
Detecting Man in the Middle 

Attacks with Canary Requests 

Brian Wallace | Senior Security Researcher 



$ whoami 

 Security research, Software Engineering, learning Data Science 

 Senior Security Researcher at Cylance 

 Twitter: @botnet_hunter 

 Lead researcher on Operation Cleaver 

 Big fan of open source development 

 https://github.com/bwall/ 

 https://github.com/CylanceSPEAR/ 

 ssdc – ssDeep file clustering 

 bamfdetect – Static botnet configuration extraction 

 GetNETGUIDs – Extract MVID/TypeLibID from .NET Assemblies (integrated into 

VirusTotal) 



Outline 

MITM and Attacks Leveraging MITM 

Current MITM Detections 

Changing the Game 

Canary Requests 

Request Modules 

Analysis Modules 

 Implementation Status 

Per tool Examples 

Future work/direction 

 
 

 



MITM and Attacks Leveraging MITM 

A MITM state is an attacker gaining control over a victim’s connection 

Attacks leverage a MITM state take advantage of the state to attack 

A MITM state can be difficult to detect 

Passive attacks/sniffing can leave little to no trace 

The MITM state could be made possible because of things out of our 

control 

Attacks leveraging a MITM state are more plausible to detect 

Data is modified 

Expected behavior changes 



Current MITM Detections 

Detecting attacks leveraging MITM are generally done per application or 

connection 

Tend to rely on the software to ensure the connection is secure 

HTTPS/SSH validate with protections built into SSL/TLS 

Some cases require the user to verify data was received properly 

Checking the hash of a download 

Responses to a MITM 

At best, the application reacts 

More common, connection just fails 



Changing the Game 

MITM is a system level attack in most cases 

Detection and response should happen on system level 

(as well) 

Should have dedicated application checking for 

indicators of MITM 

Act as another level of protection on top of the 

application/connection level checks 

Leading strategy is to make “Canary Requests” 



Canary Requests 

 Train the Canary Request 

 Make a request a few times from a trusted network (Request Module) 

 Analyze responses (Analysis Modules) 

 Identify consistencies and inconsistencies 

 Testing/Checking 

 Make the same request (Request Module) 

 Analyze and compare response to training responses (Analysis Modules) 

 Identify if the inconsistencies are different than those from training 

 If different, alert the user 

 If user considers the differences benign, added as a trusted response 



Canary Requests – Request Modules 

Request Modules implement configurable network requests 

Additionally parse responses 

Example: HTTP request module 

Makes GET request to configured URL 

Allows definition of HTTP headers 

Parses the response into status code, headers, remote IP, and 

content 

Parsed response information is passed to the Analysis Modules 

with trusted responses 



Canary Requests – Analysis Modules 

Compare current request and previously gathered request 

Each module focuses on small data point 

Allows the analysis comparisons to identify what is relevant 

Simpler to implement 

Example: HTTP Status code comparison 

Example: HTTP Compression comparison 

Each module relevant to a request returns a brief analysis 



Implementation Status 

 All Python 2.7 

 Developed in Kivy 

 Allows for single Python code base to be deployed cross platform 

 Windows/OSX/Linux 

 Android/iOS too! 

 Service Component 

 Does the canary requests 

 Continuously runs 

 UI Component 

 Alerts only 



Per Tool Examples - MITMf 

MITMf 

https://github.com/byt3bl33d3r/MITMf 

Man in the Middle Framework 

 Implements wide variety of attacks, passive and active 

By default, converts all HTTPS URLs in HTML content to HTTP 

Detected by HTTP content comparison 

https://youtu.be/fDbQMk5OMZw 

 

https://github.com/byt3bl33d3r/MITMf
https://github.com/byt3bl33d3r/MITMf
https://youtu.be/fDbQMk5OMZw
https://youtu.be/fDbQMk5OMZw


Per Tool Examples – Zarp + MITMProxy 

 Zarp for getting MITM state 

 https://github.com/hatRiot/zarp 

 MITMProxy to intercept/analyze traffic 

 https://mitmproxy.org/ 

 MITMProxy feature allows HTTP compression stripping (intended to be transparent) 

 HTTP Request module with Accept-Encoding: gzip 

 HTTP Compression Analysis module identifies the sudden lack of expected 

compression 

 https://youtu.be/vEPU3FICqEw 

https://youtu.be/vEPU3FICqEw
https://youtu.be/vEPU3FICqEw


Per Tool Examples - Responder 

 Responder 

 https://github.com/SpiderLabs/Responder 

 Responds to LLMNR/NBT-NS/mDNS requests to control connections 

 mDNS Request Module 

 Local/Remote/Empty/Comparison IP Analysis modules 

 Analysis modules identify sudden change in resolution of mDNS response 

 Not actually expecting a response 

 Response is internal, expected external 

 Response is a different IP than expected 

 https://youtu.be/d8oWPesBFUY 

https://github.com/SpiderLabs/Responder
https://github.com/SpiderLabs/Responder
https://youtu.be/d8oWPesBFUY
https://youtu.be/d8oWPesBFUY


Future Work/Direction 

More request and analysis modules 

 Improved user interface 

Change UI communication method 

Utility interface (proxy support, on demand testing) 

User configurable whitelisting 

Active learning to handle false positive mitigation 

Automated system level responses 

Make versions available to all support platforms 



Any Questions? 

Twitter 

@botnet_hunter 

@CylanceSPEAR 

https://github.com/CylanceSPEAR/mitmcanary 

https://github.com/bwall 

https://blog.cylance.com/ 

https://github.com/CylanceSPEAR/mitmcanary
https://github.com/CylanceSPEAR/mitmcanary
https://github.com/bwall
https://github.com/bwall
https://blog.cylance.com/
https://blog.cylance.com/

