheless, obvious
countermeasures can be implemented today.

VIRUS BULLETIN

EDUCATION, TRAINING

AND

AWARENESS PRESENTATIONS

Education, training and awareness are essential as
part of an integrated campaign to minimise the
threat of computer viruses and malicious software.

Virus Bulletin has prepared a presentation designed
to inform users and line management about this
threat and the measures necessary to minimise it.

The standard presentation consists of a one-hour
lecture supported by 35mm slides, followed by a
question and answer session. Throughout the
presentation, technical jargon will be kept to a
minimum and key concepts will be explained in
accurate but easily understood language. However, a
familiarity with basic MS-DOS functions is as-
sumed. The presentation can be tailored to comply
with individual company requirements and ranges
from a basic introduction to the subject (suitable for
relatively inexperienced users) to a more detailed
examination of technical developments and avail-
able countermeasures (suitable for MIS and PC
support departments).

The aim of the basic course is to increase user-
awareness about computer viruses and other
malicious software without inducing counter-
productive ‘paranoia’. The threat is explained in
comprehensible terms and proven and easily-
implemented countermeasures are demonstrated. A
more thorough course, which will assist line
management and DP staff, outlines varying proce-
dural and software approaches to virus prevention,
detection and recovery.

The presentations, are offered free of charge except
for reimbursement of travel and any accommodation
expenses incurred. Information from Virus Bulletin,
UK. Tel 0235 555139.

VIRUS BULLETINPage 12

VIRUS BULLETIN ©1991 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

March 1991

VIRUS ANALYSIS 1
Jim Bates

The INT13 Virus - A New Level of Stealthy
Sophistication

Most examples of virus code display a distinct lack of pro-
gramming finesse. However, every once in a while, a virus
appears which shows undoubted expertise on the part of the
author. INT13 is one such example. It is difficult to decide
which is more reprehensible - the childish destructive code
produced by the amateurs (or “pimplies” as VB correspon-
dents generally refer to this group) or the more accomplished
‘creations’ of experienced programmers who misuse their skill
to damage their own industry. Patience is a virtue and we
should try to educate the “pimplies”. However, there is
absolutely no excuse for the professional virus-writers. It is no
use their claiming that a particular virus was written for
“research” purposes - every virus will cause some disruption
and possibly damage if it is allowed to infect a PC environment
unhindered.

True Stealth Characteristics

A highly sophisticated virus arrived in December 1990 in a
package of examples from Eastern Europe. The virus has been
called INT13 after a plain text string at the end of the code. It
contains a potent ‘stealth’ capability which will avoid
detection by all but the most determined memory-scanning
programs if it is active at the time of scanning. (See TSR
Monitors and Memory Scanners, pp. 18-19, Ed.)

The total code is only 512 bytes in length and there is no
trigger routine in the sample which I analysed (although file
corruption will occur under certain circumstances - see report
below). A simple, uncommented disassembly listing was also
included in the package but examination of this was inconclu-
sive in determining whether it was the author’s original source
or an unknown researcher’s primary efforts at disassembly.

The virus is categorised as infecting only COM files of certain
lengths and bears some remarkable similarities to the Number
of the Beast (666) virus already discussed (VB, May 1990). No
change occurs in the file length, attribute settings or date/time
fields and the COMMAND.COM file is specifically excluded
from infection.

Installation

This virus overwrites the first 512 bytes of its target program
file and the code therefore initially appears at offset 100H of
the program code segment. The very first instruction is a two-
byte LOOP Next command which is the hex word E200H. This

is used later by the virus as an infection indicator. After this
first instruction (which does nothing), the normal machine
interrupt vectors for INT 13H and INT 21H are collected by
direct access to the Interrupt Table and copies are stored in the
entries for INT 9CH and INT 9EH respectively.

An undocumented function of DOS is used to collect the ROM
entry point of the INT 13H routine and this address is copied
into the INT 9DH vector. The address of the first DOS Disk
Buffer is then obtained and the virus code (all 512 bytes) are
copied into it. The chain of buffer addresses is then updated to
remove this first buffer from subsequent DOS operations. Up
to this point, no re-vectoring of the original interrupts has
occurred. This first section of the program then pushes the
relevant segment and offset addresses onto the stack and issues
a RETF instruction to transfer processing into the relocated
code in memory.

The continuation code starts by accessing low memory and re-
vectoring (by direct access) the interrupt addresses for INT
13H and INT 21H to handlers present within the virus code.
Then the environment segment address is collected from
within the host program’s PSP and the host program is loaded
into memory in exactly the same place as it was previously.
This might seem a pointless exercise but as the operation of
the INT 13H handler becomes apparent, it will be seen that
this second load of the host program will produce a correct (i.e.
uninfected) copy of the original program file in memory. Once
loaded, the host program is executed under normal DOS
control.

Memory-Resident Operation

The operation of the virus interrupt handlers is somewhat
involved and displays an intimate knowledge of how DOS
handles requests for file information. It is difficult to describe
the functions of the handlers separately since they operate
together, so this analysis will describe the sequence of events
after both handlers have been installed and examines particular
aspects of each as they occur.

It should first be noted that the virus contains a third interrupt
handler which is temporarily hooked into the INT 13H vector
whenever the infection routine is processed. It is this tempo-
rary handler which provides the key to the low-level subver-
sion undertaken by the virus.

Infection Routine

Starting with the infection routine, the INT 21H handler
intercepts only function 12H (FCB FIND NEXT). The re-
quested function is first issued through the newly created INT
9EH (original INT 21H) call. This is checked for error free
completion and the virus then accesses the Disk Transfer area
to examine the filename which was found. If the last two
letters of the file extension are ‘OM’ and the second and third
letters of the name are NOT ‘OM’ then size checks are

Page 13

VIRUS BULLETIN ©1991 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

March 1991 VIRUS BULLETIN

During a disk access call to INT 21H, DOS will call INT 13H a
number of times as information is required from the disk.
During the SEEK to EOF function, the final call to INT 13H
will contain the logical Drive, Track, Head and Sector address
of the last cluster of the file. The temporary INT 13H handler
does nothing more than store these address variables into data
areas within the virus code and then continues with the
original (ie: unintercepted) INT 13H. So these data areas now
contain the low-level address of the last cluster of the file and
they are accessed and stored on the stack.

Next, the virus issues a SEEK to Beginning of File instruction
and then uses the DOS INT 21H address to read the first word
of the file. This word is checked to see if it is the virus ID
word E200H and if it is, the handler aborts (after first
unhooking the temporary INT 13H vector). When DOS INT
21H is asked to read from a file, the whole of the relevant
allocation unit is read into the DOS disk buffer. Thus the
single word read call collects the first cluster and sets the
address of that cluster into the temporary INT 13H variables.
The first word of the file is also checked to see whether it is
“MZ”, indicating a fake COM file with an EXE header.

initiated (this is to avoid infecting COMMAND.COM).
Otherwise the handler aborts and returns control to the caller.

The size checks consist of first rejecting any files less than 512
bytes in length, and then testing bits 5 and 6 of the file size
field for zero. This is an effective method of determining how
much allocated space is available beyond the end of the file (in
a similar way to the 666 virus). Provision is also made for the
difference in allocation unit size between fixed disks and
floppy disks although no actual checks are made to determine
the true allocation unit size. If examination of the file size field
reveals that there is at least one sector available beyond the
end of the file, it is suitable for infection.

At this point the temporary INT 13H handler is hooked into the
interrupt chain, bypassing the main INT 13H handler. The
existing INT 13H vector is stored (but not used) at the INT
9FH address in the interrupt table. The target file is then
opened for READ ONLY access using the original DOS INT
21H vector and a SEEK to End of File instruction is issued
with an offset of -1. This effectively seeks to the last byte in
the file where the temporary INT 13H handler is invoked.

Interrupt vector

DOS

Interrupt vector

DOS

Application

Virus

Application

Figure 1. Interrupt routing before and after infection. INT 13 is a ‘stealth’ virus which uses interrupt interception to
escape detection. MS-DOS applications use software interrupts to communicate with the operating system in a portable
way. The jump addresses are stored in the interrupt table located at the beginning of memory. If a virus changes one or
more of these addresses, any jumps to the operating system can be routed through the virus, which then decides what
should be done with a particular request. The very first MS-DOS virus, Brain, employed interrupt interception. When
active in memory, the virus intercepts any attempt to read from disk the contents of Sector 0 (the hiding place of Brain).
The virus re-vectors such calls to point to the legitimate contents of Sector 0 which it has stored at a completely different
location. Hence, when Brain is in memory, any attempt to look at the boot sector will not reveal its presence.

VIRUS BULLETINPage 14

VIRUS BULLETIN ©1991 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

March 1991

The check does not include the less usual “ZM” header
signature. Files with an “MZ” header are not infected.

The last cluster address variables are popped off the stack and
used to address a READ SECTORS request to the ROM entry
point of the INT 13H BIOS routines. This bypasses the
temporary handler and thereby does not update the address
variables. These two sectors are read into a buffer created in
the middle portion (offset 7800H) of the video memory area at
segment B800H. So we now have the first sector of the file in
the DOS Disk Buffer and the last sector (plus the subsequent
sector of unused but allocated space) in the temporary buffer in
video memory.

program header) is then copied into the original caller’s buffer
before processing returns.

It can thus be seen that once the virus intercepts have been
installed, any infected file loaded into memory using normal
DOS function calls (or even normal BIOS calls) will result in a
clean file being loaded.

Once the INT13 virus is in memory, it subverts both DOS
and BIOS calls and will thus deceive most scanning
programs into thinking that every infected file on the hard
disk is clean.

Conclusions

This complex method of replacing the original file header by
subverting the BIOS access routines produces some interesting
results which directly affect the virulence of the infection.

When an infected file is copied on a system with the virus
resident in memory, the resulting file is uninfected and may
only be re-infected during a DOS FCB FIND NEXT function
request. However, since this virus does not infect
COMMAND.COM, different implementations of DOS (with
different sized system files) may not allow system infection. It
is quite probable that a power-down reboot will leave a
machine uninfected. This becomes more likely when one
considers that only files with certain size limitations can be
infected. So, the effect of copying infected files on an unin-
fected machine will vary depending upon the copying methods
used. Some implementations of DOS will copy on a sector by
sector basis and these will produce an infected (i.e. overwrit-
ten) file which does not contain the original program header
within the free space beyond its end. Such files will be
irreparably damaged. Other versions copy on a cluster by
cluster basis and these will produce a correctly infected file
with all the requisite information intact.

Other problems of a less predictable nature will occur as a
result of several shortcomings in the virus code. First, the
absence of a check for the “ZM” header may occasionally
cause this virus to try to infect a fake COM file. Since the virus
uses a simple load to re-execute the program code at offset
100H this will cause unpredictable effects. Second, the use of
video memory as a buffer could cause display problems on
packages which would normally used the 1024 bytes stolen by
the virus as a temporary buffer. Screen corruption would
probably be the only effect here although this is only specula-
tive. Finally, the INT 13H intercept which prevents the correct
loading of any sector which begins with E200H will cause
problems if this particular byte sequence is encountered within
a file as a normal part of the file’s contents (remembering that
this could be data or a split instruction across a sector bound-
ary).

Admittedly these conditions may be rare but there is no doubt
that problems will occur when they are met. The removal of
one of the DOS Disk Buffers from service may also cause

The complete virus code (containing the temporary INT 13H
data variables, pointing to the last cluster) is written to the first
sector of the file using the unintercepted INT 13H vector, thus
overwriting the first 512 bytes of the file. The original first
sector of the file is copied to the second of the two sectors
stored in video memory and these two sectors are written back
to their original position. The target file is now fully infected -
with the virus code in the first 512 bytes, and the original first
sector stored beyond the end of the file. Finally, the target file
is closed, the temporary INT 13H handler is unhooked from the
system and the original register settings are restored before
processing returns to the original caller.

Interrupt Interception to Escape Detection

We must now consider the operation of the main INT 13H
intercept routine as it functions within the DOS scheme of
operations. When a COM file is loaded prior to being ex-
ecuted, the DOS INT 21H handler will call upon the installed
INT 13H vector for information and data. At some point, the
first cluster of the file will be loaded into the disk buffers
before being moved to the caller’s load buffer.

This virus’ INT 13H handler will examine each sector load to
see whether it starts with the E200H virus self-recognition
signature. If this is not found, the handler immediately returns
to the calling routine. Otherwise, the address data variables are
collected and used to read the last two sectors of the file (using
Track, Head and Sector addressing into the ROM entry point
of the INT 13H BIOS routines). The second sector (the original

‘‘It contains a potent stealth
capability and if active in memory
will avoid detection by all but the

most determined scanning
programs.’’

Page 15

VIRUS BULLETIN ©1991 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

March 1991 VIRUS BULLETIN

slight performance degradation for tightly configured file
intensive applications.

The Moral of the Story

This virus, which is singularly ‘slippery’ when resident in
memory, should impact upon existing attitudes towards
detection. Software could be constructed to disable the virus
while it is active in memory with some (unassured) degree of
accuracy. However, the benefits of expending effort on such a
task would be better directed elsewhere - most anti-virus
software documentation would benefit far more by the inser-
tion of a prominent warning in blood red ink, saying:

BEFORE USING THIS PROGRAM,
YOU MUST BOOT YOUR MACHINE

FROM A CLEAN WRITE-PROTECTED SYSTEM
FLOPPY DISK.

As with other ‘stealth’ viruses searching for instances of
INT13, whether with a disk utility or with a scanning program
can only be conducted safely if the machine has first been
booted from such a disk.

Summary

The INT13 virus is an overwriting ‘stealth’ virus which
subverts both DOS and the BIOS in concealing its whereabouts
on disk. The code length is 512 bytes although this is not
added to the observed file length. Infection only takes place on
selected COM files and only during the FCB FIND NEXT
function call. The virus does not encrypt, either on the disk or
in memory. A reliable search string is as follows:

E200 50BF 4C00 5733 ED8E DDC4 1DBF 7402

This pattern will be found at offset 0 in infected files but only
if the virus is not memory-resident at the time of scanning.

VIRUS ANALYSIS 2

The Casino Virus - Gambling With Your
Hard Disk

This virus (which VB called Casino for reasons that will
become clear) was received from a user in Malta where
instances of data destruction were reported at a number of sites
on January 15th 1991. Casino is particularly unaccomplished
both in its coding and execution. Nevertheless, it is highly
infective and very destructive.

It is a memory-resident virus which infects only COM files,
increasing their length by between 2330 and 2345 bytes.
January 15th is one of three trigger dates.The code is highly
convoluted and there are several mistakes which will cause
various extraneous effects on infected machines. The code is
appended to the target COM file after rounding the file size up
to the next paragraph boundary (divisible by 16). Execution is
arranged by modifying the first four bytes of the target to
become a jump instruction into the body of the virus code.

The first action that the code takes is to calculate a data
segment value which will allow access to the various values
stored throughout the code. This primitive method of producing
relocatable code needs to be self-modifying and involves
cumbersome segment manipulation routines. This is just one of
the many indications that the programmer is technically
incompetent.

Once this data access re-segmentation is completed, the code
immediately repairs the host file header by returning the first
four bytes to their original value. A call is made to obtain the
system date which is checked to see whether it is the fifteenth
of either January, April or August (any year). If one of these
dates is found, the trigger routine is executed (see below).

If a trigger date is not found processing continues by issuing an
“are you there?” call to determine whether the virus is
resident in memory. This consists of placing a value of 4B59H
into the AX register and issuing an INT 21H request. If the
virus is resident, the function returns with 0666H in the AX
register and the code immediately resets the DS register (to the
CS value) before jumping to the host program.

Memory-Resident Installation

If the “are you there?” call goes unanswered, the first 256
bytes of program code are copied to a buffer area within the
virus (seemingly to make room for data storage!) and an
attempt is made to access COMMAND.COM on the first hard
drive. The actual file specification is hard-coded into the virus
as C:\COMMAND.COM and if found, the file is checked for
infection and infected if found to be clean.

The Washburn Viruses

The April 1991 edition of Virus Bulletin will tell the
story behind Mark Washburn’s V2P1 (1260), V2P2 and
V2P6 computer viruses. Washburn explains the motiva-
tion behind their development and the way in which they
were distributed. Describing V2P6 as the first “true
patternless virus”, Washburn claims his viruses are
‘experiments’ to demonstrate the weakness of “relying
on fixed scan strings as the sole method of detection”.
VB will analyse the impact which the use of self-
modifying encryption in virus code will have on conven-
tional scanning techniques and will provide a technical
analysis of the viruses themselves.

VIRUS BULLETINPage 16

VIRUS BULLETIN ©1991 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

March 1991

The next phase of disassembly provided some light relief as
the programmer’s efforts to make his code resident became
apparent. A file called COMMAND# .COM is created on the
default drive where the # character is the infamous ‘phantom
space’ ASCII character code 255 which was used within the
AIDS Trojan in December 1989 (see VB, January 1990).

Once this file has been created, the virus code is written to it
and the file is closed. Then a LOAD & EXECUTE call is
issued to the system so that this file is loaded and executed as
a child process. Once the file is loaded, the data segment
calculation is again in evidence before a new INT 21H handler
is installed. The child process terminates using an INT 27H
call to make the code permanently resident. This incredibly
convoluted method of installing resident code will leave an
unusable area of memory (a ‘hole’) equivalent to the size of the
host program plus twice the length of the virus code.

INT 21H Handler.

The first routine within this intercept checks for the virus “are
you there?” call and answers with the 666H value in the
accumulator. The next section checks for incoming requests for
the FIND FIRST (11H) and FIND NEXT (12H) functions.
These are the older style requests which deal solely with files
handled using File Control Blocks (FCBs). No attempt is made
to subvert the parallel functions dealing with file handles (4EH
and 4FH).

Within the FCB FIND intercept routine, the coding is fairly
straightforward except for the introduction of a clumsy attempt
to make this section of DOS available for re-entrant use. If
either of the intercepted function calls is accompanied by a
value of 66H in the AL register, the request is allowed through
without interference. Thus the routine first completes the
function request by adding this re-entrant flag and issuing an
INT 21H request. Then the address of the Disk Transfer Area
is collected and the DTA is examined to see whether the found
file has a COM extension. If it does not, processing is returned
to the caller. COM files detected in this way are then examined
by subtracting the length of the virus code (2330 bytes) from
the length of the file and checking the remainder (the original
length of the file, rounded as described above) to see whether
it is an exact number of paragraphs. If it is, the FCB size field
is modified to the rounded figure before processing is returned
to the caller, otherwise the FCB is left unchanged. Correction
is not applied if the found file size is less than the length of the
virus code. Thus any file which matches these criteria, whether
infected or not, will have its reported FCB length truncated in
this way.

The next section of the intercept deals with the re-entrance
problems by maintaining two flag bytes, one for execution of
INT 24H and the other for current use of INT 21H. Each time
this section is executed, a value of zero is placed in the INT
24H flag and the value of the INT 21H flag is checked for

0FFH. If this value is found, processing returns immediately to
the caller. Otherwise, the value 0FFH is placed into the INT
21H flag and a check is made for functions 4BH (LOAD &
EXECUTE) and 36H (GET FREE SPACE). If found, each of
these is intercepted by an appropriate routine. If some other
function has been requested, the INT 21H flag is reset to zero
before processing returns to the caller.

The LOAD & EXECUTE intercept collects the default drive by
issuing a function 19H request (this function is issued twice
within the code, an example of the messy and immature
programming within this virus). A test is then conducted to see
whether the default drive is a floppy (A: or B:) or fixed drive.
If it is a floppy drive, calls are processed to read and then write
the boot sector (using INT 13H). No modification occurs - an
apparent attempt to determine whether the floppy is write-
protected. A similar check is made during the initial part of the
function 36H intercept but with corrections introduced for the
differing drive numbering convention used.

Infection Routine

Processing for both intercepts converges and if the target
drive is available for write requests (i.e. a fixed disk or an
unprotected floppy) a search is conducted using the file handle
functions 4EH and 4FH (FIND FIRST and FIND NEXT) for
any available COM files. Once found, the size of the target
COM file is tested to see whether it is above 62905 bytes. If it
is, checking aborts. Otherwise the attributes of the file are
checked for the SYS attribute (in which case the check routine
is aborted) or the READ ONLY attribute (in which case this is
reset). The target file is then opened (using function 3DH) for
READ/WRITE access and the first byte is checked for a value
of 90H (NOP). If this is found, the file is assumed to be
infected and processing aborts, otherwise a flag indicates that
the file is uninfected. If an infected file is found, the search
continues for the next uninfected COM file.

When an uninfected COM file is found, a ‘standard’ infection
routine is called which which collects the file date and time,
calculates an initial jump offset and inserts this into the head
of the host program (including the NOP indicator), storing the
original program header and appending the virus code. A
temporary critical error handler (INT 24H) routine is installed
and this modifies a flag when it is executed. There is also
provision for inserting a zero into an uninitialised address
variable. This portion of the code makes no sense and the
results are unpredictable since the target address is always
0000:0000. No attempt is made to repair the READ ONLY
attribute on files which possessed it before infection, although
the file time and date are restored.

The Trigger Routine

This is invoked during initial execution of the virus code
(before it becomes resident) if the system date indicates the
15th of either January, April or August. No particular signifi-

Page 17

VIRUS BULLETIN ©1991 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

March 1991 VIRUS BULLETIN

Comments and Conclusions

Both the concept and execution of this virus are infantile in the
extreme. However, there are some strong clues which might
help to identify the author. The most obvious of these is the
Americanised language used in the messages, particularly the
use of the apostrophe for the missing “g” in the second
message and the use of the word “asshole”. There are other
interesting anomalies but publication of these has been
withheld pending police investigation. Preliminary enquiries
indicate that this virus does indeed originate from Malta.

The lack of expertise in the code would indicate an adolescent
programmer with very limited experience. The trigger routine
was probably copied from elsewhere - this is a standard
practice among virus-writers - the falling characters display of
the Cascade virus, for example, is believed to have been
purloined from a public-domain joke program.

Casino is thought to be the first ‘interactive’ virus which, upon
triggering, challenges the user to participate in a ‘game’ of the
virus-writer’s choosing.Taunting and profane messages and
bizarre screen and sound effects have traditionally predomi-
nated as standard computer virus side-effects. However, the
appearance of more computer virus samples which incorporate
game routines (possibly stolen from professional games
software) should be anticipated.

Disinfection

Casino will infect only COM files within the current default
directory, and if detected before triggering, will be easy to
remove by deleting all infected files and replacing them from
master copies (after a clean system reboot). The virus
employs primitive ‘stealth’ methods designed to conceal its
existence from the user, but detection will present no challenge
to professional anti-virus software developers.

Summary

The Casino virus infects COM files smaller than 62905 bytes.
It is memory-resident and subverts function calls 11H and 12H
to hide its length from directory searches. The virus infects on
function calls 4BH and 36H. The infective length is between
2330 and 2345 bytes depending upon size of original file. The
code is non-encrypting except for the game message area (this
prevents the display of plain-text during a cursory file exami-
nation).

A reliable search pattern has been extracted and is as follows:

594B 7504 B866 06CF 80FC 1174 0880 FC12

Infected files are recognised by having a NOP (character 90H)
as their first instruction. The virus self-recognition in memory
(the “are you there?” call) is hooked to function 4BH as
subfunction 59H and a returned value of 666H in the AX
register indicates that the virus is resident.

cance has been found which relates these three dates. The first
action of the trigger is to collect and store the first 80
sectors of the default disk, and then overwrite them with
garbage from page zero of memory. A primitive decryption
routine is then processed which decrypts the messages relevant
to the “game” which is about to commence. Once decrypted,
the game screen appears and the user is forced to participate in
a macabre game of roulette (see below).

The ‘‘Game’’

DISK DESTROYER . A SOUVENIR OF MALTA

I have just DESTROYED the FAT on your Disk !!
However, I have a copy in RAM, and I'm giving you

a last chance to restore your precious data.
WARNING: IF YOU RESET NOW, ALL YOUR DATA WILL BE

LOST - FOREVER !!
Your Data depends on a game of JACKPOT

CASINO DE MALTE JACKPOT
+=+ +=+ +=+
+L+ +?+ +c+
+=+ +=+ +=+
CREDITS : 5

LLL = Your Disk
??? = My Phone No.

ANY KEY TO PLAY

As any key is pressed, the game is played with the
windows showing progressive characters and stopping in
sequence displaying one of the three characters “L”, “?”
or “c”. The results of playing the game are as follows:

LLL - The FAT area of the disk is repaired and the
following message is displayed:

BASTARD ! You're lucky this time - but for your
own sake, now SWITCH OFF YOUR COMPUTER AND DON'T
TURN IT ON TILL TOMORROW !!!

??? - A message is displayed and the machine hangs. The
FAT of the default disk is destroyed. The message is:

No Fuckin' Chance; and I'm punishing your for
trying to trace me down !

Any other combinations and the game is lost. This results
in the following message being displayed before the
machine hangs:

HA HA !! You asshole, you've lost: say Bye to
your Balls ...

VIRUS BULLETINPage 18

VIRUS BULLETIN ©1991 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

March 1991

OPINION
Ed.

TSR Monitors and Memory Scanners - The
‘Playground’ Approach to Virus Detection

A fax was sent to VB recently from a software developer who
had been supplied with the detection patterns of the WHALE
virus. The developer wanted to know how the virus could be
detected in memory. The reply was simple - “you don’t allow
something as slippery and slimy as WHALE to get there in the
first place!”

Speaking as a bemused user, it is not yet clear to me why
anybody in their right mind should wish to search for viruses in
memory. I have been told that such a capability would be
helpful in the event of a network infection - it would allow the
file-server to remain powered-up and in ‘normal use’ while the
virus-hunt commenced. I would contend that attempting to
disinfect a LAN infection while allowing users to continue
running and transferring infected executables is a patently
ludicrous proposition.

I work on a fundamental precept - to purge a memory-resident
virus from a computer or network you deny it the chance to
survive. By offering it no opportunity to become resident
you immobilise the virus and render its ability to intercept
and re-vector interrupt calls null and void.

It is a fallacy to pretend that operations can proceed undis-
turbed during a virus attack. A file-server infection (which is
among most system managers’ bleakest nightmares) can be
described as a genuine denial-of-service attack requiring a
commensurate sacrifice in system availability. Operations (and
peace of mind) can only be restored by a systematic and
foolproof approach to virus detection; the cornerstone to such
an approach is an old friend - the write-protected system
floppy disk. In blunt terms, there is no point trying to detect a
virus if that virus is in control and in all likelihood monitoring
attempts to locate it. The virus adopts the Transient Program
Area as the field of battle, the key to victory is to deny it this
battleground and fight it on territory of your own choosing.

The fundamental approach to computer security is far more
enlightening than the pursuit of quackery. One of the first
principles of software security (ironically, often better under-
stood by hackers than security professionals) is:

software barriers can be breached by other software.

Let us paraphrase this principle:

anything done by a TSR monitor can be undone by a virus.

From a security viewpoint, memory-resident computer viruses
should be considered as TSR programs deliberately designed to
subvert other programs in memory and that includes virus-
monitoring programs be they of a generic or specific nature.
This is not to imply that the standard Jerusalem virus (or,
indeed, many other equally tedious viruses) actually under-
mines memory-resident anti-virus software - it does not.
However, a consistent and fundamental approach does help
counter the small but increasing number of viruses (such as
Flip, 8 Tunes and INT 13) which do actively subvert memory-
resident virus monitors.

Moreover, the fundamental approach is essential to combat
those viruses which conflict with TSRs of all types (including
anti-virus monitors). Having witnessed Titanic and often
inconclusive battles waged in the Transient Program Area
between WHALE and various other memory-resident pro-
grams, my conviction that the TSR approach to virus detection
is bound to be short-lived has become absolute.

Two anti-virus monitors Bombsquad and Flushot+ have
already been subjected to such subversion; the fact that other
monitors are not being singled out for attack is, I hope, a
reflection of this type of program’s general unpopularity and
limited use. Be in no doubt - should a TSR anti-virus program
be widely adopted it will become the subject of attempted
subversion; as VB reported in December 1990, the Bulgarian
‘virus factory’ is going to extraodinary lengths to undermine
the popular McAfee Associates’ SCAN software.

Flushot+ and Bombsquad are generic monitors which intercept
‘suspicious’ interrupt calls in the same way that viruses
intercept ‘legitimate’ interrupt calls - the irony and weakness
of this approach is that both the virus and the monitor
function on exactly the same principle. The mechanism used
by anti-virus software for intercepting disk reads and writes by
manipulating either the vectors in the DOS Interrupt Table or
the code to which the vectors point, is precisely that used by
computer viruses. Thus the battle, far from being fought by
applying fundamental security principles, takes place between
programmers trying to outwit each other. It’s the “anything
you can do, I can do better” school-playground approach to
virus detection.

Defining ‘suspicious’ activity is an intractible task. Disk
utilities are obviously contentious, but many programs issue
legitimate interrupt calls which deviate from the INT 21H
thoroughfare and other well documented highways. Such

‘‘These programs are to computer
security what the rhythm method is

to contraception...’’

Page 19

VIRUS BULLETIN ©1991 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

March 1991 VIRUS BULLETIN

legitimate activity can be misinterpreted as ‘suspicious’ by
monitors and results in tiresome false positive warnings to the
user. Conversely, any virus which does not comply with the
monitoring program’s concept of viral activity will remain
undetected. Here, the designer of the protective software must
stretch his intuition, insight and foresight into predicting all
the tricks in ‘the book’ and the countless hundreds or thou-
sands that aren’t. The research community has been taken by
surprise often enough to know that it dare not make too many
predictions. The days when computer viruses stood to attention
and did what they were told have long since passed.

Forcing the TSR into memory ahead of any other application
and keeping it there intact so that it assumes and maintains
immediate control is a seemingly insoluble task. The first thing
that ROM starting code places into memory is, of course, the
boot sector - thus any anti-virus program summoned into action
by CONFIG.SYS (a standard tactic) will load after a boot
sector virus, giving the virus preliminary control.

System performance degradation is another penalty to be paid
by following the TSR approach - the recent VB product review
of Norton AntiVirus found that the TSR component (Virus
Intercept) imposed an overhead on file copying of between 25
and 300 percent as files are scanned prior to being loaded. The
danger of recurrent false alarms combined with the inconven-
ience of overhead associated with memory-resident programs
could well result in their being disabled by the user - a
disastrous diminution of security.

This article has mainly addressed generic monitors which try to
‘second guess’ the virus programmer. I contend that these
programs are to computer security what the rhythm method is
to contraception - the collective term for consenting adults who
adopt the rhythm method is, of course, ‘parents’. However,
there are also advocates of scanners which search memory -
these programs incorporate the location of a known virus in
memory and search for it accordingly. With both the virus and
anti-virus program battling it out in memory, the assumed
advantage to the anti-virus program is that it knows where to
find the enemy (assuming of course that the virus does not
have equal ‘intelligence’ about the scanner).

With regards to security, this approach is just as fundamentally
flawed - the virus can re-vector interrupt calls to conceal its
location, or identify the hostile program by some specific
characteristic and surpress it. Again, it is a straightforward
battle of wits - but fought on the virus-writer’s chosen battle-
field. Even discounting the danger of intentional subversion
(which is tantamount to dismissing ‘stealth’ viruses), the user
of such a program must have absolute faith that the anti-virus
programmer’s calculations are precise - if they are not, there is
every likelihood of the virus escaping detection and surviving
to fight another day. It should be remembered, also, that on
80386 and 80486 machines memory and I/O locations can be
remapped in order to assist multi-programming - this renders
memory-scanning an even more imprecise artform.

The logic of routinely running a memory-resident scanner from
the hard disk (which presumably is the intended mode of
operation) is questionable given the limitations of virus-
specific software which must be updated regularly - try
updating software on 1,000 PCs every month and the logistical
difficulties will soon become apparent. With so many viruses
appearing on such a regular basis, how do software developers
find the time to incorporate these superfluous routines? Is it, as
I suspect, being done at the expense of the fundamental and
ongoing requirement to detect computer viruses reliably as and
when they appear? Memory scanning, inoculation and disinfec-
tion routines are of dubious value and pale into insignificance
in the face of the need for reliable, secure detection of the ever-
increasing number of virus specimens.

On computer architectures which allow memory ownership,
hardware memory protection and privileged instruction sets,
memory-resident products can, theoretically, be implemented
securely. None of these features are available on Intel 8086/88
processors or on the MS-DOS operating system - by ignoring
this fundamental fact, the developers of these products
continue to peddle an inherently insecure methodology.

TSR monitors and scanners designed to operate in an infected
environment are symptomatic of an obsession with total
automation - inoculation software is perhaps the most bizarre
expression of this obsession. The ‘automation movement’
appears to be more interested in flexing its programming
muscles than addressing practicality. Detecting viruses is, and
should remain, a relatively straightforward task. It is being
made complex by ill-informed marketing men who demand
that superfluous and wholly irrelevant features be incorpo-
rated into anti-virus software. Systems managers, on the other
hand, would be well advised to adhere to fundamental princi-
ples, one of the most important of which, is:

Memory-resident virus scanners are inherently insecure.

To remove a virus from memory simply switch the PC off. To
make sure it doesn’t return to memory, boot the machine from
a write-protected system floppy disk. You are now in a
formidable situation - you have absolute control over any virus
code residing on the hard disk. As long as no suspect program
is run (remember that the boot sector and all system files on
the floppy disk are clean and secured by a write-protect tab),
the virus, however ‘clever’, cannot hide itself. By adopting this
method, no devious interrupt-interception and associated
‘stealth’ tricks which might enable the virus to hide are ever
possible. Using an up-to-date scanner, the computer security
officer can set about destroying the virus on a suspect PC
wherever it may lurk with absolute assurance. In the words of a
U.S. Air Force pilot speaking on television recently (albeit
about an unrelated matter) “it’s a turkey shoot”.

[The views expressed are those of the editor and do not
necessarily reflect those of VB’s technical editor, writers and
editorial advisors].

VIRUS BULLETIN

Subscription price for 1 year (12 issues) including delivery:

USA (first class airmail) US$350, Rest of the World (first class airmail) £195

Editorial enquiries, subscription enquiries, orders and payments:

Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Abingdon,
OX14 3YS, England

Tel (0235) 555139, International Tel (+44) 235 555139
Fax (0235) 559935, International Fax (+44) 235 559935

US subscriptions only:

June Jordan, Virus Bulletin, 590 Danbury Road, Ridgefield, CT 06877, USA
Tel 203 431 8720, Fax 203 431 8165

No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of products
liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in
the material herein.

This publication has been registered with the Copyright Clearance Centre Ltd. Consent is given for copying of articles for
personal or internal use, or for personal use of specific clients. The consent is given on the condition that the copier pays
through the Centre the per-copy fee stated in the code on each page.

END-NOTES & NEWS
Dr. Joseph Lewis Popp has been extradited to the United Kingdom to stand trial on charges of blackmail for his alleged part in the AIDS Information
Diskette extortion attempt of December 1989 (VB, Jan 90). Popp, escorted by officers of the Computer Crime Unit, arrived in London on 22nd February 1991.

The UK’s National Computing Centre reports that computer virus infiltration within business computing systems in the United Kingdom has increased
by 29 percent since a similar survey was conducted in 1989. The centre describes its findings as “contrary to current theories held by many security specialists,
who feel that the virus problem has been over-estimated. 34 percent of 497 corporate respondents had been infiltrated at some time by a virus. London and the
South West, where 41 percent of respondents from the region reported a computer virus attack, were hardest hit. A similar survey conducted two years ago
revealed that only 5 percent of respondents had suffered a virus attack. Dr. John Perkins of the NCC commented: “This increase could be ascribed to the user of
IT now being able to identify virus attacks more easily’’. The report is available from the NCC. Tel 061 228 6333.

S & S Ltd. has signed a non-exclusive distribution agreement with IBM UK’s PS/2 Division for the distribution of Dr. Solomon’s Anti-Virus Toolkit . IBM
dealers will be able to source standalone packs and site licences using IBM part numbers. S & S says that orders worth over £30,000 at retail value have been
placed. Mark Drew, IBM UK’s Information Protection Programme Officer is said to have said: “I have a lot of respect for Alan’s [Editor’s note: Dr. Alan
Solomon] professionalism in virus research. He is extremely thorough and conscientious.” Tel 0442 877877.

Sophos Ltd, UK, has announced that the price of VACCINE is to be cut by half from 1st March 1991. The product is to retail for £99.50 while site-licence
copies will be charged at £19.50 per computer. The company has also introduced a 24 hour, 365 days per year technical helpline in support of its products. Tel
0235 559933.

4th Annual Computer Virus & Security Conference, 14-15th March 1991, New York, USA. Contact the Computer Society of the IEEE, USA. Tel 202
371 1013.

Computer viruses and network security are the sublects of two seminars being held by State of the Art Seminars. The seminars will be presented by Dr.
Douglas Tygar, Assistant Professor of computer science at Carnegie Mellon University, USA. The events will be held in Rome (10-13th April 1991), Munich
(17-19th April 1991) and London (22-24th April 1991). Information from SAL, UK. Tel 071 404 3341.

Elsevier Seminars, UK, is holding seminars on Commonsense Computer Security (London, UK, 18-19th March 1991), and Contingency Planning and
Disaster Recovery (London, 17-18th April 1991). Tel 0865 512242.

