
Windows Defender
Under The
Microscope:  
A Reverse Engineer’s Perspective

Alexei Bulazel
@0xAlexei

Virus Bulletin 2018

About Me

● AV industry outsider working on AV RE for a long time
● Security researcher at ForAllSecure
● RPI / RPISEC alumnus

○ Co-taught the famous RPISEC “Modern Binary Exploitation” class
(https://github.com/rpisec/mbe)

● First time at Virus Bulletin

@0xAlexei

This is my personal research, any views and opinions
expressed are my own, not those of any employer

Outline

1. Introduction
2. Tooling & Process

3. Discussion
4. Conclusion

This Talk

● Analysis of my custom tools and
process after 9+ months of REing
Windows Defender
○ Not going to reiterate AV knowledge

that industry already knows - see
released slides 

● Few researchers REing AVs, fewer looking at emulators 

● No disrespect to Microsoft or the AV industry - Defender is a
fascinating subject of study and a beautifully architected piece
of software

My Published Research
Windows Defender RE
● JS Engine @ REcon Brussels
● Windows Emulator @ REcon

Montreal, Black Hat, DEFCON 

“AVLeak” - AV emulator
fingerprinting and evasion @
Black Hat & WOOT’16  

“A Survey On Automated
Dynamic Malware Analysis
Evasion and Counter-Evasion” @
ROOTS’17

● I then spent another ~5 months reverse engineering the Windows
binary emulator 

● This was a personal research project - all in my free time, not for any
company

Motivation ● Tavis and co. at P0 dropped some
awesome Defender JS engine bugs 

● I had analyzed AVs before, but
never Windows Defender… interest
in JS engines 

● So I reverse engineered Defender’s
JS engine for ~4 months

Real Motivation
Spend hundreds of hours doing
unpaid research, so I can fly
thousands of miles in coach
class to present Powerpoints in
hotels around the world

Prior Art
● Lots of conference talks, whitepapers, and blogs

on antivirus evasion, but few on RE 

● Tavis Ormandy’s Defender bugs from 2017  

● As far as I know, there’s never been a publication
about reverse engineering the internals of an AV
emulator*

*There are plenty on black box AV
evasion though. AV industry companies
have occasionally presented on the
design of their emulators at conferences
such as Virus Bulletin.

Outline

1. Introduction
2. Tooling & Process

a. Introduction
b. JS Engine
c. Emulator

3. Discussion
4. Conclusion

Reconnaissance - Patent Search

“The present invention includes a system and method for translating potential malware devices
into safe program code. The potential malware is translated from any one of a number of different
types of source languages, including, but not limited to, native CPU program code, platform
independent .NET byte code, scripting program code, and the like. Then the translated program
code is compiled into program code that may be understood and executed by the native CPU…”

Static Analysis

● ~12 MB DLL
● ~30,000 functions
● IDA Pro

○ Patch analysis with BinDiff
● Microsoft publishes PDBs

BinDiffing

Dynamic Analysis & Loader

“Repeated vs. single-round games in security”
Halvar Flake, BSides Zurich Keynote

AV-Specific Challenges:
● Protected Process

○ Cannot debug, even as local admin
● Introspection
● Scanning on demand
● Code reachability may be configuration /

heuristics dependent

Dynamic Analysis & Loader

“Repeated vs. single-round games in security”
Halvar Flake, BSides Zurich Keynote

AV-Specific Challenges:
● Protected Process

○ Cannot debug, even as local admin
● Introspection
● Scanning on demand
● Code reachability may be configuration /

heuristics dependent

Solution:
Custom loaders for
AV binaries

Outline

1. Introduction
2. Tooling & Process

a. Introduction
b. JS Engine
c. Emulator

3. Discussion
4. Conclusion

JS REPL Shell

Based off a shell released on Twitter by @TheWack0lian,
developed with Rolf Rolles

JS Loader and Shell

● Use LoadLibrary on Windows
○ WinDbg works natively

● Patch constructor for  
JsRuntimeState::JsRuntimeState()
○ Provide a VTable implementing analysis

callbacks
○ Print to stdout on “print” events
○ Log other events

● Directly call to start scan: 
JavaScriptInterpreter::eval( 
 const char *input,  
 unsigned int inputSize,  
 JavaScriptInterpreter::Params *params)

JS Loader and Shell
Windows Binary

JS Loader and Shell
Windows Binary

MpEngine.dll

JS Loader and Shell
Windows Binary

MpEngine.dll

JS Emulator

JS Loader and Shell
Windows Binary

MpEngine.dll

JS Emulator

JavaScriptInterpreter::eval

JS Loader and Shell
Windows Binary

MpEngine.dll

JS Emulator

JavaScriptInterpreter::eval

JsRuntimeState::  
JsRuntimeState()

JS Loader and Shell
Windows Binary

MpEngine.dll

JS Emulator

JavaScriptInterpreter::eval

JsRuntimeState::  
JsRuntimeState()

Add Custom
VTable

VTable

Analyz
e

...

Print to stdout

JS Loader and Shell
Windows Binary

MpEngine.dll

(function (){  
 for (var i = 0; i < 10; i++){  
 log(i);  
 }  
})()

JS Input

JS Emulator

JavaScriptInterpreter::eval

JsRuntimeState::  
JsRuntimeState()

Add Custom
VTable

VTable

Analyz
e

...

Print to stdout

Outline

1. Introduction
2. Tooling & Process

a. Introduction
b. JS Engine
c. Emulator

3. Discussion
4. Conclusion

mpclient Shell git.io/fbp0X

Tavis Ormandy’s open source tool

mpclient git.io/fbp0X
Linux mpclient
Binary

mpclient git.io/fbp0X
Linux mpclient
Binary

MpEngine.dll

mpclient git.io/fbp0X
Linux mpclient
Binary

MpEngine.dll

IAT

 
WinAPI
Emulation

mpclient git.io/fbp0X
Linux mpclient
Binary

MpEngine.dll

IAT Emulator
 
WinAPI
Emulation

g_syscalls

 OutputDebugStringA

 WinExec

 ...

mpclient git.io/fbp0X
Linux mpclient
Binary

MpEngine.dll

IAT Emulator
 
WinAPI
Emulation

Malware Binary

MZ...

g_syscalls

 OutputDebugStringA

 WinExec

 ...

mpclient git.io/fbp0X
Linux mpclient
Binary

MpEngine.dll

IAT

__rsignal

Emulator
 
WinAPI
Emulation

Malware Binary

MZ...

g_syscalls

 OutputDebugStringA

 WinExec

 ...

mpclient git.io/fbp0X
Linux mpclient
Binary

MpEngine.dll

IAT

__rsignal

Emulator
 
WinAPI
Emulation

Malware Binary

MZ...

g_syscalls

 OutputDebugStringA

 WinExec

 ...

Scanning Engine
Selection

mpclient git.io/fbp0X
Linux mpclient
Binary

MpEngine.dll

IAT

__rsignal

Emulator
 
WinAPI
Emulation

Malware Binary

MZ...

g_syscalls

 OutputDebugStringA

 WinExec

 ...

Scanning Engine
Selection

mpclient git.io/fbp0X
Linux mpclient
Binary

MpEngine.dll

IAT

__rsignal

Emulator
 
WinAPI
Emulation

Threat Virus:
Win32/Virut.BN!dam identified.

Malware Binary

MZ...

g_syscalls

 OutputDebugStringA

 WinExec

 ...

Scanning Engine
Selection

Modified mpclient - ~3k LoC added github.com/0xAlexei

Linux mpclient
Binary

MpEngine.dll

IAT

__rsignal

WinAPI
Emulation

g_syscalls

 OutputDebugStringA

 WinExec

 ...

 
Print to stdout

OutputDebugStringA hook

Other actions...
WinExec hook

Malware Binary

MZ...

Emulator

Scanning Engine
Selection

Modified mpclient

OutputDebugStringA Hook

Use existing functions in Defender to
interact with function parameters and
virtual memory

Mark - Thanks for the idea!

Hook the native function pointer that gets called when
OutputDebugStringA is called in-emulator

Dealing With Calling Conventions
When calling mpengine.dll functions from mpclient: Difficulty
of interoperability between MSVC and GCC compiled code

● Possible to massage compiler with __attribute__ annotations
Easier solution - just hand-write assembly thunks to marshall
arguments into the correct format

Dealing With Calling Conventions
When calling mpengine.dll functions from mpclient: Difficulty
of interoperability between MSVC and GCC compiled code

● Possible to massage compiler with __attribute__ annotations
Easier solution - just hand-write assembly thunks to marshall
arguments into the correct format
BYTE * __fastcall __mmap_ex
(

pe_vars_t * v, // ecx
unsigned int64 addr, // too big for edx
unsigned long size, // edx
unsigned long rights

);

Dealing With Calling Conventions
When calling mpengine.dll functions from mpclient: Difficulty
of interoperability between MSVC and GCC compiled code

● Possible to massage compiler with __attribute__ annotations
Easier solution - just hand-write assembly thunks to marshall
arguments into the correct format
BYTE * __fastcall __mmap_ex
(

pe_vars_t * v, // ecx
unsigned int64 addr, // too big for edx
unsigned long size, // edx
unsigned long rights

);

Dynamic Analysis - Code Coverage
● Getting an overview of what subsystems are being hit is

helpful in characterizing a scan or emulation session
○ Breakpoints are too granular

● Emulator has no output other than malware identification
● Lighthouse code coverage plugin for IDA Pro from Markus

Gaasedelen of Ret2 Systems / RPISEC

Halvar Flake’s SSTIC 2018 keynote

x86_common_context::emulate_CPUID

Visualize emulator code
coverage when emulating a
given “malware” binary

Tracing Timeline

Engine Startup

__rsignal(..., RSIG_BOOTENGINE, …)

Pintool must be enlightened about custom loaded
mpengine.dll location - take callback stub ideas from
Tavis Ormandy’s deepcover Pintool
github.com/taviso/loadlibrary/tree/master/coverage

Tracing Timeline

Engine Startup Initial
Scan

__rsignal(..., RSIG_BOOTENGINE, …) __rsignal(..., RSIG_SCAN_STREAMBUFFER, …)

Pintool must be enlightened about custom loaded
mpengine.dll location - take callback stub ideas from
Tavis Ormandy’s deepcover Pintool
github.com/taviso/loadlibrary/tree/master/coverage

Tracing Timeline

Engine Startup Initial
Scan

Emulator
Startup

__rsignal(..., RSIG_BOOTENGINE, …) __rsignal(..., RSIG_SCAN_STREAMBUFFER, …)

Pintool must be enlightened about custom loaded
mpengine.dll location - take callback stub ideas from
Tavis Ormandy’s deepcover Pintool
github.com/taviso/loadlibrary/tree/master/coverage

Tracing Timeline

Engine Startup Initial
Scan

Emulator
Startup Binary Emulation

Binary calls hooked
WinExec emulation
with params for start

__rsignal(..., RSIG_BOOTENGINE, …) __rsignal(..., RSIG_SCAN_STREAMBUFFER, …)

Hooking Defender’s emulation
functions for WinExec and
ExitProcess allows us to know
when emulation starts and stops*
 
*ExitProcess is called at the end of every
emulation session automatically - I believe this is
because setup_pe_vstack puts it at the bottom
of the call stack, even for binaries that do not
explicitly return to it

Pintool must be enlightened about custom loaded
mpengine.dll location - take callback stub ideas from
Tavis Ormandy’s deepcover Pintool
github.com/taviso/loadlibrary/tree/master/coverage

Tracing Timeline

Engine Startup Initial
Scan

Emulator
Startup Binary Emulation Emulator

Teardown

Emulator calls
ExitProcess

Binary calls hooked
WinExec emulation
with params for start

__rsignal(..., RSIG_BOOTENGINE, …) __rsignal(..., RSIG_SCAN_STREAMBUFFER, …)

Hooking Defender’s emulation
functions for WinExec and
ExitProcess allows us to know
when emulation starts and stops*
 
*ExitProcess is called at the end of every
emulation session automatically - I believe this is
because setup_pe_vstack puts it at the bottom
of the call stack, even for binaries that do not
explicitly return to it

Pintool must be enlightened about custom loaded
mpengine.dll location - take callback stub ideas from
Tavis Ormandy’s deepcover Pintool
github.com/taviso/loadlibrary/tree/master/coverage

Tracing Timeline

Engine Startup Initial
Scan

Emulator
Startup Binary Emulation Emulator

Teardown

Emulator calls
ExitProcess

Binary calls hooked
WinExec emulation
with params for start

__rsignal(..., RSIG_BOOTENGINE, …) __rsignal(..., RSIG_SCAN_STREAMBUFFER, …)

Collect coverage
information

Hooking Defender’s emulation
functions for WinExec and
ExitProcess allows us to know
when emulation starts and stops*
 
*ExitProcess is called at the end of every
emulation session automatically - I believe this is
because setup_pe_vstack puts it at the bottom
of the call stack, even for binaries that do not
explicitly return to it

Pintool must be enlightened about custom loaded
mpengine.dll location - take callback stub ideas from
Tavis Ormandy’s deepcover Pintool
github.com/taviso/loadlibrary/tree/master/coverage

Fuzzing Emulated APIs
● Create a binary that goes inside the emulator and repeatedly calls hooked

WinExec function to request new data, then sends that data to functions
with native emulations

● Buffers in memory passed to external hook function to populate with
parameters

● Could do fuzzing in-emulator too, but this is easier for logging results

MpEngine.dll

Input
Generation

Linux mpclient
Binary

Input Generation
● Borrow OSX syscall fuzzer

code from MWR Labs
OSXFuzz project* 

● Nothing fancy, just throw
random values at native
emulation handlers 

● Re-seed rand() at the start
of each emulation session,
just save off seeds in a log  

*github.com/mwrlabs/OSXFuzz

NtWriteFile Overflow
NtWriteFile is normally accessible and exported by
ntdll.dll

● VFS_Write has to be triggered with special apicall
Tavis’ inputs get sanitized out by NtWriteFileWorker before
it calls down to VFS_Write

LARGE_INTEGER L;
L.QuadPart =
0x2ff9ad29fffffc25;

NtWriteFile(
hFile,

 NULL,
 NULL,
 NULL,
 &ioStatus,
 buf,
 0x1,
 &L,
 NULL);

L.QuadPart = 0x29548af5d7b3b7c;
NtWriteFile(

hFile,
 NULL,
 NULL,
 NULL,
 &ioStatus,
 buf,
 0x1,
 &L,
 NULL);

NtWriteFile Overflow
NtWriteFile is normally accessible and exported by
ntdll.dll

● VFS_Write has to be triggered with special apicall
Tavis’ inputs get sanitized out by NtWriteFileWorker before
it calls down to VFS_Write

LARGE_INTEGER L;
L.QuadPart =
0x2ff9ad29fffffc25;

NtWriteFile(
hFile,

 NULL,
 NULL,
 NULL,
 &ioStatus,
 buf,
 0x1,
 &L,
 NULL);

L.QuadPart = 0x29548af5d7b3b7c;
NtWriteFile(

hFile,
 NULL,
 NULL,
 NULL,
 &ioStatus,
 buf,
 0x1,
 &L,
 NULL);

I fuzzed NtWriteFile:
● ~7 minutes @ ~8,000 NtWriteFile calls / second
● Fuzzed Length arguments
● Reproduced Tavis’ crash, alternate easier to reach

code path through NtWriteFile
Unfortunately, patches for VFS_Write bug also fixed this

apicall Custom “apicall” opcode used to trigger native emulation routines

0F FF F0 [4 byte immediate]

apicall instructions can
be disassembled with an
IDA Processor Extension
Module

apicall Custom “apicall” opcode used to trigger native emulation routines

0F FF F0 [4 byte immediate]

immediate = crc32(DLL name, all caps) ^ crc32(function name)

apicall instructions can
be disassembled with an
IDA Processor Extension
Module

apicall Custom “apicall” opcode used to trigger native emulation routines

0F FF F0 [4 byte immediate]

immediate = crc32(DLL name, all caps) ^ crc32(function name)

0xB28014BB = crc32(“KERNEL32.DLL”) ^ crc32(“OutputDebugStringA”)

apicall instructions can
be disassembled with an
IDA Processor Extension
Module

apicall Custom “apicall” opcode used to trigger native emulation routines

0F FF F0 [4 byte immediate]

0F FF F0 BB 14 80 B2
apicall kernel32!OutPutDebugStringA

immediate = crc32(DLL name, all caps) ^ crc32(function name)

0xB28014BB = crc32(“KERNEL32.DLL”) ^ crc32(“OutputDebugStringA”)

apicall instructions can
be disassembled with an
IDA Processor Extension
Module

Locking Down apicall

Can’t just trigger apicall from malware .text section or otherwise malware-created
memory (eg: rwx allocation) anymore

If apicall did not
come from a VDLL,
set a heuristic and
deny it

Proceed with
processing if
apicall is ok

is_vdll_page call added to __call_api_by_crc
in 6/20/2017 mpengine.dll build - is the apicall
instruction coming from a VDLL?

New AV heuristic trait added

Bypass
● apicall stubs are located throughout

VDLLs
● They can be located in memory and

called directly by malware, with attacker
controlled arguments
○ Passes is_vdll_page checks

 
Response from MSFT: “We did indeed make some
changes to make this interface harder to reach
from the code we’re emulating -however, that was
never intended to be a trust boundary.

Accessing the internal APIs exposed to the
emulation code is not a security vulnerability...”

Bypass Example
VOID OutputDebugStringA_APICALL(PCHAR msg)
{

typedef VOID(*PODS)(PCHAR);
HMODULE k32base = LoadLibraryA(“kernel32.dll”);
PODS apicallODS = (PODS)((PBYTE)k32base + 0x16d4e);
apicallODS(msg);

} Kernel32 base offset:
0x16d4e

Comes from kernel32
VDLL, so passes
is_vdll_page checks

OutputDebugStringA can be
normally hit from kernel32, so
this is ultimately just a unique way
of doing that

Outline

1. Introduction
2. Tooling & Process
3. Discussion
4. Conclusion

Reverse Engineer Intuitions
● It’s easy to detect for emulator (or file format unpacker)

presence - test an EICAR dropper
● Everyone has to emulate Sleep() with custom code
● Everyone emulates cpuid
● Everyone emulates rstsc, but messes up rdtscp
● Emulators have lots of strings - these can be found in memory

dumps to help identify emulator code 

● Everyone builds custom tools when doing offensive research,
but this is especially true for AV RE 

Reverse Engineer Intuitions - Rolf Rolles in 2013

Programmer “Easter Eggs”

var num = new Number(1);  
var node = document.createTextNode("node");  
var elem = document.createElement("element");  
num.appendChild = elem.appendChild;  
num.appendChild(node);

triggerEvent(): err_typeerror  
triggerEvent(): error_tostring  
Log(): uncaught exception: TypeError: node.insertBefore()  
 'this' object must be DOM Object (BUG, should never
happen)

In-Emulator Signaling
Attackers can discover in-emulator
control operations

Why not just use int/syscall?

Antivirus Reverse Engineering
● People constantly talk about what AVs can or

can’t do, and how/where they are vulnerable
● These claims are mostly backed up by Tavis

Ormandy’s work at Project Zero and a handful of
other conference talks, papers, and blog posts 

● I hope we’ll see more AV research in the future

Security Through Obscurity?
● Preventing reverse engineering is futile

○ Obfuscation and custom binary formats don’t stop RE,
and can be overcome with one-time effort

○ Side channel analyses like “AVLeak” are also possible 

● Introspectibility and debugability are poor → only
motivated competent adversaries will perform RE
○ Malicious actors already are - search any unique string

from my presentations - you’ll find malware samples
from long before I presented

Custom Binary Format Example:  
Bitdefender XMDs

Custom Binary Ninja loader:
 ~150 LoC, 4 hours of work

Emulator Exploitation
● Emulators, like web browsers, provide the primitives

necessary for modern binary exploitation 

● Micro-level: Software attack surface is immense, and the
software runs at high privilege on the OS 

● Macro-level: For IT organizations, AV software is similar -
high privilege within a network, and adds attack surface to
your most sensitive assets 

● AV engines seem intuitively very easy to sandbox

Outline

1. Introduction
2. Tooling & Process
3. Discussion
4. Conclusion

Code & More Information
github.com/0xAlexei

Code release:
● OutputDebugStringA hooking
● “Malware” binary to go inside the emulator
● Some IDA scripts, including apicall disassembler

Article in PoC||GTFO 0x19:
● OutputDebugStringA hooking
● Patch diffing and apicall bypass
● apicall disassembly with IDA processor extension module

Conclusion
1. I had a great time reverse

engineering Windows Defender -
seriously cool software

2. REs will create custom tools to
address AV complexity

3. Resistance to RE is futile, so be
smart about design

Thank You:
● Tavis Ormandy & Natalie

Silvanovich @ Google P0 -
exposing the engine, mpclient,
sharing ideas

● Mark - hooking ideas
● Joxean Koret - OG AV hacker
● Virus Bulletin - hosting me and

editing my paperJS Engine & Emulator slides:  
bit.ly/2qio857
bit.ly/2CxyZ3l

 @0xAlexei
Open DMs

github.com/0xAlexei

