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Agenda

1. The tools

2. Trickbot’s historical antecedents

3. What’s in the traffic

4. Decoding the payloads

5. Cross-referencing network reputation

6. Where do we go from here?
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Data collection in the lab

• Security Analytics
• Full packet capture
• Data persistence for months to years

• SSL Visibility 
• Acts as an intermediate certificate authority 

• SSL cert resigning

• Output as unencrypted packets to SA’s capture 
interface

• Webpulse/GIN
• Network reputation lookups
• All URIs on testbeds submitted to cloud service
• Relationship maps
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Dyre then, Trickbot now
So…much…honey



Dyre c2 presentation slide, November 2014



When I first saw Trickbot’s traffic

• “Oh, look, Dyre is back again”
(then I read the Malwarebytes blog)

bit.ly/trickbot-blog

• They’ve done some interesting new 
stuff to their c2

• And they’ve integrated what used to be 
an ecosystem of correlated malware 
into one hybrid

• This is going to be bad



Trickbot (Trojan.Trickybot) C2 over HTTPS



Typical sequence of commands issued



Some abstractions/inferences 

• /1/ is the default “OK” response

• Communication is always TLS but not always 443/tcp
– (could be 447, 449, or anything else, really)

• You cannot rely on HTTP server response codes being 
honest or accurate
– “404” may not actually mean “not found” 

• Mostly GET requests for C2
– POST for some, but not all, data exfil

• Module feedback in the form of GETs, in the URI
– Comments/feedback in (competent) English

• For each running Trickbot component there is a 
corresponding instance of svchost.exe 



Notable/observable endpoint behaviour

• Checks public IP via various free websites
– Not using STUN protocol as Dyre did (subject to change at any time)

• Checks whether the public-facing IP address is on a DNS Blacklist or blackhole
– “404” may not actually mean “not found” 

• Payloads stored in %userprofile%\AppData\Roaming\winapp\…

• Mail credential scraping from Outlook (via outlookdll/outlookdll64)

• Mailsearcher component scrapes entire disk for email addresses
– Dyre did this using the Kegotip malware payload, now defunct

• Attempts ETERNALBLUE exploit to spread laterally
– May target large numbers of IP addresses over SMB and is VERY noisy and easy to detect

• MailClient.exe payload sends new attacks to victims



Distinctive persistence method

• Uses Scheduled Tasks to re-run the main binary 
every few minutes



Breaking down the c2 traffic



Abstracted Trickbot command structure

• GET requests

• Always uses numeric IP address for C2, possibly abnormal SSL port #
– IPs of C2 servers delivered in encoded C2 payload

• group_tag

• Machine name & version of Windows (uses the “internal” NT version code)

• client_id

• Command
– May be followed by a subcommand or function call, and/or feedback



Inferred command meanings
• /0/ = initial contact

• /5/ = download this 

• /14/ = profiling information or important feedback 
(such as if a component fails)

• /25/ = periodic checkin (T.B. phone home)

• /63/ = issue command to component (x)

• /64/ = issue command to ETERNALBLUE 
component (wormdll)

• /send/ = used by mailsearcher component to POST 
exfil email addresses

• To be determined:
– /10/
– /23/



systeminfo POST data

• Basic information about the infected PC
– OS CPU, RAM (full names)
– List of user accounts and groups

• All installed applications

• All  installed services

• ALL IN PLAINTEXT



Bot configuration data

• Decoded using:

bit.ly/trickbot-decode

• /dinj
– List of targeted institutions
– Destination for exfil
– Filters/masks for data

Also, an interesting blog about 
this phenomenon:

bit.ly/trickbot-injection 



Bot configuration data

• Decoded using:

bit.ly/trickbot-decode

• /sinj
– List of targeted institutions
– Destination for exfil
– What is <nh> used for?



Bot configuration data

• /dpost and /mailconf
– <handler> tag wraps URL
– Possible destination for exfil



Command to download a payload



Command to activate a component which in turn downloads something



Threat intel cross-referencing with Billiard Room



How does Billiard Room work?

• Takes input in the form of:
– File hashes
– IP addresses
– Domain names
– WHOIS record email addresses

• Relationship map
– Where’s that domain been hosted/where does the 

DNS resolve to?
– Where did this file originate and to what address 

has it been observed communicating?
– Who owns these domains and what other 

domains does that account own?
– Data sources: Blue Coat Webpulse, various 

Symantec DBs, and some third parties
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/dpost IP relationship map 





Almost too many rabbit holes to follow
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Network IoCs predictably employed by Trickbot
• Invalid SSL certificates

– Usually an alphabet salad of self-signed garbage data

• TLS to IPv4 addresses, not domains; may or may not use 443/tcp

• Requests to services that expose public IP addresses 

• Executable payloads usually have .png extension; delivery may not be over HTTPS

If you’re MITMing the traffic for inspection:

• Regular GETs for /dinj, /sinj, and /dpost (about every 15 minutes)

• Consistent User-Agent string 
– Chrome 57 on Windows 10/64, regardless of the actual OS/browser of the device
– Some payload components may use other U-As 

Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) 
Chrome/57.0.2987.133 Safari/537.36



Thank you!
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Email me if you’d like:
• Decrypted PCAPs
• Samples
• Configs
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