
Sugarcoating KANDYKORN: a sweet dive
into a sophisticated macOS backdoor

Virus Bulletin 2024, Dublin, Ireland

Salim Bitam
Security Research Engineer

 Security Research Engineer at Elastic

Previously working in redteaming

Flare-On addict since 2018

About me

Research Team Members

Colson Wilhoit Salim Bitam Ricardo Ungureanu

1

2

3

4

5

6

7

8

9

● Background
● Introduction
● Initial compromise
● SUGARLOADER analysis
● HLOADER analysis
● KANDYKORN analysis
● Network protocol
● Campaign intersections
● KANDYKORN custom server

1

2

3

4

5

6

7

8

9

Agenda

BACKGROUND

● Research published Nov 1, 2023
● Attack discovered Oct 13, 2023

ENDPOINT

Suspicious
Execution of Binary
Self-Signed using

Codesign Tool

Reflective Binary
Load

Background

Overlap with Lazarus
group

Techniques

Network
infrastructure

Custom Lazarus
detection rules

Background

INTRODUCTION

● Social engineering attack targeting an engineer

● Intrusion involved multiple complex stages

● Dropped malwares with low-detection rate

● LLVM obfuscation

● Full-fledge backdoor

● Custom communication protocol (V1, V2)

Introduction

Execution flow

INITIAL ACCESS

Initial access

● ZIP file compressed, main.py executed
● Hidden malicious code in watcher.py
● Actions:

○ Create a folder ./_log
○ Download testspeed.py
○ Imports and executes testspeed.py

Initial access

Initial access

● FinderTools downloaded from Google Drive
● Executed with attacker-controlled URL parameter
● SUGARLOADER saved under /Users/Shared/.sld

Initial access

SUGARLOADER ANALYSIS

SUGARLOADER analysis

● Packed native 64 bit binary
● Highly obfuscated
● Zero VirusTotal detection (October 14, 2023)
● Two instances: persistence & Backdoor execution

SUGARLOADER analysis

● __mod_init_func contains
unpacking logic function

● LLVM-obfuscated unpacking
stub

● Single hardware breakpoint
to unpack the code

SUGARLOADER analysis

● Junk instructions
● Opaque predicates
● Indirect jumps
● Arithmetic obfuscation

SUGARLOADER analysis
Obfuscation

● Emulation to find important code blocks that are
responsible for unpacking the main code
○ Unicorn
○ Handling API calls with hooks

● Identify unpacking code blocks by logging and
plotting RIP register

● Visually analyzing patterns

SUGARLOADER analysis
Emulation

SUGARLOADER analysis
Emulation

Plotting diagram of 100.000 executed instructions

SUGARLOADER analysis
Emulation

● Identifying unpacking loops

○ long-executing loops indicates iteration

through encrypted or compressed code

● Avoiding Dead Loops and Junk Code

● Faster Detection of Packer Instructions

SUGARLOADER analysis

● CRC32 check of all sections

● Unpacking method resembles UPX

● Discovery of new binaries using the same obfuscator

● Load configuration via command line or file
/Library/Caches/com.apple.safari.ck

● Configuration file encrypted with RC4 (64-byte key)
● Generates random clientID seeded with current

system time

SUGARLOADER analysis

SUGARLOADER analysis

● Downloads Mach-O binary from infrastructure
● SUGARLOADER reflectively loads binary in memory
● Uses APIs like

NSCreateObjectFileImageFromMemory,
NSLinkModule

Creation of a new file named appname (HLOADER)

SUGARLOADER analysis

HLOADER ANALYSIS

HLOADER analysis

● Self-signed SWIFT 64 bit binary
● Small code base
● Persistence mechanism
● Execution flow hijacking

HLOADER analysis

● Renames: Discord → MacOS.tmp
● Renames: .lock → Discord
● Executes: Discord and .log (SUGARLOADER)

using NSTask.launchAndReturnError
● Renames files back

HLOADER analysis

KANDYKORN ANALYSIS

KANDYKORN analysis

● Full fledged backdoor
● Compiled in debug mode
● Same configuration file and network protocol as

SUGARLOADER
● Malware reports error codes to C2

● It handles 16
commands in total

● Proxy settings

KANDYKORN analysis

● Configuration size 488
● Configuration structure

○ Generated computerID
○ URLs
○ IPs
○ Proxy
○ Sleep interval

KANDYKORN analysis
Configuration

● Tries to connect
○ URLs
○ IPs

KANDYKORN analysis

Error code Description

0 success

0xFFFFFC18 network_error

0xFFFFFC19 error_opening_file

0xFFFFFC1A zip_opening_failed

0xFFFFFC1B command_not_handled

0xFFFFFFFF error_writing_pty

KANDYKORN analysis
Error code table

Command ID Description

0xD1 Exit command

0xD2 Collects system info

0xD3 Lists directory contents

0xD4 Directory read

0xD5 File upload

0xD6 File download

0xD7 Zip archive and exfiltrate

0xD8 File wiping

Command ID Description

0xD9 Lists all running processes

0xDA Kills a process by PID

0xDB Executes a command on the system

0xDC Reads the command output

0xDD Spawns a shell on the system

0xDE Download the current configuration

0xDF Upload a new configuration file

0xE0 Sleeps for a number of seconds.

KANDYKORN analysis
Command handling table

KANDYKORN CAPABILITIES

● Hostname
● Username
● Product name, product

version, build version
● IP address
● Image path

KANDYKORN Capabilities
Discovery : resp_basicinfo command

● List content of a directory(similar to ls -al)

KANDYKORN Capabilities
Discovery : resp_file_dir command

● Lists current running processes, including
○ PID
○ UID
○ Create time

KANDYKORN Capabilities
Discovery : resp_proc_list command

● Creates a reverse shell
(resp_cmd_create)

● Send command
(resp_cmd_send)

● Receive command
(resp_cmd_recv)

KANDYKORN Capabilities
Execution: resp_cmd_create command

● Anti-digital forensics measures

○ Overwrites file’s content with zeroes
○ Deletes the file

KANDYKORN Capabilities
Execution: resp_file_wipe command

● SIGKILL signal

KANDYKORN Capabilities
Execution: resp_proc_kill command

● Get or set the configuration in the infected machine

KANDYKORN Capabilities
Misc: resp_cfg_set and resp_cfg_get commands

NETWORK PROTOCOL

● Basic communication
protocol
○ Handshake
○ ClientID
○ Payload

● RC4 encryption,
hardcoded key

● Variations in network
protocols

Network protocol
V1 protocol

Network protocol
V1 protocol

Network protocol
V2 protocol

● Generates 0x400
random sequence
○ New RC4 key
○ Check sequence

● C2 validation
● Command handling

similar to V1

CAMPAIGN INTERSECTIONS

Campaign intersections
The Diamond model

Campaign intersections

● TLS Certificate Anomaly:
○ tp-globa[.]xyz used a TLS certificate with Subject

CN of bitscrunnch.linkpc[.]net, linked to
Lazarus Group intrusions.

● Lure Campaigns:
○ Campaigns with varying lure zip files discovered

(Source: SentinelOne).

https://www.sentinelone.com/blog/dprk-crypto-theft-macos-rustbucket-droppers-pivot-to-deliver-kandykorn-payloads/

Campaign intersections

● RustBucket Malware:
○ Malicious RustBucket disguised as a PDF Viewer,

sharing the same LLVM/packer obfuscation.
● Recruitment Ruse:

○ A Reddit user reported being contacted by a
recruiter to solve a Python coding challenge, part of
the phishing campaign.

KANDYKORN SERVER

Advantages of Simulating Malware Behavior

● Assess Evasion Techniques
● Build/Validate detection rules
● Simulate real-world attack scenarios

Link: Kandykorn server

https://github.com/soolidsnake/KandyKorn_tools

THANK YOU

