
Challenges and
Approaches of Cracking
Ransomware
Hasherezade (@hasherezade) - malware analyst, technical blogger

Agenda

1. Short background

2. Hunting weak points - tips and tricks

3. My experience on real-life examples

(7ev3n, Petya, DMALocker, Chimera)

Ransomware - trends (2015-2016)

0

50000

100000

150000

200000

250000

300000

350000

Ransomware detections per month
(source: Malwarebytes telemetry)

2015

2016

Ransomware - varieties

182 types and counting...

https://id-ransomware.malwarehunterteam.com

https://id-ransomware.malwarehunterteam.com/

Ransomware – encryption algorithms

•Most popular: AES + RSA

•AES to encrypt files, RSA to encrypt random AES key

•Other observed:

•AES (only), RSA (only), Salsa20, ChaCha, TripleDES, XTEA,

XOR, custom...

http://www.nyxbone.com/malware/RansomwareOverview.html

http://www.nyxbone.com/malware/RansomwareOverview.html

Ransomware - successful recovery attempts

•7ev3n, XORist, Bart – weak encryption algorithm

•Petya – mistakes in cryptography implementation

•DMA Locker, CryptXXX – weak key generator

•Cerber – server-side vulnerability

•Chimera – leaked keys

•...

Ransomware - successful recovery attempts

•Tesla Crypt – failed to protect AES keys – weak keys for the ECDH

(Elliptic Curve Diffie-Hellman) algorithm [2][3][4]

•Torrent Locker (2014) – failed to initialize AES CTR properly (invalid

initalization vector - introduced a possibility of known-plaintext

attack) [1]

•And many more...

How to find the weak points?

1. Identifying the encryption algorithm

•Visualization is your friend!

2. Checking the implementation correctness

3. Identifying the key generator

•Is the key unique for each file?

4. Identifying how the key is stored

Identifying the encryption algorithm

What can the visualization tell us?

Original file Encrypted by Cerber Encrypted by Locky

High entropy, no patterns visible:
often: stream ciphers/chained blocks (i.e. AES CBC), rarely: RSA
https://github.com/hasherezade/crypto_utils/blob/master/file2png.py

Encrypted by zCrypt

https://github.com/hasherezade/crypto_utils/blob/master/file2png.py

Identifying the encryption algorithm

What the visualization can tell us?

Original file Encrypted by DMA Locker Encrypted by 7ev3n

Lower entropy, patterns visible:
block ciphers (i.e. AES ECB), possible: XOR & XOR-based
https://github.com/hasherezade/crypto_utils/blob/master/file2png.py

https://github.com/hasherezade/crypto_utils/blob/master/file2png.py

Identifying the encryption algorithm

Find the file encryption function:
1. Where the content is read from the file
2. Where the content is written to the file
3. Search the call to the encryption function in between 1

and 2!
4. Search from where the encryption key comes
5. Search how the key is stored after use

Identifying the encryption algorithm

Searching in the code: typical constants, keywords...

Checking the correctness of implementation

•Fast check:

•Dump the key from malware’s memory

•Save the file encrypted by the malware

•Encrypt the original file by a valid implementation of the

identified algorithm

•Compare the results

Checking the correctness of implementation

Comparing the output of given algorithm vs the
valid one can give us hints!

https://asciinema.org/a/87388

https://asciinema.org/a/87388

Checking the implementation correctnes

•Analysis of the algorithm implementation and comparing with

the correct code
static int16_t s20_littleendian(uint8_t *b)
{

return b[0] +
(b[1] << 8);

//...
}

static uint32_t s20_littleendian(uint8_t *b)
{

return b[0] +
(b[1] << 8)} +
(b[2] << 16) +
(b[3] << 24);

}

Versus - the same function from the valid Salsa20:

Identifying the key generator

•Is the key unique for each file?

•Make a simple test:

• let the ransomware encrypt two identical files

• is the output same?

Identifying the key generator

•What is used for code generation?

•Hardware identifiers?

•Random generator? Weak or strong?

Random generator: weak or strong?

•Strong: CryptGenRandom, RtlGenRandom (SystemFunction036)

•Weak: i.e. rand() initialized by the current time

Exploiting the weak algorithm:
Example – 7ev3n

Challenge:

• reverse the custom algorithm

Approach:

•Analyze the code and reverse the steps

•Implement the decoder

https://blog.malwarebytes.com/threat-analysis/2016/05/7ev3n-ransomware/
https://github.com/hasherezade/malware_analysis/tree/master/7ev3n

https://blog.malwarebytes.com/threat-analysis/2016/05/7ev3n-ransomware/
https://github.com/hasherezade/malware_analysis/tree/master/7ev3n

Exploiting the weak algorithm:
Example – 7ev3n

https://blog.malwarebytes.com/threat-analysis/2016/05/7ev3n-ransomware/
https://github.com/hasherezade/malware_analysis/tree/master/7ev3n

Reversing 7ev3n’s encryption algorithm

https://blog.malwarebytes.com/threat-analysis/2016/05/7ev3n-ransomware/
https://github.com/hasherezade/malware_analysis/tree/master/7ev3n

Exploiting the weak algorithm:
Example – 7ev3n

Difficulties:

•Many variants of the custom algorithm (no generic

solution)

•Additional data required (i.e. path to the file)

https://blog.malwarebytes.com/threat-analysis/2016/05/7ev3n-ransomware/
https://github.com/hasherezade/malware_analysis/tree/master/7ev3n

https://blog.malwarebytes.com/threat-analysis/2016/05/7ev3n-ransomware/
https://github.com/hasherezade/malware_analysis/tree/master/7ev3n

Exploiting the implementation vulnerability:
Example – Petya

Challenge:

•find the key (8 characters from 54 character

set)

hxLxhxbxdxVxMxGx sHxxrSxxpCxxoKxx

Exploiting the implementation vulnerability:
Example – Petya

Approach:

•Reimplement the corrupt version of Salsa20

•Search the key space (using dumped

validation buffer and nonce)

•Possible to bruteforce

(54 ^ 8 = 72301961339136)

Exploiting the implementation vulnerability:
Example – Petya

•Interesting observation by @leo_and_stone

(only in Red Petya):

•Due to the specifics of the vulnerability, we

can measure the progress in cracking

•Genetic algorithms can be used, to make

the correct key “evolve”

Exploiting the implementation vulnerability:
Example – Petya

•When the genetic approach works?

•Only in cases when we can measure the progress!

Example: The closer we
are to the correct key,
the less unmatching

characters we get in the
verification buffer

Demo of Genetic Algorithms applied:
1) Red Petya :
• https://asciinema.org/a/87075
2) Green Petya :
• https://asciinema.org/a/87077

https://asciinema.org/a/87075
https://asciinema.org/a/87077

Exploiting the weak key generator:
Example – DMA Locker

Challenge:

•Find the seed (start time), used to initialize

rand()

•Then, find a correct key for each file

https://github.com/hasherezade/dma_unlocker

https://github.com/hasherezade/dma_unlocker

Exploiting the weak key generator:
Example – DMA Locker

Approach:

•approximate the timestamp by knowing date

of the ransom note and/or file modification

timestamp

•Validate the key by header typical for file

format

https://github.com/hasherezade/dma_unlocker

https://github.com/hasherezade/dma_unlocker

Exploiting the weak key generator:
Example – DMA Locker

DMA Unlocker

https://github.com/hasherezade/dma_unlocker

https://github.com/hasherezade/dma_unlocker

Exploiting the weak key generator:
Example – DMA Locker

DMA Unlocker

https://github.com/hasherezade/dma_unlocker

• Challenge:
easy adding support for a new file format

• Solution:
Make a folder that is set of format’s samples.
File name is a number of bytes to match.
Some formats needs to be handled in a special way...

https://github.com/hasherezade/dma_unlocker

Exploiting the weak key generator:
Example – DMA Locker

Difficulties:

•Some file types are hard to validate

•Finding one seed is not enough

https://github.com/hasherezade/dma_unlocker

https://github.com/hasherezade/dma_unlocker

Making use of the leaked keys:
Example – Chimera

Challenge:

•find the proper key for the particular

victim

https://blog.malwarebytes.com/cybercrime/2016/08/decrypting-chimera-ransomware/

https://blog.malwarebytes.com/cybercrime/2016/08/decrypting-chimera-ransomware/

Making use of the leaked keys:
Example – Chimera

Approach:

•Use/implement the decryption

algorithm

•Make a “dictionary” attack on the

encrypted file (using as a dictionary set

of leaked keys)

https://blog.malwarebytes.com/cybercrime/2016/08/decrypting-chimera-ransomware/

https://blog.malwarebytes.com/cybercrime/2016/08/decrypting-chimera-ransomware/

Conclusions

•Cryptography is difficult: multiple places where the

implementation can go wrong

•Some people still ignore the advice to not roll own crypto

•Ransomware authors keep improving their products, so the

decryptors have a short life span...

•The most important is prevention

Additional material

• [1] http://digital-forensics.sans.org/blog/2014/09/09/torrentlocker-unlocked

• [2] http://www.bleepingcomputer.com/news/security/teslacrypt-decrypted-flaw-in-teslacrypt-allows-

victims-to-recover-their-files/

• [3] http://blog.talosintel.com/2016/03/teslacrypt-301-tales-from-crypto.html

• [4] https://github.com/Googulator/TeslaCrack

http://digital-forensics.sans.org/blog/2014/09/09/torrentlocker-unlocked
http://www.bleepingcomputer.com/news/security/teslacrypt-decrypted-flaw-in-teslacrypt-allows-victims-to-recover-their-files/
http://blog.talosintel.com/2016/03/teslacrypt-301-tales-from-crypto.html
https://github.com/Googulator/TeslaCrack

Questions? Remarks?

Read more:

• https://blog.malwarebytes.com/?s=ransomware

• https://hshrzd.wordpress.com/category/malware-

decryptor/

https://blog.malwarebytes.com/?s=ransomware
https://hshrzd.wordpress.com/category/malware-decryptor/

Thank You!

