
FROM CODE TO CRIME: EXPLORING THREATS IN
GITHUB CODESPACES
Nitesh Surana & Jaromír Hořejší
Trend Micro

2 - 4 October, 2024 / Dublin, Ireland

www.virusbulletin.com

FROM CODE TO CRIME: EXPLORING THREATS IN GITHUB CODESPACES SURANA & HOŘEJŠÍ

2 VIRUS BULLETIN CONFERENCE OCTOBER 2024

ABSTRACT
Cloud-based development environments enable developers to work from any device with internet access. Introduced for all
GitHub users during the GitHub Universe event in November 2022, Codespaces offers a customizable cloud-based IDE,
simplifying project development. This cloud-based IDE allows developers and organizations to customize projects by using
configuration‑as‑code features, easing some previous pain points in project development such as environment setups and
dependency hell, amongst others.
Thanks to the low threshold for creating Codespaces – which can be done by any GitHub user – it didn’t take long to
observe abuse of this service. We found GitHub Codespaces being used by threat actor(s) to develop, test and host
infostealer malware written in Rust, NodeJS and C++ targeting Windows platforms.

INTRODUCTION
A Codespace is a Docker container that runs on an isolated virtual machine on Microsoft Azure. Codespaces cannot be
self-hosted. Additionally, any GitHub user can create two Codespace instances for free for up to 120 core hours and 15GB
of storage.

Figure 1: Overview of GitHub Codespaces.
Source: https://docs.github.com/en/codespaces/overview

Codespaces come with tools, libraries, and extensions installed by default. For a consistent environment, Codespaces can
be created using configurations in the JSONC format (JSON with Comments), known as development container [1]
configurations. Dev containers come with powerful features such as postStartCommand and postCreateCommand, which
allow for arbitrary command execution in development environments. To aid developers in testing applications, GitHub
allows users to expose or forward ports on the Codespace. Codespaces can be deployed to different regions based on the
user’s preference. The default (and the maximum) retention period for a Codespace is 30 days and the maximum idle
timeout is four hours.
It is important to note that, although Codespaces are privileged Docker containers, no two Codespaces share the same
Azure VM. A container escape can be done on GitHub Codespaces, but there is no immediate risk associated.
We think such services are important to investigate for the following reasons:

1.	 The bar to create a GitHub Codespace is quite low and ease of use is high, as anyone with a valid GitHub account
can create two VMs across multiple regions.

2.	 Unlike public cloud providers like Azure, AWS and GCP, no payment information is required to spin up Codespaces
since this service is free, with limits on number of hours of compute and storage configurations.

3.	 To create a GitHub account, one can use temporary email services and can create Codespaces without using any
personally identifiable information.

https://containers.dev/

FROM CODE TO CRIME: EXPLORING THREATS IN GITHUB CODESPACES SURANA & HOŘEJŠÍ

3VIRUS BULLETIN CONFERENCE OCTOBER 2024

4.	 Developer-centric features like dev containers allow for creation of consistent environments using configuration
files, i.e. attackers could have their entire environments defined in a JSONC file and could easily replicate
environments.

In a blog post [2] published in January 2023 we explored how one could create malware file servers using dev containers
and GitHub Codespaces. Codespaces allow for exposing ports on the dev container in specific modes. One of the modes is
‘public’, using which, the port can be exposed over the internet without any authentication context required.
From a developer’s perspective, this is a helpful feature to test and debug applications in real time. However, this is
interesting as open directories are frequently abused to deliver malware in environments with traditional detection/
protection mechanisms (e.g. IP reputation checks). Since the domain created while exposing a port publicly is a randomized
subdomain of GitHub (github.dev), it would bypass modern solutions (unless traffic inspection is being performed). Using
dev containers with GitHub Codespaces, one could automate creation of malware file servers.

Figure 2: A simple script to create a Codespaces-based open directory.

You can get the source code of the above-mentioned script in [3] and see a proof-of-concept video in [4]. More details are
included in the blog post [2].

STEALTHY OPEN DIRECTORIES & C2
Our exploration led us to an interesting observation when attempting to hunt for exposed ports on Codespaces at scale. We
noticed that we couldn’t access an exposed port on a Codespace via its public IP address. Instead of directly reaching
Codespace, we encountered the Kubernetes Ingress Controller inline, as indicated by the SSL certificate and HTTP
response. This controller functions as both a reverse proxy and a load balancer, adding an additional layer of traffic routing
abstraction. As a result, Codespace itself cannot be accessed solely through its IP address.

Figure 3: Codespace-based open directory cannot be accessed by its IP address.

Exposed ports on a Codespace have the following format: ‘<codespace-name>-<port>.app.github.dev’. Here, the
‘codespace-name’ is not predictable by an end-user. In the above picture, we first create a python-based HTTP server
listening on port 8080 and forward this port to be publicly accessible. Later, we fetch the IP address of the Codespace by

FROM CODE TO CRIME: EXPLORING THREATS IN GITHUB CODESPACES SURANA & HOŘEJŠÍ

4 VIRUS BULLETIN CONFERENCE OCTOBER 2024

running ‘curl ident.me’. Now, when we try to fetch the IP address of the URL which allows access to the exposed port, we
come across an IP address that is different from the Codespaces’ IP address. Finally, we confirm that this IP address is not
of the Codespace, but it is of an inline ingress controller that acts as a reverse proxy.
This finding holds significance since it implies that threat intelligence search engines, such as Shodan, Censys and
BinaryEdge, cannot index maliciously exposed Codespace instances unless the URLs are already known to be suspicious/
malicious. Additionally, in our internal simulations, we were able to use Codespaces as a command-and-control server for
adversary emulation frameworks.
Typically, when attempting to identify and investigate threat actor infrastructure, researchers pivot and search for artifacts
like default SSL certificates and favicon hashes using search engines. However, with the knowledge of this abuse method
involving Codespaces, threat actors can effectively avoid being fingerprinted, rendering their operations more elusive and
stealthier than ever.

EMERGENCE OF INFOSTEALER CAMPAIGNS
During our regular course of threat hunting, we came across a few malicious binaries communicating to domains that
resembled exposed ports on a GitHub Codespace. Upon further digging, we found that these were infostealers written in
various high-level programming languages, such as Rust, NodeJS and C++, masquerading as legitimate applications such
as computer games or hacking/cheating utilities. The malicious samples only targeted Windows platforms.
Some of the names under which the malicious samples were distributed are listed below:

•	 Discord Account Generator.exe
•	 Adventure Island Setup.exe
•	 Neus Setup.exe
•	 Cheat Fortnite.exe
•	 BattleTalent-LaserEyes.exe

ANALYSIS OF THE INFOSTEALER ABUSING GITHUB CODESPACES

Rust variant
The flow of activities performed when the infostealer executes is shown in Figure 4.

Figure 4: Flow of infostealer’s execution.

FROM CODE TO CRIME: EXPLORING THREATS IN GITHUB CODESPACES SURANA & HOŘEJŠÍ

5VIRUS BULLETIN CONFERENCE OCTOBER 2024

1.	 The malware checks if it is running in a sandbox or debugger.
2.	 The malware patches the Discord client, if installed on the infected machine.
3.	 The malware steals browser credentials and cookies.
4.	 The malware steals cryptocurrency wallets.
5.	 The malware steals Discord tokens and Steam data from web browsers.
6.	 The malware contacts a third-party cloud storage service to query the best available server.
7.	 The malware packs the stolen information and uploads it to the third-party cloud storage server.
8.	 The third-party cloud service responds with a link to the uploaded file. This link, together with additional infected

machine information, is exfiltrated to a webhook hosted on Codespaces.
9.	 The infected Discord messenger listens for sensitive information and exfiltrates it to the Codespaces webhook.

Sandbox evasion
The infostealer checks if it is being run in a controlled environment such as a sandbox. It compares the username and
hostname of the machine with a hard-coded list of known usernames and hostnames of sandboxes. For instance, one of the
infostealers had extremely low detections on VirusTotal on its initial scan:

Figure 5: Early VirusTotal detections for an infostealer sample.

Later, we found that VirusTotal’s in-house Windows 10 sandbox, named ‘Zenbox’, had the hard-coded username ‘george’,
which was being checked by the infostealer upon execution. Such techniques of sandbox evasion are well known among
infostealer malware and are documented on GitHub.

Figure 6: Hard-coded user named ‘george’ in VirusTotal’s Zenbox Windows 10 sandbox.

FROM CODE TO CRIME: EXPLORING THREATS IN GITHUB CODESPACES SURANA & HOŘEJŠÍ

6 VIRUS BULLETIN CONFERENCE OCTOBER 2024

Credential gathering
The infostealer collects passwords, cookies and credit card information from a plethora of Chromium-based browsers (see
Appendix). While validating the browsers from the list, we observed that ‘Chromunium’ is a typo of ‘Chromium’. Notably,
most modern browsers are based on the Chromium project. This typo helped us pivot and discover credential-stealing
malware from Chromium-based browsers and GitHub repos that the infostealer is potentially linked to. Other than the
browsers, the infostealer targets cryptocurrency wallets (see Appendix), and clients of Discord (the widely used chat
application written using the Electron framework) and popular gaming platform Steam.
The collected credentials are exfiltrated to gofile.io, a legitimate third-party file-sharing platform that allows users to
upload and share files anonymously. Later, the gofile.io response containing the link to the exfiltrated credentials is
exfiltrated, along with the information listed below, to a GitHub Codespace-based webhook:

1.	 List of browsers found.
2.	 Computer hostname.
3.	 Number of cookies extracted.
4.	 Number of credit cards extracted.
5.	 Discord status (if Discord is installed or not).
6.	 Number of passwords extracted.
7.	 Uploaded gofile.io URL of diagnostics.zip.
8.	 Steam status (if any Steam data was stolen or not).
9.	 Username of the user running the info stealer.
10.	 List of cryptocurrency wallets extracted.
11.	 Windows operating system version.

It is worth noting that the webhook is essentially an exposed port on a Codespace. Since the infostealer samples were
exfiltrating the above information to an exposed port on a Codespace, this indicates either that the infostealer authors were
using GitHub Codespaces as their webhook for malicious operations or that they were testing the infostealers’ capabilities,
adapting to how modern software development is carried out.

Infecting Discord application
The infostealer gains persistence in the victim’s environment by patching the Discord application. It does so by modifying
the ASAR archive (a special format used by applications developed in the Electron framework, which contains the
application’s source code) of the Discord application in a way that lowers the security of authentication. The patch also
includes a piece of malicious code, which logs sensitive information like login usernames, passwords, credit cards, PayPal
details, events of changing password, etc. This patched client terminates any outbound WebSocket connections and disables
the password-less login mechanism (which is done using a QR code). As you can see in Figure 7, the QR code is never
loaded and the victim is forced to enter their email or phone number and password.

Figure 7: QR code stuck at loading after infection.

FROM CODE TO CRIME: EXPLORING THREATS IN GITHUB CODESPACES SURANA & HOŘEJŠÍ

7VIRUS BULLETIN CONFERENCE OCTOBER 2024

Figure 8 shows a debugging console in the web browser. As WebSocket communication is terminated by the patch, the
error message in red states that QR code login could not be completed.

Figure 8: Failed outbound WebSocket requests from Discord client.

Since the QR code never loads, the victim is forced to use their credentials as-is, which are again exfiltrated to an
attacker‑controlled Codespace. The following artifacts are exfiltrated:

1.	 Discord Token
2.	 Discord login credentials (email address/phone number and password)
3.	 Updated credentials
4.	 Credit card details
5.	 PayPal details

More detailed analysis can be found in [5] and [6].

Similarities to other stealers
When searching for related malware code, we noticed that the infostealer has similarities with PirateStealer [7]. This is not
surprising, as the source code of malware is often shared and reused. It makes sense for malware developers to reuse
existing code (if it at least partially satisfies their requirements) and add new features or modifications where necessary.
Figure 9 shows similarities in the infected Discord client with PirateStealer on GitHub.

Electron dropper
The Electron variant (developed in the Electron framework) serves as a dropper or installer, which decrypts and runs the
previously described Rust variant of the stealer. Applications developed in the Electron framework are usually ‘big’
projects, containing many files and one specific archive called ‘app.asar’, containing the source code of the application.
More information about Electron-based applications can be found in [8].

FROM CODE TO CRIME: EXPLORING THREATS IN GITHUB CODESPACES SURANA & HOŘEJŠÍ

8 VIRUS BULLETIN CONFERENCE OCTOBER 2024

Figure 10: Content of the package.json file – notice variables ‘key’ and ‘iv’ (initialization vector).

The package.json file contains a key and initialization vector, which are used in the main.js file (Figure 11) as AES-CBC
cipher parameters.

Figure 11: Creation of AES-CBC cipher using parameters hard coded in package.json.

The last part of the installer is decryption of a binary file, ‘libdelta.dll’, with previously specified cipher and parameters.
The decrypted file is the Rust variant of the stealer, analysed in previous sections.

Figure 12: Code responsible for decrypting the binary file libdelta.dll to obtain the final stealer’s binary.

NodeJS variant
This stealer variant is completely different from the Rust stealer and it has two stages. The first stage is a downloader and
installer, written in the Electron framework. This application displays a login form (which has no function and does

Figure 9: Similarities in infected Discord client with PirateStealer on GitHub.

FROM CODE TO CRIME: EXPLORING THREATS IN GITHUB CODESPACES SURANA & HOŘEJŠÍ

9VIRUS BULLETIN CONFERENCE OCTOBER 2024

nothing), and in the background (based on the variant), one or two components of the second stage are downloaded and
executed. The second stage may be the Rust stealer or another stealer split into stealer component and uploader component.
While tracking the campaign, we received several stealers with no networking functionality. In such a case, it makes sense
to have an additional component responsible for uploading stolen data to the C&C server.

Figure 13: Downloader displaying login form while downloading stealer component in the background.

During our research, we managed to find a few variants of uploader scripts (written in NodeJS) and cookies stealers.
Although these cookie stealers were written in C++, they were encapsulated in droppers written in NodeJS. The stealer
component steals browser cookies and the uploader component uploads them to the attacker-controlled server. We think
these two components are related and are downloaded and executed by a single downloader.
This variant is completely different from the previous one, but it was written by the same author(s), and has the same
internal project name (Deltastealer).

EVIDENCE OF GITHUB CODESPACES USAGE FOR INFOSTEALER DEVELOPMENT
From the GitHub Codespace URL of the exposed port, we pivoted to the GitHub account of one of the developers of this
infostealer. From the details of the GitHub user, we found links to their Telegram and Discord channels where the
developers talk about the capabilities of the infostealers they build.
Sometimes, one of the developers also shared screenshots. We include one of them in Figure 14. As you can see, the developer
codes in a web browser (see browser URL ending with github.dev) and uses Codespaces (see name on the bottom left).

Figure 14: Malware developer using Codespaces.

FROM CODE TO CRIME: EXPLORING THREATS IN GITHUB CODESPACES SURANA & HOŘEJŠÍ

10 VIRUS BULLETIN CONFERENCE OCTOBER 2024

HUNTING
In case of using port forwarding, GitHub Codespaces generates a URL that follows the following naming conventions:

https://< github handle>-< codespaces id >-<port>.preview.app.github.dev/
Thus, hunting for Codespace environments with exposed ports is quite easy, as we need to search for subdomains,
connections, or text strings ending with the ‘preview.app.github.dev’ domain.
On VirusTotal, these searches may look like the following:

domain preview.app.github.dev
behavior:"preview.app.github.dev"
content:"preview.app.github.dev"

Figure 15: Result of VirusTotal hunting of samples which communicate with specified domain.

However, the URL for the forwarded port ‘preview.app.github.dev’ was updated to ‘app.github.dev’ on 14 July 2023 by
GitHub, as made public in the changelog [9]. Based on the new update, the threat hunting queries will be fine-tuned a little.

Figure 16: Forwarded port domain update from GitHub.

After we shared our blog [2], GitHub responded to BleepingComputer with the following:

‘GitHub is committed to investigating reported security issues. We are aware of this report and plan to add a prompt
to users to validate that they trust the owner when connecting to a codespace.
‘We recommend users of GitHub Codespaces follow our guidelines to maintain security and minimize risk of their
development environment.’

https://github.blog/changelog/2023-07-14-codespaces-port-forwarding-domain-name-updates/

FROM CODE TO CRIME: EXPLORING THREATS IN GITHUB CODESPACES SURANA & HOŘEJŠÍ

11VIRUS BULLETIN CONFERENCE OCTOBER 2024

Recently, we have observed that, while accessing a publicly exposed port on a Codespace using a browser, users get the
following prompt:

Figure 17: Prompt while accessing publicly exposed port on a Codespace.

SECURITY BEST PRACTICES
While using Codespaces, one must validate and trust the different components being used, ranging from GitHub
repositories to container images being used in dev containers, suspicious command execution primitives in dev container
configurations, VSCode extensions, etc.

To detect Codespace activity, administrators can tap into the logs generated when a Codespace is created, deleted,
suspended, etc. Since Codespaces cannot be self-hosted, the visibility offered in this service comes in from the native logs
generated on GitHub’s end.

Additionally, administrators can apply policies to create and define security boundaries by restricting the following:

1.	 Base container image for dev containers
2.	 Visibility of the forwarded ports
3.	 Idle timeout period
4.	 Retention period
5.	 Machine types of the Codespace
6.	 Number of Codespaces

CONCLUSION
Abusing developer-focused platforms like GitHub gives attackers an additional advantage, as these platforms are generally
considered to be trusted by traditional security solutions.

Using Codespaces, one can expose a port publicly, which means that any user on the internet can access the exposed port
on the Codespace virtual machine without any authentication whatsoever. An attacker could use this URL to exfiltrate data
from secured environments, as the domain generated is randomized and has no malicious history on threat intelligence
platforms.

Developer-focused features like dev containers and services like Codespaces ease the pain points for building software,
such as setting up the environment and provisioning resources. However, these features also enable attackers to build, test
and distribute malicious content, just like any developer. With malware authors moving to cloud-based developer
environments, picking specific capabilities from existing infostealers, it enables them to rapidly build and test their
malware samples.

As more of such tools, platforms and services are made available to the public, we expect to see a rise in cyber risks
associated with their abuse.

The infostealer campaign presented in this paper was the first such campaign abusing Codespaces that we observed in the
wild.

FROM CODE TO CRIME: EXPLORING THREATS IN GITHUB CODESPACES SURANA & HOŘEJŠÍ

12 VIRUS BULLETIN CONFERENCE OCTOBER 2024

REFERENCES
[1]	 Development Containers. https://containers.dev/.
[2]	 Surana, N.; Logan, M. Abusing a GitHub Codespaces Feature For Malware Delivery. Trend Micro. 16 January 2023.

https://www.trendmicro.com/en_in/research/23/a/abusing-github-codespaces-for-malware-delivery.html.
[3]	 Surana, N. A simple script to create GH Codespaces-based Open Directories live for 100 seconds.

https://gist.github.com/ideaengine007/4b456e75583587d0f5366ebba6b8c286.
[4]	 Trend Micro. Proof of Concept (POC): Abusing GitHub Codespaces For Malware Delivery. YouTube.

https://www.youtube.com/watch?v=WJxPEFDlfGY.
[5]	 Surana, N.; Hořejší, J. Rust-Based Info Stealers Abuse GitHub Codespaces. Trend Micro. 19 May 2023.

https://www.trendmicro.com/en_us/research/23/e/rust-based-info-stealers-abuse-github-codespaces.html.
[6]	 Surana, N.; Hořejší, J. Info Stealer Abusing Codespaces Puts Discord Users at Risk. Trend Micro. 23 May 2023.

https://www.trendmicro.com/en_se/research/23/e/info-stealer-abusing-codespaces-puts-discord-users--data-at-risk.
html.

[7]	 PirateStealer. https://github.com/StanleyGF-Piratestealer/Piratestealer-Builder/blob/
e09098aa9df9087d687084b751b9f12d6e7cb2fb/src/injection/injection.js#LL824C14-L824C72.

[8]	 Hořejší, J. Abusing Electron-based applications in targeted attacks. Virus Bulletin. October 2023.
https://www.virusbulletin.com/uploads/pdf/conference/vb2023/slides/Slides-Abusing-Electron-based-applications-
in-targeted-attacks.pdf.

[9]	 GitHub. Codespaces Port Forwarding Domain Name Updates. 14 July 2023. https://github.blog/changelog/2023-
07-14-codespaces-port-forwarding-domain-name-updates/.

APPENDIX

List of browsers targeted
	 360Browser
	 Amigo
	 Brave
	 Chromodo
	 Chromunium (sic)
	 CocCoc
	 Comodo
	 Epic Privacy Browser
	 Google Chrome
	 K-Melon
	 Kometa
	 Mail.Ru
	 Maxthon3
	 Nichrome
	 Orbitum
	 Slimjet
	 Sputnik
	 Torch
	 Uran
	 Vivaldi
	 Yandex

List of targeted cryptocurrency wallet paths
	 \Armory
	 \atomic\Local Storage\leveldb

https://containers.dev/
https://www.trendmicro.com/en_in/research/23/a/abusing-github-codespaces-for-malware-delivery.html
https://gist.github.com/ideaengine007/4b456e75583587d0f5366ebba6b8c286
https://www.youtube.com/watch?v=WJxPEFDlfGY
https://www.trendmicro.com/en_us/research/23/e/rust-based-info-stealers-abuse-github-codespaces.html
https://www.trendmicro.com/en_se/research/23/e/info-stealer-abusing-codespaces-puts-discord-users--data-at-risk.html
https://www.trendmicro.com/en_se/research/23/e/info-stealer-abusing-codespaces-puts-discord-users--data-at-risk.html
https://github.com/StanleyGF-Piratestealer/Piratestealer-Builder/blob/e09098aa9df9087d687084b751b9f12d6e7cb2fb/src/injection/injection.js#LL824C14-L824C72
https://github.com/StanleyGF-Piratestealer/Piratestealer-Builder/blob/e09098aa9df9087d687084b751b9f12d6e7cb2fb/src/injection/injection.js#LL824C14-L824C72
https://www.virusbulletin.com/uploads/pdf/conference/vb2023/slides/Slides-Abusing-Electron-based-applications-in-targeted-attacks.pdf
https://www.virusbulletin.com/uploads/pdf/conference/vb2023/slides/Slides-Abusing-Electron-based-applications-in-targeted-attacks.pdf
https://github.blog/changelog/2023-07-14-codespaces-port-forwarding-domain-name-updates/
https://github.blog/changelog/2023-07-14-codespaces-port-forwarding-domain-name-updates/

FROM CODE TO CRIME: EXPLORING THREATS IN GITHUB CODESPACES SURANA & HOŘEJŠÍ

13VIRUS BULLETIN CONFERENCE OCTOBER 2024

	 \bytecoin
	 \Coinomi\Coinomi\wallets
	 \com.liberty.jaxx\IndexedDB\file__0.indexeddb.leveldb
	 \Electrum\wallets
	 \Ethereum\keystore
	 \Exodus\exodus.wallet
	 \Guarda\Local Storage\leveldb
	 \Zcash

IOCs

Rust variant
	 C92A7425959121FF49970C53B78E714B9E450E4B214AC85DEB878D0BEDF82A70
	 Codespace: mmarcoxx-psychic-space-fiesta-7qwqgvrqjjq2rw7q-8080[.]preview.app.github.dev
	 C2: cdn[.]deltastealer[.]xyz
	 C2: api[.]deltastealer[.]gq

Electron-based droppers of Rust variant
	 Dropper: 0228E3842E1A930B42BC6A795ABAF15A8356289287233CDA1EC59E1F7B9F10AF
	 Dropper: B89B2256A5204F41F495F573A1F259E571825CDCF1E7E7337CF627971A7C5F18
	 Dropper: CF51C41893075A77465BF5E638F47F5E00EB3E89FACE552799CA73E687942482

Electron-based downloaders of NodeJS variant
	 Zip file: 99187D1904B8ED5090FCEEED064BE495D5528EC415A28A4096C4C252B1AC9D33
	 Executable (downloader of two components):

BB2C4778E6487E3BB5937C38EB6AFA8C5B66B119965B70A58CF27FC9BEFC1AC2
	 Executable (downloader of single component):

4E45700364DF6553FC50C436D3E14437BD1B956918356A3C6737BD4620D917A4
	 Uploader: 655F4981432E1807D2A071F4238859EE2777D65BB3A50FE21994EEDFD1D77B10
	 Stealer dropper: 40D167FFBA40EA9FACD9BFFCA4A2CE899539537F663EB0A3C59CEEEA2CC783E3
	 Stealer dropper: B762CB083CB784321820F1887D77BB10ACDFE3C21954899CD1890A4C036F256F
	 Cookie stealer: BEC04B17296B3250D8F6B483AD680145B0C486A04F6E0DFB55B0F0DD26B30691
	 C2: api[.]deltaproject[.]us

	_Int_7Vv7cmHQ
	_Int_GssyfCPt
	_Int_Ik5s3sCC
	OLE_LINK1
	OLE_LINK2
	OLE_LINK3
	OLE_LINK4

