
BYTEING BACK: DETECTION, DISSECTION AND
PROTECTION AGAINST MACOS STEALERS
Patrick Wardle
Objective-See, USA

patrick@objective-see.com

2 - 4 October, 2024 / Dublin, Ireland

www.virusbulletin.com

BYTEING BACK: DETECTION, DISSECTION AND PROTECTION AGAINST MACOS STEALERS WARDLE

2 VIRUS BULLETIN CONFERENCE OCTOBER 2024

ABSTRACT
Malware is often named and grouped by its end goals: ransomware locks users’ files and demands a ransom, while adware
often displays invasive ads. Stealers, the topic of today’s paper, are no different. These insidious threats, as their name
implies, rarely persist, instead stealthily stealing a wide range of sensitive information, such as passwords, browser cookies,
and more from infected hosts. Given that such stealers are worryingly prolific and present unique detection challenges,
their impact cannot be overstated.

This paper delves into the topic of stealers targeting macOS, and aims to provide a comprehensive understanding of several
of the common specimens, as well as offering effective heuristic-based methods of proactive protection.

PART I: MACOS STEALERS
In the first part of this paper, we’ll explore several recent macOS stealers, focusing largely on the most prolific: Atomic.
For each, we’ll highlight their infection vectors as well as methods of data collection and exfiltration. And what about
persistence, a relevant aspect of the analysis of any malicious code? Well, for stealers that do persist, we will of course
cover their persistence mechanisms. However, a common and rather unique trait of stealers is their tendency to avoid
persistence altogether for two simple reasons. First and foremost, stealers don’t need to hang around. Once they’ve
collected and exfiltrated data such as the victim’s passwords, cookies, and login information, their job is done! Second, by
choosing not to persist, not only is their development simplified, but their stealthiness is significantly increased. Persistence
is a rather noisy event that is trivial to detect heuristically, so avoiding it helps stealers remain undetected.

It’s worth noting that stealers are, of course, not solely a macOS problem, but rather something that affects the entire
industry. For example, stealers have been fingered as arguably the root cause of the recent breaches impacting a myriad of
companies’ data hosted on Snowflake [1].

By definition, stealers steal sensitive information. Let’s briefly expand upon this, before diving into specific stealers. In a
blog post [2] the security researcher Phil Stokes rather comprehensively detailed the most common type of data stolen from
Mac users by stealers. First and foremost, Phil notes that stealers have an overwhelming propensity for targeting cookies,
specifically, those related to sessions. Such cookies may provide attackers access to user accounts, including in some cases,
accounts protected by multi-factor authentication.

The system and user keychains (stored in .keychain or .keychain-db files), are also targeted by the majority of stealers.
Armed with the user’s password (which, as we’ll see, stealers often just ask for), attackers can easily decrypt these
keychains in order to access password, keys, certificates, and other secure information.

As noted by Phil, besides targeting cookies, keychains, and the user’s password, stealers may seek to capture other
browsing data (such as browsing history and browser-saved passwords), SSH keys, and even the contents of the clipboard
(pasteboard)!

It is worth noting that, frankly speaking, the current generation of stealers is largely uninteresting from a technical point of
view: they leverage well-known infection vectors, standard (if any) obfuscation approaches, and accomplish the goals of
accessing sensitive user data in the most prosaic of ways by leveraging standard file I/O APIs. And for security mechanisms
such as TCC (that aim to protect sensitive data) that stealers may encounter along the way, most simply take the rather
noisy route of simply bothering the user until they acquiesce. Therefore, here, we take a somewhat higher-level approach to
avoid getting lost in the rather unimportant technical details, instead pointing out commonalities that will provide a
fundamental understanding of these threats. This, of course, conveniently lays the foundation for the second part of this
research, which focuses on detection and protection. However, for the interested reader, we will provide citations to
detailed technical analysis reports for each sample.

Note: The samples discussed in this paper are available in Objective-See’s macOS malware repository [3], allowing for
continued analysis and testing against security products.

Atomic (AMOS)

Though adware has traditional been the most common threat facing macOS users, in recent years the Atomic stealer has
shot to the top of the charts (based on submissions to VirusTotal), as shown in Figure 1.

As the most prolific macOS stealer, and one that has seen multiple evolutions, its discussion is a logical starting point for
this paper.

In April 2023, Duy Phuc Pham posted a short thread on X (formerly Twitter), both detailing the discovery of Atomic and
providing a brief technical overview [4].

The sample masqueraded as a card game, and was distributed via a disk image (.dmg).

BYTEING BACK: DETECTION, DISSECTION AND PROTECTION AGAINST MACOS STEALERS WARDLE

3VIRUS BULLETIN CONFERENCE OCTOBER 2024

Figure 1: Top macOS threats (image credit: Phil Stokes, via @philofishal).

Infection vector
In terms of its infection vector Phil Stokes notes that, as the Atomic stealer conforms to a malware-as-a-service (MaaS)
model, buyers of the malware are responsible for its distribution to end-user machines: ‘Payload distribution is left up to
the crimeware actor renting the [malware] package, so methods vary, but so far observed samples have been seen
masquerading as installers for legitimate applications.’ [5]
Another report from Malwarebytes [6] notes that the stealer has also been distributed via malvertising, for example
displaying malicious ads for social media network TradingView. If an unsuspecting user clicks on one of the ads they will
be redirected to a website purporting to provide a legitimate version of the TradingView application. Instead it’s a disk
image containing Atomic.
More recently, researchers such as Alden Schmidt have discovered it being distributed by sites that attempt to masquerade
as legitimate ones [7]. In Figure 2, for example, we see a malicious site masquerading as Homebrew, that instead will serve
up a disk image containing the Atomic stealer.

Figure 2: A malicious site serving up the Atomic stealer masquerades as Homebrew (image credit: Alden Schmidt).

In all of these cases, a user will ultimately have to run the malware in order for the infection to commence. And in order to
side-step macOS’s Gatekeeper, once again the malware needs assistance from the user:

https://x.com/philofishal/status/1788974450165133531/photo/1

BYTEING BACK: DETECTION, DISSECTION AND PROTECTION AGAINST MACOS STEALERS WARDLE

4 VIRUS BULLETIN CONFERENCE OCTOBER 2024

Figure 3: The malware needs assistance from the user in order to side-step Gatekeeper.

As the stealer is only signed with an ad-hoc signature, this step is needed otherwise Gatekeeper (which normally only
allows signed and notarized items) will block its execution.
% codesign -dvvv /Volumes/CardGame/CardGame.app

Executable=/Volumes/CardGame/CardGame.app/Contents/MacOS/My Go Application.app

Identifier=a.out

Format=app bundle with Mach-O universal (x86_64 arm64)

CodeDirectory v=20400 size=52414 flags=0x20002(adhoc,linker-signed)

...

Signature=adhoc

Such an infection vector is, yes, both ‘high touch’, requiring significant user interaction, and quite common in other
unsophisticated Mac malware families such as adware. Moreover, as we’ll see in part II of this paper, it allows us to build
effective detection heuristics.

Capabilities
Similar to other stealers, Atomic is designed to collect sensitive data and the exfiltrate it to the attackers’ remote servers, as
well articulated in the aforementioned Malwarebytes report:

‘The attacker’s goal is to simply run their program and steal data from victims and then immediately exfiltrate it back to
their own server.’

The main types of information that Atomic targets are browser data (cookies, logins, passwords, stored credit cards), data
from popular cryptocurrency extensions, and information stored in the user’s keychain.
Though the variant found masquerading as a card game is written in Go, and is thus somewhat difficult to analyse
statically, the variant that was distributed via the fake TradingView instead appears to be written in C++ and thus is much
easier to analyse. Moreover, as this variant doesn’t obfuscate its strings, it is easy to gain insight into its capabilities:

% strings "/Volumes/Trading View/Trading View"

osascript -e 'display dialog "macOS needs to access System settings

Please enter your password." with title "System Preferences" ...

...

dscl /Local/Default -authonly

You entered invalid password.

system_profiler SPHardwareDataType

VMware

Apple Virtual Machine

/Library/Keychains/login.keychain-db

BYTEING BACK: DETECTION, DISSECTION AND PROTECTION AGAINST MACOS STEALERS WARDLE

5VIRUS BULLETIN CONFERENCE OCTOBER 2024

/Chromium/Chrome

/Chromium/Chrome/Local State

/Library/Application Support/Firefox/Profiles/

/Gecko/Firefox

cookies.sqlite

/Gecko/Firefox/Cookies

formhistory.sqlite

/Gecko/Firefox/Autofills

Starcoin

CardWallet

TronWallet

CryptoAirdrop

ibnejdfjmmkpcnlpebklmnkoeoihofec

nkbihfbeogaeaoehlefnkodbefgpgknn

bocpokimicclpaiekenaeelehdjllofo

BuildID=

&user=

185.106.93.154

POST /sendlog HTTP/1.1

For example, we can see that the malware will display a fake password prompt (via osascript) in order to get the user’s
password, so that it can then access and dump the keychain.

Figure 4: Fake password prompt.

Other embedded strings are related to grabbing data from cryptocurrency wallets (by name, or extension uuid). Finally, we
see the embedded address of the attacker’s remote server: 185.106.93.154.
The researcher who uncovered Atomic, Duy Phuc Pham, also pointed out on X that the malware also ‘targets Chrome,
Firefox, Brave, Edge, Vivaldi, Yandex, Opera, and OperaGX. It collects data like autofills, passwords, cookies, and wallets.’
If we load the malware’s binary in a disassembler, we can see the names of the functions related to extracting browser data,
such as ‘GrabChromium’ and ‘GrabFirefox’.

Figure 5: Embedded function names in Atomic stealer.

BYTEING BACK: DETECTION, DISSECTION AND PROTECTION AGAINST MACOS STEALERS WARDLE

6 VIRUS BULLETIN CONFERENCE OCTOBER 2024

These function names are also viewable via macOS’s nm utility, though make sure to pipe its output through c++filt to
demangle their names:

% nm "/Volumes/Trading View/Trading View" | c++filt

0000000100004c34 t systeminfo()

0000000100005814 t ColdWallets()

0000000100004de8 t FileGrabber()

0000000100005284 t GrabFirefox()

00000001000033fc t GrabChromium()

00000001000077c4 t GetUserPassword(std::__1::basic_string, std::__1::allocator>)

...

The implementation of such functions is rather straightforward. For example, if we take a peek at the decompilation of the
GrabChromium function, we can see that, as its name implies, it targets various Chromium-based web browsers to collect
sensitive data. Strings referenced in the disassembly including ‘Cookies’, ‘Login Data’, ‘Autofill’ and ‘Wallets’ highlight
the information it’s after.

Anti-analysis logic
The initial versions of Atomic stealer have limited anti-analysis logic (subsequent versions implement XOR-based string
obfuscation) [8]. However, it will attempt to detect if it’s running within a virtual machine and if so, exit prematurely.
In order to detect execution within a virtual environment Atomic stealer invokes a function named systeminfo. As the
following disassembly shows, this invokes a helper function, exec, to first execute the command system_profiler with a
single argument: SPHardwareDataType.
It then checks if the output from this command contains strings related to virtual machine environments including
‘VMware’ and ‘Apple Virtual Machine’:

int systeminfo() {

 ...

 exec("system_profiler SPHardwareDataType");

 r0 = std::basic_string::find(..., "VMware", 0x0);

 r8 = r0 + 0x1;

 if ((r8 & 0x1) == 0x0) {

	 r0 = std::basic_string::find(..., "Apple Virtual Machine", 0x0);

 r8 = r0 + 0x1;

 }

 if (r8 != 0x0) {

 	 exit(0x1b);

 }

 ...

We can observe the execution of the system_profiler utility in a process monitor:

ProcessMonitor.app/Contents/MacOS/ProcessMonitor -pretty

{

 "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",

 "process" : {

 "pid" : 4344

 "name" : "system_profiler",

 "path" : "/usr/sbin/system_profiler",

 "arguments" : [

 "system_profiler",

 "SPHardwareDataType"

],

 ...

}

BYTEING BACK: DETECTION, DISSECTION AND PROTECTION AGAINST MACOS STEALERS WARDLE

7VIRUS BULLETIN CONFERENCE OCTOBER 2024

In a virtual analysis machine we can see that if we manually execute this command, the following is returned:
% system_profiler SPHardwareDataType

Hardware:

 Hardware Overview:

 Model Name: Apple Virtual Machine 1

 Model Identifier: VirtualMac2,1

 Chip: Apple M2 Max (Virtual)

 ...

Which means that, due to the presence of the ‘Apple Virtual Machine’ string, the malware will detect it is running within a
virtualized environment and thus exit. This is confirmed in a debugger, where the malware will exit with the value 0x1b:

(lldb) "/Volumes/Trading View/Trading View"

...

Trading View`systeminfo:

-> 0x100004cb4 <+128>: bl 0x1000180f4 ; symbol stub for: exit

(lldb) reg read $x0

x0 = 0x000000000000001b

(lldb) continue

Process 4957 exited with status = 27 (0x000001b)

To bypass this anti-VM logic, one could either patch the malware’s binary image, perhaps simply NOP-ing out the call to
systeminfo, or in a debugger simply skip its execution (via the register write $pc <new address> debugger command).
Atomic continues to evolve, though such evolution appears to be largely driven by detection of the original variants (for
example by Apple’s XProtect signatures). This concludes our analysis of Atomic. You can read more about Atomic in the
writeups we have already cited.
Let’s now briefly discuss other stealers. While we won’t delve as deeply into each one, it’s important to note that,
conceptually, the core stealing logic of most stealers is largely the same. Despite their differences and lack of direct
relation, their approaches to stealing data follow similar patterns.

MetaStealer
Discovered by SentinelOne, MetaStealer seems not to target individuals (and their cryptocurrency wallets), but rather
businesses and thus business-related data [9].

Infection vector
As is the case with other stealers, MetaStealer spreads via social engineering, requiring a high level of user interaction in
order to infect macOS systems.
In their analysis report, SentinelOne researchers noted that, based on the names of the distributed file, such as
‘Advertising terms of reference (MacOS presentation).dmg’ and ‘OfficialBriefDescription.app.zip’, they believed the
targets were, in fact, businesses – or at the very least, employees.
Their report also contained reference to an account from one of the targets, which highlights how attackers posed as a client
in order to target potential victims:

‘I was targeted by someone posing as a design client, and didn’t realize anything was out of the ordinary. The man I’d
been negotiating with on the job this past week sent me a password protected zip file containing this DMG file, which I
thought was a bit odd. Against my better judgement I mounted the image to my computer to see its contents. It contained
an app that was disguised as a PDF, which I did not open and is when I realized he was a scammer.’ -MetaStealer target
(via SentinelOne).

It’s also worth noting that MetaStealer (including the sample we cover here, OfficialBriefDescription.app) is not signed:

% codesign -dvv MetaStealer/OfficialBriefDescription.app

MetaStealer/OfficialBriefDescription.app: code object is not signed at all

This means that the user would have to jump through various hoops to run the (malicious) application, as macOS security
mechanisms block unsigned programs by default.

BYTEING BACK: DETECTION, DISSECTION AND PROTECTION AGAINST MACOS STEALERS WARDLE

8 VIRUS BULLETIN CONFERENCE OCTOBER 2024

Capabilities
Similar to other stealers, MetaStealer, well, steals information. As it’s written in Go, static analysis is somewhat
complicated, however as function names are neither stripped nor obfuscated, they give us some insight into the stealer
capabilities of the malware, such as its interest in the keychain.

Figure 6: Embedded function names in MetaStealer.

Besides attempting to access the keychain (which would require the victim’s password), other functions, such as one named
‘GetFiles’, provide a mechanism to collect arbitrary files which then may be exfiltrated to the attacker’s servers, found at
api.osx-mac.com and builder.osx-mac.com.
You can read more about MetaStealer in [9].

JaskaGO
Next we examine JaskaGO. This is a cross-platform stealer targeting both Windows and macOS. The fact it is cross-platform,
coupled with the fact that it persists and supports a wide range of taskable commands, makes it somewhat unique.
JaskaGO was discovered by AT&T research labs [10] and, as noted by Phil Stokes, is referred to internally by Apple
(specifically macOS’s XProtect) as CherryPie [11].

Infection vector
In their analysis report, AT&T researchers stated:

‘As the malware use of file names resembling well-known applications (such as “Capcut_Installer_Intel_M1.dmg” ...)
suggest a common strategy of malware deployment under the guise of legitimate software in pirated application web
pages.’

This mimics what we’ve seen as the infection vectors for other stealers. And again, as the malware is not signed, the user
must be coached in order to side-step macOS code-signing requirements:

Figure 7: JaskaGO’s installation instructions to side-step macOS’s Gatekeeper.

Persistence
The vast majority of stealers don’t persist, which, as we noted, is one of the reasons they present unique challenges
when it comes to detection. However JaskaGO is an exception, as it persists as a launch item. We can see this by
disassembling its service.(*darwinLaunchdService).getServiceFilePath method (which is called from the aptly named
service.(*darwinLaunchdService).Install method):

service.(*darwinLaunchdService).getServiceFilePath

...

lea rdi, a20060102150405_0+1EBDh ; "/Library/LaunchAgents/service"

lea r8, aCookieacceptco+0BAh ; ".plist"

BYTEING BACK: DETECTION, DISSECTION AND PROTECTION AGAINST MACOS STEALERS WARDLE

9VIRUS BULLETIN CONFERENCE OCTOBER 2024

...

call runtime_concatstring4

...

lea rbx, a20060102150405_0+2B19h ; "/Library/LaunchDaemons/Init"

lea r8, aCookieacceptco+0BAh ; ".plist"

...

call runtime_concatstring3

In the above disassembly, you can see it will persist as either a launch agent (service.plist) or launch daemon (Init.plist). It
chooses the latter if it’s running as root; elevated permissions are required to install a launch daemon.
Similar to other stealers, JaskaGO, well, steals information. Reversing the malware reveals its stealing logic is implemented
in the ‘grinch’ class. For example, to extract information stored by the victims’ browsers such as cookies and credentials,
the methods include:

% nm "Capcut Studio.app/Contents/MacOS/Capcut Studio" | c++filt

...

0000000001457be0 t _motionapp/client/grinch.(*Browser).BrowserExists

0000000001456460 t _motionapp/client/grinch.(*Browser).GetChromiumProfileData

0000000001456fa0 t _motionapp/client/grinch.(*Browser).GetFirefoxProfileData

0000000001457a00 t _motionapp/client/grinch.(*Browser).GetLogins

00000000014575a0 t _motionapp/client/grinch.(*Browser).readDatabaseFile

0000000001457c40 t _motionapp/client/grinch.(*Grincher).GetBrowsersCreds

...

000000000195c6f0 b _motionapp/client/grinch.BrowserList

Also, the stealer can (with the user’s password) dump the keychain via a method called mac/system.GetKeychain.
The AT&T research labs report also noted that, besides also grabbing the keychain, the stealer:

‘...searches for browsers crypto wallets extension... In addition, it supports receiving a list of wallets to search for and
upload to the server. The malware can [also] receive a list of files and folders to exfiltrate.’

In the same grinch class we find the methods that implement this:

% nm "Capcut Studio.app/Contents/MacOS/Capcut Studio" | c++filt

...

00000000014598e0 t _motionapp/client/grinch.(*Grincher).GetWallets

0000000001459a80 t _motionapp/client/grinch.(*Grincher).getWalletData

0000000001459d00 t _motionapp/client/grinch.(*Grincher).processWallet

...

0000000001458180 t _motionapp/client/grinch.(*FileGripper).GetFiles

0000000001458620 t _motionapp/client/grinch.(*FileGripper).filterFilesByExtension

0000000001458840 t _motionapp/client/grinch.(*FileGripper).filterFilesBySize

Finally, JaskaGO also has the ability to run arbitrary commands, via methods such as system.RunCommandWithSudo and
system.RunExecutableWithSudo, or download new binaries (payloads via _motionapp/client/modules.downloadBinary).
Let’s look at the implementation of the system.RunCommandWithSudo method:

lea r8, aTruemapEeppTxt+10h ; "sudo

...

lea r8, aITvrruueeaalls+30h ; "-S

call os_exec_Command

call os_exec__ptr_Cmd_Start

call fmt_Fprintf

...

lea rax, aBreakOutsideRa+204h ; "failed to write password"

BYTEING BACK: DETECTION, DISSECTION AND PROTECTION AGAINST MACOS STEALERS WARDLE

10 VIRUS BULLETIN CONFERENCE OCTOBER 2024

At its core, the system.RunCommandWithSudo method invokes the os_exec_Command and os_exec_Cmd_Start
methods to execute a command via sudo. Strings referenced early in the function show it first builds the string: sudo -S. To
add the password, it uses the fmt_Fprintf methods. Of course, this means the malware already has the user’s password
(which it also needs to dump the keychain, and more).
Taking into account JaskaGO’s persistence and additional taskable capabilities, such as the download and execution of
(additional) binaries, it is safe to say it’s one of the more fully-featured, and thus dangerous macOS stealers.

And all the others
There are many other stealers targeting macOS including Cuckoo, MacStealer, GoSorry, PureLand and Realst, which we’ll
mention briefly and, where relevant, cite reports containing additional analysis of each specimen.

Cuckoo
Cuckoo was discovered and subsequently analysed by researchers Adam Kohler and Christopher Lopez at Kandji [12].
Of note is that it persists itself as launch agent via a property list named ‘com.dumpmedia.spotifymusicconverter.plist’ that
(re)runs the stealer every 60 seconds:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" …>

<plist version="1.0">

<dict>

 <key>Label</key>

 <string>com.user.loginscript</string>

 <key>ProgramArguments</key>

 <array>

 <string>/Users/User/…/DumpMediaSpotifyMusicConverter</string>

 </array>

 <key>StartInterval</key>

 <integer>60</integer>

</dict>

</plist>

Cuckoo is interested in the usual types of sensitive data, but also enumerates installed applications, collects files matching
common file extensions (.txt, .doc, .pdf, .jpg, etc), and contains screen capture logic.

MacStealer
This stealer was discovered by researchers at Uptycs, who uncovered the malware for sale on the dark web [13]. Written in
Python, though compiled as a Mach-O executable for distribution, MacStealer is fairly standard in terms of what it collects.
From the names of the .pyc files we can see it is interested in browser cookies and passwords, keychains, data from various
cryptocurrency wallets, and file matching common file extensions.

Figure 8: MacStealer’s (.pyc) files give insight into its capabilities.

It’s worth repeating that the apparent logic in the files’ names are, of course, also confirmed by continued analysis.

BYTEING BACK: DETECTION, DISSECTION AND PROTECTION AGAINST MACOS STEALERS WARDLE

11VIRUS BULLETIN CONFERENCE OCTOBER 2024

In addition to exfiltrating the data to http://mac.cracked23.site, MacStealer also uploads it to the attacker’s personal
Telegram bot, according to Uptycs researchers.

GoSorry
GoSorry, first mentioned on X by @malwrhunterteam, is a dynamic library named ‘liboptimizer.dylib’ [14].
Similar to other stealers, GoSorry is designed to steal a variety of sensitive information from its victims, though it seems to
focus solely on browser data and (browser-based) cryptocurrency wallets.
As it’s written in Go, it contains various rather verbose method names, which reveal the capabilities of the malware. These
are prefixed with __sorryforthat:

% nm GoSorry/liboptimizer.dylib | c++filt

...

0000000000371fc0 t _sorryforthat/internal/browingdata/bookmark.(*ChromiumBookmark).Parse

00000000003732e0 t _sorryforthat/internal/browingdata/bookmark.(*FirefoxBookmark).Parse

00000000009474d0 d _sorryforthat/internal/browingdata/common.CHROMIUM_WALLETS

00000000009474f0 d _sorryforthat/internal/browingdata/common.EDGE_WALLETS

0000000000947510 d _sorryforthat/internal/browingdata/common.FIREFOX_WALLETS

0000000000947530 d _sorryforthat/internal/browingdata/common.OPERA_WALLETS

0000000000376560 t _sorryforthat/internal/browingdata/cookie.(*ChromiumCookie).Parse

00000000003770a0 t _sorryforthat/internal/browingdata/cookie.(*FirefoxCookie).Parse

0000000000377a00 t _sorryforthat/internal/browingdata/creditcard.(*ChromiumCreditCard).Parse

0000000000378200 t _sorryforthat/internal/browingdata/creditcard.(*YandexCreditCard).Parse

0000000000378da0 t _sorryforthat/internal/browingdata/download.(*ChromiumDownload).Parse

0000000000379580 t _sorryforthat/internal/browingdata/download.(*FirefoxDownload).Parse

000000000037b9e0 t _sorryforthat/internal/browingdata/history.(*ChromiumHistory).Parse

000000000037c0e0 t _sorryforthat/internal/browingdata/history.(*FirefoxHistory).Parse

00000000003cd540 t _sorryforthat/internal/browingdata/password.(*ChromiumPassword).Parse

00000000003cf0c0 t _sorryforthat/internal/browingdata/password.(*FirefoxPassword).Parse

0000000000955680 b _sorryforthat/internal/browser.braveProfilePath

00000000009556a0 b _sorryforthat/internal/browser.chromeProfilePath

00000000009556d0 b _sorryforthat/internal/browser.edgeProfilePath

00000000009556e0 b _sorryforthat/internal/browser.firefoxProfilePath

0000000000955730 b _sorryforthat/internal/browser.torProfilePath

0000000000955750 b _sorryforthat/internal/browser.yandexProfilePath

PureLand and Realst
Uncovered and analysed by @Iamdeadlyz, these two seemingly related stealers predominantly focus on stealing
information that would give attackers access to users’ cryptocurrency wallets [15].
For example, disassembling the PureLand stealer binary reveals ‘search’-related functions that, based on their names,
appear to be interested in finding common cryptocurrency wallets to plunder, as shown in Figure 9.

Figure 9: PureLand’s search-related methods.

BYTEING BACK: DETECTION, DISSECTION AND PROTECTION AGAINST MACOS STEALERS WARDLE

12 VIRUS BULLETIN CONFERENCE OCTOBER 2024

Realst largely leans on publicly available scripts to perform its stealing, which includes accessing the contents in the
macOS keychain as well as decrypting (and stealing) cookies from browsers, as noted by Iamdeadlyz:

‘The game.py script’s original filename is firefox_decrypt.py by unode - https://github.com/unode/firefox_decrypt.
Firefox Decrypt is a tool to extract passwords from profiles of Mozilla (Fire/Water)fox™, Thunderbird®, SeaMonkey®
and derivatives.
‘The installer.py script is a combination of scripts from n0fate’s chainbreaker - https://github.com/n0fate/chainbreaker
Chainbreaker can be used to extract the information [passwords, certs, etc.] from an OSX keychain.’

PART II PROTECTION (AND DETECTION)
The list and impact of stealers targeting macOS is ever growing, affecting both end-users and enterprises. Such stealers are
widely available either for sale on the ‘dark web’, or offered via MaaS. Others are directly created and distributed by prolific
cybercriminals groups. Some are written in Python, while others are written in Rust, Go, or Swift. Most do not persist. The
breadth and ephemerality of stealers poses significant challenges to traditional signature-based detection approaches.
However, if we take a step back and make the rather obvious observation that all stealers steal, and if we can craft a
heuristic around this commonality, we should be able to detect all stealers in one fell swoop.
First though, let’s focus on generically blocking their execution in the first place.
On recent versions of macOS, software must be notarized in order to run, unless the user explicitly exempts it. However, to
be notarized, the developer must submit the binary to Apple, which scans it for malware. If none is found, Apple approves it
via notarization. This, of course, poses an expected conundrum to malware authors: submit the malicious binaries to Apple
in the hope that they will inadvertently be notarized, or rely on users to exempt the malware? Though Apple has
inadvertently notarized malware on occasion, this is exceedingly rare. Moreover, even in this case, once Apple realizes its
error, it can quickly revoke either the notarization ticket or the developer ID altogether, blocking the malware and any other
binaries signed with the same code-signing certificates. Moreover, from the notarization submission, Apple will (already)
have the malicious binary in its possession, allowing it to be fully analysed, and from this analysis Apple can improve its
notarization approval process or even globally release XProtect detection signatures. With the risk-reward calculation
clearly skewed, by design, toward Apple, most malware authors, including those creating stealers, opt for the
user‑exception approach.
While covering the infection vectors of macOS stealers we discussed this approach, illustrating how the stealer would
instruct the user simply to control/right click and then select ‘Open’ to side-step macOS notarization requirements. Even the
most recent versions of the prolific Atomic stealer (still) take this approach, setting the background of its distribution
medium, a disk image, to an image containing instructions to the user:

Figure 10: In order to side-step macOS’s security mechanisms, stealers require user interaction.

BYTEING BACK: DETECTION, DISSECTION AND PROTECTION AGAINST MACOS STEALERS WARDLE

13VIRUS BULLETIN CONFERENCE OCTOBER 2024

Though macOS will still warn the user that the application is not notarized and thus should not be run, there is an option to
allow it. And if the user selects this option, the malware will unfortunately run and steal all the things.
As the vast majority of legitimate software is notarized, a very powerful yet effective protection heuristic is simply to block
the execution of any item that is not notarized, regardless of the user’s wishes. Though, yes, slightly draconian, this will
stop all current stealers in their tracks!
To block unnotarized code we can leverage Apple’s Endpoint Security. The framework allows clients to subscribe to events
and, in many cases, examine the event to determine if it should be allowed to commence. Let’s dive directly into code that
allows us to authorize process executions, and then show how to examine such processes to ascertain their notarization
status, and finally block any that are non-notarized.

es_client_t* client = NULL;

es_event_type_t events[] = {ES_EVENT_TYPE_AUTH_EXEC};

es_new_client_result_t result =
es_new_client(&client, ^(es_client_t *client, const es_message_t *message) {

 es_process_t* process = nil;

 es_string_token_t* procPath = nil;

 process = message->event.exec.target;

 procPath = &process->executable->path;

 printf("\nevent: ES_EVENT_TYPE_AUTH_EXEC\n");

 printf("process: %.*s\n", (int)procPath->length, procPath->data);

 es_respond_auth_result(client, message, ES_AUTH_RESULT_ALLOW, false);

});

if(ES_NEW_CLIENT_RESULT_SUCCESS != result) {

 //TODO: handle error/exit

}

es_subscribe(client, events, sizeof(events)/sizeof(events[0]));

In the above code we first create an array containing the Endpoint Security events we’re interested in subscribing to. In this
simplified example, we specify only one event: ES_EVENT_TYPE_AUTH_EXEC. This event will be delivered to us
prior to a new process being allowed to execute, giving our code an opportunity to examine it and make a decision about its
execution. More on this shortly.
Next we use the es_new_client API to create a new Endpoint Security client. This client is required for all subsequent calls
into Endpoint Security. The API takes as its last parameter a block that will automatically be invoked by the framework
whenever any of the events we’re interested in occur. For now, as we’re going to subscribe to ES_EVENT_TYPE_
AUTH_EXEC events, we extract the process that’s about to be spawned and print out its path. Then, as we’re dealing with
an AUTH_* event, we must tell the framework whether to allow or deny (block) the process, via the es_respond_auth_
result API. For now, we always invoke it with ES_AUTH_RESULT_ALLOW to allow all processes. Shortly we’ll show
how to block any process that isn’t notarized.
Note that the es_new_client can fail for a variety of reasons, including if the code isn’t running with root (ES_NEW_
CLIENT_RESULT_ERR_NOT_PRIVILEGED), does not have full disk access (ES_NEW_CLIENT_RESULT_
ERR_NOT_PERMITTED), or isn’t adequately entitled (ES_NEW_CLIENT_RESULT_ERR_NOT_ENTITLED).
Finally, we subscribe to the Endpoint Security event of interest via the es_subscribe API, which as you can see takes our
client, the events, and their count. After this function has returned, ES_EVENT_TYPE_AUTH_EXEC events will begin
streaming into the handler block we passed to es_new_client.
At this point, we can see each new process that is spawned, for example on my developer box processes related to git:

...

event: ES_EVENT_TYPE_AUTH_EXEC

process: /Applications/Xcode.app/Contents/Developer/usr/bin/git

event: ES_EVENT_TYPE_AUTH_EXEC

process: /Applications/Xcode.app/Contents/Developer/usr/libexec/git-core/git-remote-http

BYTEING BACK: DETECTION, DISSECTION AND PROTECTION AGAINST MACOS STEALERS WARDLE

14 VIRUS BULLETIN CONFERENCE OCTOBER 2024

However, we’re just authorizing all processes, so now let’s show how to determine if a process is notarized, and if not, how
to block it.

SecRequirementRef isNotarized = nil;

SecRequirementCreateWithString(CFSTR("notarized"), kSecCSDefaultFlags, &isNotarized);

if(errSecSuccess == SecCodeCheckValidity(dynamicCode, kSecCSDefaultFlags, isNotarized)) {

 //process is notarized

}

It’s straightforward to check if a process is notarized using Apple’s code-signing APIs. As shown above, first create a
‘requirement reference’ that is initialized with the string ‘notarized’. This is then passed to the SecCodeCheckValidity
API, which will return a zero (errSecSuccess), if and only if the item is conformant to the specified requirement, which
here, is whether the item is notarized or not.
Note: Not shown is the creation of the dynamic code reference, which can be created by passing the process’ audit token to
the SecCodeCopyGuestWithAttributes API. And, yes, this code reference should also be validated wholly via a call to
SecCodeCheckValidity before any subsequent checks are taken.
If the item is not notarized, we can simply invoke the es_respond_auth_result ES_AUTH_RESULT_DENY to tell
macOS to deny the processes execution:
SecRequirementRef isNotarized = nil;

SecRequirementCreateWithString(CFSTR("notarized"), kSecCSDefaultFlags, &isNotarized);

if(errSecSuccess == SecCodeCheckValidity(dynamicCode, kSecCSDefaultFlags, isNotarized)) {

 //process is notarized, so allow

 es_respond_auth_result(client, message, ES_AUTH_RESULT_ALLOW, false);

}

else {

 //process is *not* notarized, so block

 es_respond_auth_result(client, message, ES_AUTH_RESULT_DENY, false);

}

It should be noted that, as is often the case, in reality things are a bit more complicated. For example, core macOS binaries
(named ‘platform binaries’ in Apple parlance) are not notarized, but of course should be allowed. Applications from Apple’s
official Mac App Store also are not notarized, but generally you’ll want to allow them, as they undergo the same, if not
more stringent, review process as notarized items. One approach that at least takes into account, or rather ignores platform
binaries, is only checking items that have been downloaded from the internet, which carry the com.apple.quaratine
extended attribute. This approach is taken by my BlockBlock tool, which has a mode to block non-notarized items. As it is
open-source, you can consult its source code [16] to see a full implementation, including how to use the undocumented
APIs in the libquarantine dynamic library to determine if an item has the quarantine attribute set.
If we add this code to a proof of concept ‘blocker’, and then attempt to execute an instance of the Atomic stealer, it is
resoundingly blocked:

...

event: ES_EVENT_TYPE_AUTH_EXEC

process: /Volumes/CardGame/CardGame.app/Contents/MacOS/CardGame

process 'CardGame' has the quarantine attribute set

process 'CardGame' is not notarized, so will block!

returning ES_AUTH_RESULT_DENY

With the ability to block any non-notarized process from executing, we can, as noted, stop all existing stealers in their
tracks as currently none are notarized. However, Apple is not infallible and inadvertently notarizes malware from time to
time. As such, blocking non-notarized items should not be seen as a panacea. Thus, let’s end this paper by showing how to
leverage the mute-inversion capabilities of Endpoint Security to write some code that protects the data that stealers are
after, by only authorizing access to trusted programs.
One of the oft overlooked capabilities of Endpoint Security is mute inversion. In a nutshell, this allows one to monitor
specific programs, files/directories. Here, we’ll walk through some example code that monitors the user’s entire Documents
directory, that could easily be extended to only allow access by trusted or recognized processes.

BYTEING BACK: DETECTION, DISSECTION AND PROTECTION AGAINST MACOS STEALERS WARDLE

15VIRUS BULLETIN CONFERENCE OCTOBER 2024

Note: Why is this referred to as mute inversion? Well, the original version of Endpoint Security did not provide such a
capability. Instead, there was only the ability to mute or ignore events from specified processes and or files/directories. It
was realized, shortly thereafter, that the inverse of this would be supremely useful as well. However, instead of providing a
whole new set of APIs, Apple wisely realized that a single API, es_invert_muting, could then toggle the muting logic within
the well understood muting APIs.

Much of the code we’ll show here is similar to the code in the previous example where, after Endpoint Security events were
specified and an Endpoint Security client was created, the code subscribed to the events (via a call to es_subscribe).

es_client_t* client = NULL;

es_event_type_t events[] = {ES_EVENT_TYPE_AUTH_OPEN};

NSString* consoleUser = (__bridge_transfer NSString *)SCDynamicStoreCopyConsoleUser(NULL,
NULL, NULL);

NSString* docsDirectory = [NSHomeDirectoryForUser(consoleUser)
stringByAppendingPathComponent:@"Documents"];

es_new_client(&client, ^(es_client_t *client, const es_message_t *message) {

 es_string_token_t* procPath = nil;

 es_string_token_t* filePath = nil;

 procPath = &message->process->executable->path;

 filePath = &message->event.open.file->path;

 printf("\nevent: ES_EVENT_TYPE_AUTH_OPEN\n");

 printf("process: %.*s\n", (int)procPath->length, procPath->data);

 printf("file path: %.*s\n", (int)filePath->length, filePath->data);

 //TODO: add code to check process, only approve authorized ones

 // for now we authorize all, but use ES_AUTH_RESULT_DENY to block

 es_respond_auth_result(client, message, ES_AUTH_RESULT_ALLOW, false);

});

es_unmute_all_target_paths(client);

es_invert_muting(client, ES_MUTE_INVERSION_TYPE_TARGET_PATH);

es_mute_path(client, docsDirectory.UTF8String, ES_MUTE_PATH_TYPE_TARGET_PREFIX);

es_subscribe(client, events, sizeof(events)/sizeof(events[0]));

After specifying the Endpoint Security events of interest – here just the ES_EVENT_TYPE_AUTH_OPEN event – we
look up the console user’s name via SCDynamicStoreCopyConsoleUser so that we can then build a path to their
Documents directory. Such an approach is necessary as programs that utilize Endpoint Security must run as root, thus
convenience APIs such as NSHomeDirectory will return the root user’s director, which is not what we actually want.
The callback block passed to the es_new_client API simply prints out the name of the process attempting to open a file in
the directory we’re watching, as well as the actual file. In this example we simply return ES_AUTH_RESULT_ALLOW
via the es_respond_auth_result API, which will authorize all accesses. Of course, you’ll want to examine the process
attempting to access the file, and if it’s not trusted, block it by instead returning ES_AUTH_RESULT_DENY.
Next up is the actual code related to the mute inversion. First, and very importantly, we invoke es_unmute_all_target_paths.
This call is needed as, by default, Apple mutes certain system processes which we want to remain muted after we invert
muting. We then tell Endpoint Security that here we want to mute everything but the path (we’re) about to specify. As such, we
invoke the es_invert_muting API. To specify the directory to protect we then invoke the es_mute_path API (which, as
muting is inverted, will actually mute events for everything else). We pass in ES_MUTE_PATH_TYPE_TARGET_
PREFIX as we want to watch files whose path matches a specified prefix (here, the console user’s Documents directory).
Finally, we call es_subscribe to subscribe to events of interest, kicking off the protection.
Though not shown here, if we add additional ‘is the process trusted’ logic, we now have a powerful protection mechanism
capable of generically thwarting stealers, including Atomic stealer:

protecting directory: /Users/User

event: ES_EVENT_TYPE_AUTH_OPEN

BYTEING BACK: DETECTION, DISSECTION AND PROTECTION AGAINST MACOS STEALERS WARDLE

16 VIRUS BULLETIN CONFERENCE OCTOBER 2024

process: /Volumes/CardGame/CardGame.app/Contents/MacOS/CardGame

file path: /Users/User/Documents

...

process 'CardGame' is not trusted, so will block!

returning ES_AUTH_RESULT_DENY

CONCLUSION
After a brief introduction to stealers, the first half of this research paper described several of the most prolific and
widespread stealers currently targeting macOS users. This analysis illustrated commonalities among different samples,
laying the foundation for building powerful detection heuristics. In the second half of the paper, we explored these
detection approaches, specifically highlighting examples that utilized Apple’s Endpoint Security framework to block
non-notarized processes and protect the user’s Documents directory. With these robust protections in place, our hope is that
we can now decisively turn the tide against these nefarious and highly impactful threats.

REFERENCES
[1]	 https://x.com/JohnHultquist/status/1800153633792889145.
[2]	 Stokes, P. Session Cookies, Keychains, SSH Keys and More | 7 Kinds of Data Malware Steals from macOS Users.

SentinelOne. 22 March 2023. https://www.sentinelone.com/blog/session-cookies-keychains-ssh-keys-and-more-7-
kinds-of-data-malware-steals-from-macos-users/.

[3]	 Objective-See. macOS Malware Repository. https://github.com/Objective-see/Malware.
[4]	 https://x.com/phd_phuc/status/1651001139750420480.
[5]	 Stokes, P. Atomic Stealer | Threat Actor Spawns Second Variant of macOS Malware Sold on Telegram.

SentinelOne. 3 May 2023. https://www.sentinelone.com/blog/atomic-stealer-threat-actor-spawns-second-variant-
of-macos-malware-sold-on-telegram/.

[6]	 Segura, J. Mac users targeted in new malvertising campaign delivering Atomic Stealer. Malwarebytes. 6 September
2023. https://www.malwarebytes.com/blog/threat-intelligence/2023/09/atomic-macos-stealer-delivered-via-
malvertising.

[7]	 Schmidt, A. An Infostealer’s Brewin’: Cuckoo & AtomicStealer Get Creative. 14 May 2024. https://alden.io/posts/
infostealers-a-brewin/.

[8]	 DD. Breaking down Atomic MacOS Stealer (AMOS). 5 March 2024. https://medium.com/@dineshdevadoss04/
breaking-down-atomic-macos-stealer-amos-8cd5eea56024.

[9]	 Stokes, P. macOS MetaStealer | New Family of Obfuscated Go Infostealers Spread in Targeted Attacks.
SentinelOne. 11 January 2024. https://www.sentinelone.com/blog/macos-metastealer-new-family-of-obfuscated-
go-infostealers-spread-in-targeted-attacks/.

[10]	 Caspi, O. Behind the scenes: JaskaGO’s coordinated strike on macOS and Windows. LevelBlue. 18 December
2023. https://cybersecurity.att.com/blogs/labs-research/behind-the-scenes-jaskagos-coordinated-strike-on-macos-
and-windows.

[11]	 https://x.com/philofishal/status/1737351740586872840.
[12]	 Kohler, A.; Lopez, C. Malware: Cuckoo Behaves Like Cross Between Infostealer and Spyware. Kandji. 30 April

2024. https://blog.kandji.io/malware-cuckoo-infostealer-spyware.
[13]	 Trivedi, S. MacStealer: Unveiling a Newly Identified MacOS-based Stealer Malware. Uptycs. 24 March 2023.

https://www.uptycs.com/blog/macstealer-command-and-control-c2-malware.
[14]	 https://x.com/malwrhunterteam/status/1651160948780986368.
[15]	 Iamdeadlyz. PureLand – A Fake Project Related to the Sandbox Malspam. 7 March 2023.

https://iamdeadlyz.medium.com/pureland-a-fake-project-related-to-the-sandbox-malspam-13b9abe751d1.
[16]	 BlockBlock. https://github.com/objective-see/BlockBlock.

https://x.com/JohnHultquist/status/1800153633792889145
https://www.sentinelone.com/blog/session-cookies-keychains-ssh-keys-and-more-7-kinds-of-data-malware-steals-from-macos-users/
https://www.sentinelone.com/blog/session-cookies-keychains-ssh-keys-and-more-7-kinds-of-data-malware-steals-from-macos-users/
https://github.com/Objective-see/Malware
https://x.com/phd_phuc/status/1651001139750420480
https://www.sentinelone.com/blog/atomic-stealer-threat-actor-spawns-second-variant-of-macos-malware-sold-on-telegram/
https://www.sentinelone.com/blog/atomic-stealer-threat-actor-spawns-second-variant-of-macos-malware-sold-on-telegram/
https://www.malwarebytes.com/blog/threat-intelligence/2023/09/atomic-macos-stealer-delivered-via-malvertising
https://www.malwarebytes.com/blog/threat-intelligence/2023/09/atomic-macos-stealer-delivered-via-malvertising
https://alden.io/posts/infostealers-a-brewin/
https://alden.io/posts/infostealers-a-brewin/
mailto:https://medium.com/@dineshdevadoss04/breaking-down-atomic-macos-stealer-amos-8cd5eea56024
mailto:https://medium.com/@dineshdevadoss04/breaking-down-atomic-macos-stealer-amos-8cd5eea56024
https://www.sentinelone.com/blog/macos-metastealer-new-family-of-obfuscated-go-infostealers-spread-in-targeted-attacks/
https://www.sentinelone.com/blog/macos-metastealer-new-family-of-obfuscated-go-infostealers-spread-in-targeted-attacks/
https://cybersecurity.att.com/blogs/labs-research/behind-the-scenes-jaskagos-coordinated-strike-on-macos-and-windows
https://cybersecurity.att.com/blogs/labs-research/behind-the-scenes-jaskagos-coordinated-strike-on-macos-and-windows
https://x.com/philofishal/status/1737351740586872840
https://blog.kandji.io/malware-cuckoo-infostealer-spyware
https://www.uptycs.com/blog/macstealer-command-and-control-c2-malware
https://x.com/malwrhunterteam/status/1651160948780986368
https://iamdeadlyz.medium.com/pureland-a-fake-project-related-to-the-sandbox-malspam-13b9abe751d1
https://github.com/objective-see/BlockBlock

