ANDROID APP DEOBFUSCATION USING

COOPERATIVE ANALYSIS

YONI MOSES
YANIV MORDEKHAY | Check Point

AUTOMATE

LET'S TALK ABOUT

D MOBILE MALWARE

DETECTION

AUTOMATED ANDROID APP ANALYSIS

ANALYSIS CYCLES FROM LOW COST TO HIGH COST:
1. FEATURE EXTRACTION
1. STATIC ANALYSIS
2. DYNAMIC ANALYSIS
2. FEATURES TO THREAT FACTORS
1. PREDICATES
2. MACHINE LEARNING
3. VERDICT

STATIC ANALYSIS

ANALYZES THE APP WITHOUT RUNNING IT

DISASSEMBLES APK TO SMALI CODE AND LOOKS FOR SENSITIVE DATA FLOWS

STRENGTHS:
e COVERS ALL AVAILABLE CODE

WEAKNESSES:
e CANNOT ANALYZE ENCRYPTED CODE AND DATA
 CANNOT ANALYZE DYNAMICALLY LOADED CODE AND DATA
* JAVA CODE ANALYSIS DOESN'T WORK FOR NATIVE AND VICE VERSA

DYNAMIC ANALYSIS

e EXPOSES BEHAVIORS BY ACTUALLY RUNNING THE APP

e STRENGTHS:
e DOES NOT CARE ABOUT ENCRYPTION OR OBFUSCATION

* ANALYZES DYNAMICALLY LOADED CODE
e AGNOSTIC TO PROGRAMMING LANGUAGES

* WEAKNESSES
* HARD TO REACH FULL COVERAGE (Ul, NETWORK, LOCATION...)

ONE'S WEAKNESS - OTHER'S STRENGTH

* BENEFITS OF COOPERATION
* STRENGTHS AND WEAKNESSES COMPLETE EACH OTHER
* DOUBLE VALIDATION OF BEHAVIORS
e BETTER COVERAGE
e LESS MANUAL WORK FOR ANALYSTS
e WHY ISN'T IT MORE COMMON<¢
e DIFFERENT SKILL SETS

 VERY DIFFERENT EXECUTION ENVIRONMENTS
e PERSONAL RIVALRY

TOGETHER — THEY ARE INVINCIBLE!

CODE EXTRACTION AND UNPACKING

e DYNA EXTRACTS DYNAMICALLY LOADED BINARIES:
* BINARIES BUNDLED AS APP ASSETS
* BINARIES DOWNLOADED IN RUN-TIME

* DYNA DECRYPTS PACKED BINARIES
* RESEARCH PRESENTED AT DEFCON 2017

* THE BINARIES ARE PASSED TO STATIC AND ANALYZED ALONG THE MAIN BINARY
(CLASSES.DEX)

CODE OBFUSCATION

» WIDELY USED BY APP DEVELOPERS (BOTH MALICIOUS AND BENIGN)
e« COMMON TECHNIQUES:

e CLASS AND METHOD RENAMING
* STRING ENCRYPTION

e DYNAMIC METHOD BINDING BY REFLECTION
(OFTEN COMBINED WITH STRING ENCRYPTION]

FOCUSING ON STRING ENCRYPTION

e ENCRYPTED STRINGS COULD BE:
* NAMES OF SENSITIVE APIS CALLED BY REFLECTION
* PATHS TO CONTENT PROVIDERS; E.G “CONTENT://SMS"
e DECRYPTION BY STATIC ANALYSIS IS HARD
e DECRYPTION IS DONE AUTOMATICALLY ANYWAY IF WE RUN THE APP

WHAT IF¢

IDNINA

READS THE DECRYPTED STRINGS DURING RUNTIME
AND PASSES THEM TO

SUZAUG

COMMON OBFUSCATION IMPLEMENTATION

OBFUSCATORS CREATE A NEW BINARY WHERE STRING INITIALIZATION CODE IS
REPLACED WITH DECRYPTION METHOD CALL

BEFORE OBFUSCATION:
const-string vi, “content://sms”

AFTER OBFUSCATION:
const-string vi, “\u@@ef\u0003\ude....”

const/16 v2,
invoke-static {vi, v2},
move-result-object vi

COOPERATIVE DECRYPTION

NAIVE APPROACH

LOOKS FOR DECRYPTION CALLS AND PASSES THEM TO

BEFORE APP EXECUTION, PLACES BREAKPOINTS AT DECRYPTION CALLS

AT RUNTIME, RECORDS DECRYPTED STRINGS AND PASSES THEM TO

WILL COVER ALL DECRYPTION CALLS?

COOPERATIVE DECRYPTION

PRACTICAL APPROACH

1. COLLECTS THE DECRYPTION CALLS USING PREDEFINED SIGNATURES

2. THE COLLECTED CALLS ARE PASSED TO , WITH THEIR ARGUMENT VALUES
3 LOADS APP CODE

4. RUNS, IN BACKGROUND, THE DECRYPTION CALLS RECEIVED FROM

5 RETURNS THE DECRYPTED VALUES TO

é PATCHES THE CODE AND RUNS THE REGULAR ANALYSIS

COOPERATIVE DECRYPTION

PRACTICAL APPROACH

. CREATES A PATCHED DEX USING THE DATA FROM
* REPLACES DECRYPTION CALLS WITH DECRYPTED STRINGS
 REMOVES REFLECTION USAGE:

1. LOOKS FOR CALLS TO
java.lang.reflect.Method. invoke()

2. PERFORMS BACKTRACK SEARCH FOR NAMES OF INVOKED METHODS
3. REPLACES CALLS TO Method. invoke() WITH ORDINARY CALLS

DEX PATCHING

(BEFOREW

const/4 v1, 0x0
const/4 v@, 0x5
const/16 v2, Ox28

:try start ©
const-string v3, "yy6ol"

invoke-static {v@, v2, v3}, Lecn/cq/yz/ds/c;-=insert(IILjava/
lang/String;)Ljava/lang/String;

move-result-object v@

invoke-virtual {p@, vO}, Landroid/content/Context;->
getSystemService(Ljava/lang/String;)Ljava/lang/0Object;

move-result-object v@
check-cast v@, Landroid/telephony/TelephonyManager;

invoke-virtual {v@}, Landroid/telephony/TelephonyManager;->
getDeviceld()Ljava/lang/String;

(AFTER A

const-string v@, "phone”

invoke-virtual {p@, vO0}, Landroid/content/Context;->getSystemService(
Ljava/lang/String;)Ljava/lang/0Object;

move-result-object v@
check-cast v@, Landroid/telephony/TelephonyManager;

invoke-virtual {v@}, Landroid/telephony/TelephonyManager;-=
getDeviceld()Ljava/lang/String;

LIMITATIONS

* SHOWCASING COOPERATION IS MORE IMPORTANT THAN
COVERING ALL THE CASES

« WE MADE OUR LIFE EASY:
e ONLY STATIC METHODS
e ONLY CONSTANT ARGUMENTS
e ONLY METHODS WITHOUT SIDE EFFECTS

EXPERIMENT: DASHO DECRYPTION

 DASHO — COMMON COMMERCIAL OBFUSCATOR
* SIGNATURE FOR ITS DECRYPTION METHODS:
* STATIC METHOD
e STRING RETURN VALUE
o 3-4 ARGUMENTS: 2-3 INTS AND ONE STRING
« EXCEPTIONS CAUGHT ONLY IF THEY INHERIT FROM RUNTIMEEXCEPTION
 NO SECONDARY CALLS EXCEPT FOR STRING CLASS METHODS
e THE SIGNATURE YIELDED 586 SAMPLES IN OUR DATABASE

WHAT IS HIDING THERE®

com.threelm.dm.api.IDeviceManag
erApi

%s %s

PhoneUtils

OUTGOING_SERVER CMD
eula.version.name
android.app.extra.DEVICE ADMIN

SELECT DISTINCT familyName FROM
trustedPUPTable ORDER BY
familyName

mIndex=

safe_sim
android.intent.action.SEND
, for type token:

getLong(lockscreen.password_typ
e)
TO

fragment

familyName
layout_inflater
body

SETTINGS
LoaderManager
buddyNotified

t url

android.intent.action.MEDIA MOU
NTED

DexHash

Caught exception reading the
GList.

544

filter=
OwnerName
AppVerCode
TopAppMonitor
MUP

logparse

com.wsandroid.managers.STATE_RE
CEIVER

pref.debug.settings
LaunchManager

BLD VER_INCREMENTAL
214

C2dmToken

http

ER

select type from
AppTrustInfoBrief where pkg="'

CloudReputationDB

Activated

SubscriptionStartTime

911;112;
InvalidInstallIdDeviceTypeMatch

Number of decryption calls per app

2R
EXPERIMENT RESULTS i
200 +
. DETECTED NEW FLOWS IN
150 +~
10.4% OF THE SAMPLES
* ACCESS TO GOOGLE ACCOUNT R
CREDENTIALS
* ACCESS TO SMS AND CONTACTS 50 7
CONTENT PROVIDERS
e DEVICE ADMIN PRIVILEGES REQUEST

EASIER SAID THAN DONE

AM | THE IIHIY IIIIE AROUND

e DYNAMIC-STATIC COMMUNICATION

 NON PARALLEL EXECUTION

e STATIC RUNS TWICE
* DIFFERENT ENVIRONMENTS /

e ANDROID RUNTIME HACKING THAT CARES ABOUT THE PRIME
e VIOLATES THE PRIME DIRECTIVE! DIRECTIVE? .
e TESTING

e REQUIRES SOPHISTICATED INFRASTRUCTURE FOR REAL TESTING

AND THEN WE DEPLOYED TO PRODUCTION

DASHO AND DEXGUARD

SOME APPS REALLY LOVE ENCRYPTION
* MEDIAN APP CONTAINS 13 ENCRYPTED STRINGS
« MAXIMUM ENCOUNTERED: 13,976
e MOST APPS DECRYPT VERY SHORT STRINGS, SOME DECRYPT MEGABYTES

MUCH MORE VOLATILE

MUCH MORE INFRASTRUCTURE DEPENDENCIES

VERY LOW PERFORMANCE IMPACT!

WHAT IS NEXT¢

BREADTH FIRST APPROACH

e COVER MORE “SIMPLE" OBFUSCATORS

DEPTH FIRST APPROACH
e BE ABLE TO HANDLE STATE
e BE ABLE TO RUN CODE THAT IS NOT CONTAINED IN A METHOD

NON SIGNATURE BASED SEARCH

RECONSTRUCT OTHER TYPES OF DATA

USE COOPERATION TO IMPROVE DYNAMIC COVERAGE

FEED THE DATA INTO THE ML ENGINES!

THANK YOU!

YONI MOSES: YONIMO@CHECKPOINT.COM
YANIV MORDEKHAY: YANIVMO@CHECKPOINT.COM | Check Point

SOFTWARE TECHNOLOGIES LTD.

