
Triada
the past
the present
and the (hopefully not existing) future

Łukasz Siewierski (@maldr0id), Virus Bulletin 2018

[New] system-level backdoor2

OEM outreach and system updates3

Triada evolution

[Old] rooting trojan1 Early 2016

July 2017

Historical information

Old Triada: rooting trojan

● First described by Kaspersky in March 2016

● Uses old exploits to gain root access on the device

● Drops a password protected su binary

● Library, component of the Triada infection chain, uses that binary to

gain root and:

○ install apps in /system

○ turn off Google Play Protect

○ “clean” the device

○ make files immutable (chattr)

○ use OAuth tokens

https://www.kaspersky.com/blog/triada-trojan/11481/

Old Triada: process and traffic hijacking

List of hijacked browsers:

● com.android.browser

● com.qihoo.browser

● com.ijinshan.browser_fast

● com.oupeng.browser

Two XORs with two different
passwords…

For example Triada used this
password pair for encryption:

… and the double XOR

googlefeeback

configopbinfo

public final byte[] a(byte[] p8) {
 int v0_5;
 int v1 = 0;
 if (p8 != null) {
 byte[] v2 = new byte[p8.length];
 int v0_2 = 0;
 while (v0_2 < p8.length) {
 v2[v0_2] = ((byte)(p8[v0_2] ^ this.a[(v0_2 %
this.a.length)]));
 v0_2++;
 }

 while (v1 < p8.length) {
 v2[v1] = ((byte)(v2[v1] ^ this.b[(v1 % this.b.length)]));
 v1++;
 }

 v0_5 = v2;
 } else {
 v0_5 = 0;
 }
 return v0_5;
}

When rooting doesn’t work...

Triada backdoor added one additional line of code to the log function

implementation in the Android framework.

Which means the backdoor code was executed in app context whenever

log was called by the app.

This version was first described by Dr Web in July 2017.

The line of code that started it all...

https://news.drweb.com/show/?i=11390&lng=en

… and a familiar code structure

The strings presented above are decrypted using

the function on the right…

… which is a double XOR.

MMD is a file format used by Triada to inject code into other processes.

File naming scheme is:

<md5 of the process name>36.jmd

MMD file format and code injection

Obfuscated code injections

com.android.systemui (49b3d7ede8f829c04ca0dbc08dacb1ac):

● To have the GET_REAL_TASKS permission

com.android.vending (b5a5c5cb02ca09c784c5d88160e2ec24):

1. 下载请求
2. 下载结果
3. 安装请求
4. 安装结果
5. 激活请求
6. 激活结果
7. 拉活请求
8. 拉活结果
9. 卸载请求

10. 卸载结果

1. download request
2. download result
3. install request (uses real, unpopular Google Play package names)
4. installation result
5. activation request
6. activation result
7. pull request
8. pull the results
9. uninstall request

10. uninstall result

Communication mechanisms

this.destPath = System.getProperty("os.config.ppgl.dir");

com.android.xb.tool.Lg.i(

 new StringBuilder().append("os.config.ppgl.dir=")

 .append(this.destPath).toString()

);

Java properties

App

Log lines

public static void entryLg(android.content.Context context)

{

 android.util.Log.i("COOLAPP", "coolapp_create");

 return;

}

WebView code modification

const-string/jumbo property, "persist.trd_yehuo_searchbox"

invoke-static {property},

Landroid/os/SystemProperties;->get(Ljava/lang/String;)Ljava/lang/String;

move-result-object property

const-string/jumbo true, "1"

invoke-virtual {property, property},

Ljava/lang/String;->equals(Ljava/lang/Object;)Z

move-result compare_result

if-eqz compare_result, :exit

invoke-static {url},

Landroid/webkit/WebView;->yhLoadUrl(Ljava/lang/String;)V

WebView code modification

const-string/jumbo property, "persist.trd_yehuo_searchbox"

invoke-static {property},

Landroid/os/SystemProperties;->get(Ljava/lang/String;)Ljava/lang/String;

move-result-object property

const-string/jumbo true, "1"

invoke-virtual {property, true},

Ljava/lang/String;->equals(Ljava/lang/Object;)Z

move-result compare_result

if-eqz compare_result, :exit

invoke-static {url},

Landroid/webkit/WebView;->yhLoadUrl(Ljava/lang/String;)V

Fortunately Triada backdoor has version numbers.
The newest version that we know about is 1.5.1.

Changelog:
● MD5 hashes updated to SHA1
● Introduced a delay between backdoor actions
● Changed the code injection framework
● Code stubs pointing to a future possibility of backdooring systemui

app
● Compatibility upgrades for Android Nougat

The evolution of Triada versions

RE is done, time to protect the users!

How did the backdoor get to the device?

OEM

(the company that sells the device)

3rd party vendors

(provide additional features)
3rd party vendors

(provide additional features)
3rd party vendors

(provide additional features)
3rd party vendors

(companies that provide additional features)

sends a whole system image

adds additional features to the system image…

… including Triada

sends back the system image…

… not mentioning Triada

OEM outreach summary

We identified OEMs that had devices
with Triada backdoor preinstalled on
them.

We reached out to them and worked
with them to remove the backdoor
code.

OEMs started to remove Triada from
devices by providing system updates,
as seen here.

● Triada authors moved from a rooting trojan to a preinstalled backdoor

● Triada retained more or less the same functionality and purpose

● Reverse engineering shows multiple different code changes and

injections on some Android 6 and 7 (Marshmallow and Nougat) devices

● We worked with all the affected OEMs and asked them to provide a

system update that removes Triada

● System updates have been made available to the users

Summary

THANK
YOU

