
Detecting Man in the Middle 

Attacks with Canary Requests 

Brian Wallace | Senior Security Researcher 



$ whoami 

 Security research, Software Engineering, learning Data Science 

 Senior Security Researcher at Cylance 

 Twitter: @botnet_hunter 

 Lead researcher on Operation Cleaver 

 Big fan of open source development 

 https://github.com/bwall/ 

 https://github.com/CylanceSPEAR/ 

 ssdc – ssDeep file clustering 

 bamfdetect – Static botnet configuration extraction 

 GetNETGUIDs – Extract MVID/TypeLibID from .NET Assemblies (integrated into 

VirusTotal) 



Outline 

MITM and Attacks Leveraging MITM 

Current MITM Detections 

Changing the Game 

Canary Requests 

Request Modules 

Analysis Modules 

 Implementation Status 

Per tool Examples 

Future work/direction 

 
 

 



MITM and Attacks Leveraging MITM 

A MITM state is an attacker gaining control over a victim’s connection 

Attacks leverage a MITM state take advantage of the state to attack 

A MITM state can be difficult to detect 

Passive attacks/sniffing can leave little to no trace 

The MITM state could be made possible because of things out of our 

control 

Attacks leveraging a MITM state are more plausible to detect 

Data is modified 

Expected behavior changes 



Current MITM Detections 

Detecting attacks leveraging MITM are generally done per application or 

connection 

Tend to rely on the software to ensure the connection is secure 

HTTPS/SSH validate with protections built into SSL/TLS 

Some cases require the user to verify data was received properly 

Checking the hash of a download 

Responses to a MITM 

At best, the application reacts 

More common, connection just fails 



Changing the Game 

MITM is a system level attack in most cases 

Detection and response should happen on system level 

(as well) 

Should have dedicated application checking for 

indicators of MITM 

Act as another level of protection on top of the 

application/connection level checks 

Leading strategy is to make “Canary Requests” 



Canary Requests 

 Train the Canary Request 

 Make a request a few times from a trusted network (Request Module) 

 Analyze responses (Analysis Modules) 

 Identify consistencies and inconsistencies 

 Testing/Checking 

 Make the same request (Request Module) 

 Analyze and compare response to training responses (Analysis Modules) 

 Identify if the inconsistencies are different than those from training 

 If different, alert the user 

 If user considers the differences benign, added as a trusted response 



Canary Requests – Request Modules 

Request Modules implement configurable network requests 

Additionally parse responses 

Example: HTTP request module 

Makes GET request to configured URL 

Allows definition of HTTP headers 

Parses the response into status code, headers, remote IP, and 

content 

Parsed response information is passed to the Analysis Modules 

with trusted responses 



Canary Requests – Analysis Modules 

Compare current request and previously gathered request 

Each module focuses on small data point 

Allows the analysis comparisons to identify what is relevant 

Simpler to implement 

Example: HTTP Status code comparison 

Example: HTTP Compression comparison 

Each module relevant to a request returns a brief analysis 



Implementation Status 

 All Python 2.7 

 Developed in Kivy 

 Allows for single Python code base to be deployed cross platform 

 Windows/OSX/Linux 

 Android/iOS too! 

 Service Component 

 Does the canary requests 

 Continuously runs 

 UI Component 

 Alerts only 



Per Tool Examples - MITMf 

MITMf 

https://github.com/byt3bl33d3r/MITMf 

Man in the Middle Framework 

 Implements wide variety of attacks, passive and active 

By default, converts all HTTPS URLs in HTML content to HTTP 

Detected by HTTP content comparison 

https://youtu.be/fDbQMk5OMZw 

 

https://github.com/byt3bl33d3r/MITMf
https://github.com/byt3bl33d3r/MITMf
https://youtu.be/fDbQMk5OMZw
https://youtu.be/fDbQMk5OMZw


Per Tool Examples – Zarp + MITMProxy 

 Zarp for getting MITM state 

 https://github.com/hatRiot/zarp 

 MITMProxy to intercept/analyze traffic 

 https://mitmproxy.org/ 

 MITMProxy feature allows HTTP compression stripping (intended to be transparent) 

 HTTP Request module with Accept-Encoding: gzip 

 HTTP Compression Analysis module identifies the sudden lack of expected 

compression 

 https://youtu.be/vEPU3FICqEw 

https://youtu.be/vEPU3FICqEw
https://youtu.be/vEPU3FICqEw


Per Tool Examples - Responder 

 Responder 

 https://github.com/SpiderLabs/Responder 

 Responds to LLMNR/NBT-NS/mDNS requests to control connections 

 mDNS Request Module 

 Local/Remote/Empty/Comparison IP Analysis modules 

 Analysis modules identify sudden change in resolution of mDNS response 

 Not actually expecting a response 

 Response is internal, expected external 

 Response is a different IP than expected 

 https://youtu.be/d8oWPesBFUY 

https://github.com/SpiderLabs/Responder
https://github.com/SpiderLabs/Responder
https://youtu.be/d8oWPesBFUY
https://youtu.be/d8oWPesBFUY


Future Work/Direction 

More request and analysis modules 

 Improved user interface 

Change UI communication method 

Utility interface (proxy support, on demand testing) 

User configurable whitelisting 

Active learning to handle false positive mitigation 

Automated system level responses 

Make versions available to all support platforms 



Any Questions? 

Twitter 

@botnet_hunter 

@CylanceSPEAR 

https://github.com/CylanceSPEAR/mitmcanary 

https://github.com/bwall 

https://blog.cylance.com/ 

https://github.com/CylanceSPEAR/mitmcanary
https://github.com/CylanceSPEAR/mitmcanary
https://github.com/bwall
https://github.com/bwall
https://blog.cylance.com/
https://blog.cylance.com/

