
VB2017

Turning Trickbot:
Decoding an encrypted command-and-control channel

Andrew Brandt

@threatresearch #vb2017

Director of Threat Research

Agenda

1. The tools

2. Trickbot’s historical antecedents

3. What’s in the traffic

4. Decoding the payloads

5. Cross-referencing network reputation

6. Where do we go from here?

Copyright © 2015 Symantec Corporation

2

Data collection in the lab

• Security Analytics
• Full packet capture
• Data persistence for months to years

• SSL Visibility
• Acts as an intermediate certificate authority

• SSL cert resigning

• Output as unencrypted packets to SA’s capture
interface

• Webpulse/GIN
• Network reputation lookups
• All URIs on testbeds submitted to cloud service
• Relationship maps

Copyright © 2016 Symantec Corporation

3

Dyre then, Trickbot now
So…much…honey

Dyre c2 presentation slide, November 2014

When I first saw Trickbot’s traffic

• “Oh, look, Dyre is back again”
(then I read the Malwarebytes blog)

bit.ly/trickbot-blog

• They’ve done some interesting new
stuff to their c2

• And they’ve integrated what used to be
an ecosystem of correlated malware
into one hybrid

• This is going to be bad

Trickbot (Trojan.Trickybot) C2 over HTTPS

Typical sequence of commands issued

Some abstractions/inferences

• /1/ is the default “OK” response

• Communication is always TLS but not always 443/tcp
– (could be 447, 449, or anything else, really)

• You cannot rely on HTTP server response codes being
honest or accurate
– “404” may not actually mean “not found”

• Mostly GET requests for C2
– POST for some, but not all, data exfil

• Module feedback in the form of GETs, in the URI
– Comments/feedback in (competent) English

• For each running Trickbot component there is a
corresponding instance of svchost.exe

Notable/observable endpoint behaviour

• Checks public IP via various free websites
– Not using STUN protocol as Dyre did (subject to change at any time)

• Checks whether the public-facing IP address is on a DNS Blacklist or blackhole
– “404” may not actually mean “not found”

• Payloads stored in %userprofile%\AppData\Roaming\winapp\…

• Mail credential scraping from Outlook (via outlookdll/outlookdll64)

• Mailsearcher component scrapes entire disk for email addresses
– Dyre did this using the Kegotip malware payload, now defunct

• Attempts ETERNALBLUE exploit to spread laterally
– May target large numbers of IP addresses over SMB and is VERY noisy and easy to detect

• MailClient.exe payload sends new attacks to victims

Distinctive persistence method

• Uses Scheduled Tasks to re-run the main binary
every few minutes

Breaking down the c2 traffic

Abstracted Trickbot command structure

• GET requests

• Always uses numeric IP address for C2, possibly abnormal SSL port #
– IPs of C2 servers delivered in encoded C2 payload

• group_tag

• Machine name & version of Windows (uses the “internal” NT version code)

• client_id

• Command
– May be followed by a subcommand or function call, and/or feedback

Inferred command meanings
• /0/ = initial contact

• /5/ = download this

• /14/ = profiling information or important feedback
(such as if a component fails)

• /25/ = periodic checkin (T.B. phone home)

• /63/ = issue command to component (x)

• /64/ = issue command to ETERNALBLUE
component (wormdll)

• /send/ = used by mailsearcher component to POST
exfil email addresses

• To be determined:
– /10/
– /23/

systeminfo POST data

• Basic information about the infected PC
– OS CPU, RAM (full names)
– List of user accounts and groups

• All installed applications

• All installed services

• ALL IN PLAINTEXT

Bot configuration data

• Decoded using:

bit.ly/trickbot-decode

• /dinj
– List of targeted institutions
– Destination for exfil
– Filters/masks for data

Also, an interesting blog about
this phenomenon:

bit.ly/trickbot-injection

Bot configuration data

• Decoded using:

bit.ly/trickbot-decode

• /sinj
– List of targeted institutions
– Destination for exfil
– What is <nh> used for?

Bot configuration data

• /dpost and /mailconf
– <handler> tag wraps URL
– Possible destination for exfil

Command to download a payload

Command to activate a component which in turn downloads something

Threat intel cross-referencing with Billiard Room

How does Billiard Room work?

• Takes input in the form of:
– File hashes
– IP addresses
– Domain names
– WHOIS record email addresses

• Relationship map
– Where’s that domain been hosted/where does the

DNS resolve to?
– Where did this file originate and to what address

has it been observed communicating?
– Who owns these domains and what other

domains does that account own?
– Data sources: Blue Coat Webpulse, various

Symantec DBs, and some third parties

22

/dpost IP relationship map

Almost too many rabbit holes to follow

27

Network IoCs predictably employed by Trickbot
• Invalid SSL certificates

– Usually an alphabet salad of self-signed garbage data

• TLS to IPv4 addresses, not domains; may or may not use 443/tcp

• Requests to services that expose public IP addresses

• Executable payloads usually have .png extension; delivery may not be over HTTPS

If you’re MITMing the traffic for inspection:

• Regular GETs for /dinj, /sinj, and /dpost (about every 15 minutes)

• Consistent User-Agent string
– Chrome 57 on Windows 10/64, regardless of the actual OS/browser of the device
– Some payload components may use other U-As

Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/57.0.2987.133 Safari/537.36

Thank you!

Copyright © 2015 Symantec Corporation. All rights reserved. Symantec and the Symantec Logo are trademarks or registered trademarks of Symantec Corporation or its affiliates in the U.S. and other countries. Other names may be
trademarks of their respective owners.
This document is provided for informational purposes only and is not intended as advertising. All warranties relating to the information in this document, either express or implied, are disclaimed to the maximum extent allowed by
law. The information in this document is subject to change without notice.

Andrew Brandt
@threatresearch

Special thanks:
Waylon Grange

@hasherazade
Jérôme Segura

Felix Weyne
Julia Karpin

@professor__plum
Email me if you’d like:
• Decrypted PCAPs
• Samples
• Configs

	VB2017�Turning Trickbot: �Decoding an encrypted command-and-control channel
	Agenda
	Data collection in the lab
	Dyre then, Trickbot now
	Dyre c2 presentation slide, November 2014
	When I first saw Trickbot’s traffic
	Trickbot (Trojan.Trickybot) C2 over HTTPS
	Typical sequence of commands issued
	Some abstractions/inferences
	Notable/observable endpoint behaviour
	Distinctive persistence method
	Breaking down the c2 traffic
	Abstracted Trickbot command structure
	Inferred command meanings
	systeminfo POST data
	Bot configuration data
	Bot configuration data
	Bot configuration data
	Command to download a payload
	Command to activate a component which in turn downloads something
	Threat intel cross-referencing with Billiard Room
	How does Billiard Room work?
	Slide Number 23
	Slide Number 24
	/dpost IP relationship map
	Slide Number 26
	Almost too many rabbit holes to follow
	Network IoCs predictably employed by Trickbot
	Andrew Brandt

