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ABSTRACT
Have you ever wondered why there are so many vulnerable drivers and what might be causing them to be vulnerable? Do 
you want to understand why some drivers are prone to crossing security boundaries and how we can stop that?
The number of vulnerable drivers in the LOLDrivers project increases steadily every week, with several new vulnerabilities 
being discovered regularly. To address this issue, Check Point Research conducted an in-depth analysis focusing on the 
main causes of vulnerability.
This paper presents the findings of our research, which reveal that the majority of known vulnerable drivers share certain 
characteristics. Interestingly, these vulnerabilities are often not complex and can easily be addressed. Using the same 
methodology, we conducted a mass hunt for new drivers that may be vulnerable, uncovering thousands of potentially 
at-risk drivers. Additionally, we examine how drivers of well-known security products are attempting to mitigate abuse and 
provide a practical demonstration of how we were able to exploit chained vulnerabilities in one such product to bypass 
security measures and gain kernel privileges.
By demonstrating the practical vulnerability of a well-known security product, we underscore the fundamental idea that if a 
design flaw exists within the driver itself, it is only a matter of time and attacker ingenuity before security mechanisms are 
bypassed.

INTRODUCTION
Although the subject of vulnerable drivers has been around for a while, it has gained more attention from both vulnerability 
researchers and attackers in recent years. One potential reason for this is Microsoft’s effort to continuously evolve and 
improve Windows security to protect the kernel’s boundary.

From the attackers’ perspective, gaining kernel privileges is very often a crucial step towards owning the system. As it 
becomes harder to cross the security boundary (user-mode → kernel-mode) in a conventional way, driver exploitation has 
become their prioritized approach, both with traditional exploit primitives and abuse of legitimate driver functionalities.

There are a lot of reasons why attackers are abusing vulnerable Windows drivers. Exploiting drivers offers them interesting 
perspectives to reach certain capabilities usually not available from user-mode, such as:

•	 Rootkits – usually for hiding the malware on the compromised system for as long as possible and ensuring persistence.

•	 Minifilter drivers – intercepting I/O operations by registering pre/post operation callback routines. Malware mostly 
uses an ‘active’ minifilter to modify original I/O operations requests and results, but it can also be used passively to 
monitor the system.

•	 Elevation of privilege (EoP) – attackers can leverage the BYOVD (Bring Your Own Vulnerable Driver) technique to 
reach EoP, but they need to already have the privilege to load the vulnerable driver. They can also abuse known/
unknown vulnerabilities in certain already installed/loaded drivers to cross the security boundary (user-mode → 
kernel-mode).

•	 Disabling/killing EDR – many techniques and projects have been introduced to abuse legitimate functionalities of 
vulnerable drivers to disable/kill EDR or other PP/PPL processes (e.g. via process termination, process suspending, 
thread suspending, closing all process objects, etc.).

•	 Loading unsigned malicious drivers, bypassing the driver signature enforcement.

Projects such as LOLDrivers [1] have significantly increased the popularity of vulnerable drivers among attackers. Even 
though the purpose of such projects is strictly focused on defensive measures, the existence of a huge, regularly updated 
database of vulnerable drivers also opens the space for offensive operations: there is nothing easier for attackers than to 
wait for the latest contributions and start the race with security companies to abuse the newly added vulnerable driver 
sooner than protections are properly applied.

The fact that there are so many known vulnerable drivers accumulating in one publicly accessible place should raise 
questions such as:

•	 Why are there so many vulnerable drivers, and what might be causing them to be vulnerable?

•	 Why are some drivers prone to crossing security boundaries?

•	 Do the vulnerable drivers have something in common, and if so can we address it for mitigation?

This paper presents our research findings, focusing on the vulnerable Windows drivers (WDM) [2, 3]. We reveal that the 
majority of known vulnerable drivers share certain characteristics, and that these vulnerabilities are often not complex and 
can easily be addressed. We also describe our hunt for new drivers that may be vulnerable, in which we uncovered 
thousands that were potentially at risk, and examine how the drivers of popular security products attempt to mitigate abuse, 
providing a demonstration of how we were able to exploit chained vulnerabilities in one such product to bypass security 
measures and gain kernel privileges.

https://github.com/magicsword-io/LOLDrivers
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BACKGROUND & KEY FINDINGS
In recent years, a lot of research has been conducted relating to vulnerable Windows drivers. Focusing only on the research 
that targeted vulnerable drivers in general (avoiding in-the-wild APT/malware-related abuse of vulnerable drivers), the 
majority has primarily been educational. Such works have mostly provided either some 101 steps for reverse engineering 
Windows drivers or a detailed analysis of an example vulnerable driver with the creation of a PoC.
Those that stand out, contributing to the community with some unique approach for mass hunting of vulnerable Windows 
drivers, have mostly focused on logical bugs via abusing drivers’ functionalities in relation to physical memory mapping of 
low-level APIs (kernel functions such as MmMapIoSpace/MmMapIoSpaceEx), e.g. [4].
Despite thousands of initially detected Windows drivers that use these memory-mapped low-level APIs, only a handful of 
them survived further filtering, where the crucial moment was mainly in manual verification and finding out that only a 
privileged user (Administrator, System) can initiate the communication with those drivers. Because of that, even though the 
bug existed in those drivers, it could not be considered a vulnerability as there is no crossing of security boundary 
(Administrator → Kernel).
The crossing of security boundary [5] is the main aspect that plays a crucial role when it comes to a decision as to whether 
a certain bug can be submitted as a vulnerability. The table below summarizes the crossing of security boundaries and is 
simplified for our needs:

Initial Elevated Crossing security boundary
Non-privileged user System Yes
Non-privileged user Administrator Yes
Administrator System No
Service Administrator No
Service System Yes/no, it depends

There are rare cases where even an elevation Administrator → Kernel can be considered to be crossing a security boundary 
with an assigned vulnerability when it is actively being exploited as a zero-day in the wild (e.g. CVE-2024-21338) [6].

Even though the decision regarding security boundaries can sometimes be confusing, when it comes to vulnerable drivers, 
the straightforward boundary between non-privileged users and the system is the one we should target and cross.

The main idea behind this research is to carry out mass hunting for vulnerable drivers in a slightly different way. First, we 
need to always be sure that we are crossing the security boundary, or in other words, that we can communicate with the 
driver as a non-privileged user. The DACL (Discretionary Access Control List), which is a part of SDDL (Security 
Descriptor Definition Language) applied on the driver’s device, is the first thing that matters [7, 8].

Even when we find such drivers accessible from non-privileged users, it does not necessarily mean that they can be considered 
vulnerable. They need to be further filtered out by searching for certain capabilities of their legitimate functionalities that can 
potentially be abused to commit privileged operations, in the ‘best’ scenario leading to LPE (Local Privilege Escalation).

VULNERABLE DRIVERS – WHAT DO THEY HAVE IN COMMON?
When it comes to a publicly available database of known-to-be-vulnerable Windows drivers that can easily be processed, 
there is no better place than the LOLDrivers project. If we focus only on those drivers in the database that are known to be 
vulnerable (avoiding those that are known to be malicious) and further filter those that are 64-bit and signed (with the 
YARA rule provided below), we get 924 drivers that can serve as a starting point for our investigation.

import "pe"

rule signed_driver_64bit

{

    meta:

        description = "Detects 64-bit signed drivers"

        author = "Jiri Vinopal (jiriv)"

        date = "2024-06-09"

    condition:

        // Detect PE

        uint16(0) == 0x5a4d and uint16(uint32(0x3c)) == 0x4550 and

        // Detect 64-bit Windows drivers

        uint16(uint32(0x3C) + 0x5c) == 0x0001 and uint16(uint32(0x3C) + 0x18) == 0x020b and

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-mmmapiospace
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-mmmapiospaceex
https://www.microsoft.com/en-us/msrc/windows-security-servicing-criteria
https://decoded.avast.io/janvojtesek/lazarus-and-the-fudmodule-rootkit-beyond-byovd-with-an-admin-to-kernel-zero-day/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ifs/applying-security-descriptors-on-the-device-object
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/sddl-for-device-objects
https://github.com/magicsword-io/LOLDrivers
https://github.com/magicsword-io/LOLDrivers/blob/main/detections/hashes/samples_vulnerable.sha256
https://github.com/magicsword-io/LOLDrivers/blob/main/detections/hashes/samples_vulnerable.sha256
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        // Detect only signed drivers, not a real verification

        (pe.number_of_signatures > 0 and for all i in (0..pe.number_of_signatures -1):

            (pe.signatures[i].verified and not pe.signatures[i].subject contains "WDKTestCert"))

}

After initial analysis, we can quickly get to the main point of interest. Approximately 90% of those 924 drivers are 
accessible by non-privileged users (detected by a YARA rule similar to the one included in the ‘Mass hunt for not-known-
to-be-vulnerable drivers’ section), and as such, they are prone to crossing the security boundary (non-privileged user → 
system), where any of their capabilities that can be abused to commit privileged operations make them vulnerable.

Focusing on those 90% of drivers prone to cross the security boundary (accessible by non-privileged users), we can 
immediately get an overview of typical design flaws that repeatedly occur in their code:

1.	 Creating devices with no DACL via the IoCreateDevice function. Unfortunately, the IoCreateDevice function 
does not allow DACL to be specified. As a result, the developers must define it either directly in the registry or via 
the configuration file (INF AddReg directive). If they fail to do so, any user can access the device.

Figure 1: Example vulnerable driver – IoCreateDevice (no DACL).

2.	 Creating devices with a weak DACL using the IoCreateDeviceSecure function. The function 
IoCreateDeviceSecure allows DACL to be specified, and as such, it is considered more secure. Still, if a weak 
DACL is applied, the created device can be accessible by less privileged users.

Figure 2: Example vulnerable driver – IoCreateDeviceSecure (weak DACL).

3.	 Creating devices with a strong DACL using the IoCreateDeviceSecure function but without the FILE_DEVICE_
SECURE_OPEN flag, which is part of the device characteristics. If the DeviceCharacteristics value is not ORed 
with 0x00000100 (FILE_DEVICE_SECURE_OPEN), the same security settings are not applied to the whole device’s 
namespace. Every device has its own namespace, where names in the namespace are paths that begin with the 
device’s name. For a device named \Device\DeviceName, its namespace consists of any name of the form  
\Device\DeviceName\anyfile. The lack of the FILE_DEVICE_SECURE_OPEN flag can be abused to obtain a 
full access handle to the device itself, even by a non-privileged user, because the strong DACL is not propagated to 
the namespace, e.g. opening a handle to \Device\DeviceName\anyfile will return a handle for the device itself 
\Device\DeviceName.

Figure 3: Example vulnerable driver – IoCreateDeviceSecure (strong DACL, no FILE_DEVICE_SECURE_OPEN).

As we revealed above, the crucial condition when the driver can be considered vulnerable begins with its ability to cross 
security boundaries, rather than the bug itself. In other words, hunting for non-privileged user-accessible drivers can be 
used as an interesting starting point to mass hunt for new, not-known-to-be-vulnerable drivers. In general, we must initially 
focus only on those Windows drivers that are either not explicit enough about the DACL (no/weak DACL) or on those that 
are using a strong DACL with a combination of not presented FILE_DEVICE_SECURE_OPEN device characteristics flag.

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-addreg-directive
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/specifying-device-characteristics


BREAKING BOUNDARIES: INVESTIGATING VULNERABLE DRIVERS AND MITIGATING RISKS  VINOPAL

5VIRUS BULLETIN CONFERENCE OCTOBER 2024

Even though some products using drivers without a directly applied DACL (in-code) can set the DACL during installation, 
in the appropriate registry, or via the INF configuration file, these drivers can still be abused using the BYOVD technique.
Furthermore, non-privileged user-accessible drivers cannot be considered as vulnerable in general, rather only those that 
also combine this design flaw with a demonstrable abuse of their capabilities to reach some privileged operations.

MASS HUNT FOR NOT-KNOWN-TO-BE-VULNERABLE DRIVERS
As we described in the previous section, the crucial condition when the driver can be considered vulnerable begins not with 
the bug itself but with its ability to cross security boundaries. Because of that, we start our mass hunting for new potentially 
vulnerable drivers by putting together the common design flaws that lead to non-privileged user-accessible drivers. We 
created a general methodology describing the main steps we followed during the hunting process.

General methodology
1.	 The initial creation of the YARA rule to find new potentially vulnerable drivers (non-restricted access, 

non‑privileged users can communicate with).
2.	 Enriching the YARA rule with common driver capabilities (usage of certain kernel functions) that can be abused to 

reach some privileged operation.
3.	 Further improving the created YARA rule and using it with VT Retrohunt.
4.	 Filtering valid-signed 64-bit drivers.
5.	 De-duplication of found drivers.
6.	 Reverse engineering and verifying the driver vulnerability (there can be a variety of impacts, but we should 

primarily target the EoP).
7.	 PoC creation for the found vulnerability.
8.	 Description of the vulnerability and reporting to vendor.

Initially, we put together a YARA rule and used the VirusTotal Retrohunt service to mass hunt for 64-bit signed drivers 
accessible by non-privileged users. This YARA rule targeted those drivers that are either not using the DACL (e.g. direct 
usage of IoCreateDevice) or using a weak one (e.g. usage of IoCreateDeviceSecure with a weak DACL). Note that 
using this YARA rule to hunt for new potentially vulnerable drivers, we avoid the detection of those drivers that are already 
a part of the LOLDrivers project.
We enriched the YARA rule with a list of common driver capabilities (usage of certain kernel APIs, e.g. ZwOpenProcess, 
ZwOpenThread, ZwOpenProcessTokenEx, etc.) that can be abused to reach some privileged operation, potentially 
leading to LPE and other vulnerabilities. This served us to be more strict about the detected drivers regarding their potential 
abuse, focusing only on the rich-featured ones.

import "pe"

import "hash"

rule susp_risk_vuln_driver

{

    meta:

        description = "Detects new potentially vulnerable (at-risk) 64-bit signed drivers 
with easy-to-abuse capabilities, loldrivers excluded"

        author = "Jiri Vinopal (jiriv)"

    strings:

        $IoCreateDevice = "IoCreateDevice" ascii wide

        $IoCreateDeviceSecure = "IoCreateDeviceSecure" ascii wide

        $api_capa_a1 = "ObCloseHandle" ascii wide

        $api_capa_a2 = "ZwTerminateProcess" ascii wide

        $api_capa_a3 = "ZwSuspendthread" ascii wide

        $api_capa_a4 = "ZwOpenProcess" ascii wide

        $api_capa_a5 = "ZwOpenThread" ascii wide

        $api_capa_a6 = "ZwOpenProcessTokenEx" ascii wide

        $api_capa_a7 = "ZwAdjustPrivilegesToken" ascii wide

        $api_capa_a8 = "ZwDeleteFile" ascii wide

        $api_capa_b1 = "ZwCreateFile" ascii wide

https://github.com/VirusTotal/yara
https://virustotal.readme.io/docs/retrohunt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iocreatedevice
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdmsec/nf-wdmsec-wdmlibiocreatedevicesecure
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        $api_capa_b2 = "IoCreateFile" ascii wide

        $api_capa_b3 = "ZwOpenSymbolicLinkObject" ascii wide

        $api_capa_b4 = "ZwDeleteKey" ascii wide

        $api_capa_b5 = "MmSystemRangeStart" ascii wide

        $api_capa_b6 = "ProbeForRead" ascii wide

        $api_capa_b7 = "ProbeForWrite" ascii wide

        $api_capa_b8 = "MmMapIoSpace" ascii wide

        $api_capa_b9= "ZwMapViewOfSection" ascii wide

        $api_capa_b10 = "IoAllocateMdl" ascii wide

        $dacl1 = "(A;;GRGW;;;WD)" ascii wide

        $dacl2 = "(A;;GWGR;;;WD)" ascii wide

        $dacl3 = "(A;;GA;;;WD)" ascii wide

        $dacl4 = "(A;;GRGW;;;BU)" ascii wide

        $dacl5 = "(A;;GWGR;;;BU)" ascii wide

        $dacl6 = "(A;;GA;;;BU)" ascii wide

        $dacl7 = "(A;;GRGW;;;AU)" ascii wide

        $dacl8 = "(A;;GWGR;;;AU)" ascii wide

        $dacl9 = "(A;;GA;;;AU)" ascii wide

    condition:

        // Detect PE

        uint16(0) == 0x5a4d and uint16(uint32(0x3c)) == 0x4550 and

        // Detect 64-bit Windows drivers

        uint16(uint32(0x3C) + 0x5c) == 0x0001 and uint16(uint32(0x3C) + 0x18) == 0x020b and

        (($IoCreateDevice and not $IoCreateDeviceSecure) or ($IoCreateDeviceSecure and any 
of ($dacl*))) and

        (2 of ($api_capa_a*) or 6 of ($api_capa_b*)) and

        (pe.number_of_signatures > 0 and for all i in (0..pe.number_of_signatures -1):

            (pe.signatures[i].verified and not pe.signatures[i].subject contains 
"WDKTestCert")) and

        not (

            // Exclude all LOLDrivers "https://github.com/magicsword-io/LOLDrivers/tree/
main/drivers"

            hash.md5(0, filesize) == "003dc41d148ec3286dc7df404ba3f2aa" or

            hash.md5(0, filesize) == "0067c788e1cb174f008c325ebde56c22" or

            ...

            )

}

This YARA rule was further improved to cover scenarios such as using IoCreateDeviceSecure with strong DACL but 
without the FILE_DEVICE_SECURE_OPEN flag, which is part of the device characteristics (the same security settings are 
not applied to the whole device’s namespace) [11].

The detected drivers were further processed to eliminate those whose signatures caused verification errors (using Sigcheck 
and SignTool [12, 13]) or explicitly set a strong DACL in the configuration file (INF AddReg directive) [14] – despite the 
fact they can still be used in BYOVD scenarios. Duplicates of the same driver (different versions) were filtered out with 
mass processing of the PE version information and using the imphash comparison [15].

Our primary tool for this was the Sigcheck utility as it enables the mass processing of the detected drivers, providing all 
information needed for further post-processing (signature verification + revocation status, imphash, PE version info) in 
CSV file format.

.\sigcheck64.exe -c -h -nobanner -w output.csv .\drivers\

Still, the SignTool utility is helpful for further signature verification by using the x64 kernel-mode driver signing policy.

.\signtool.exe verify /kp .\drivers\driver.sys

The resulting CSV output with all the necessary information was visualized and post-processed using the Timeline Explorer 
tool [18], which helps to quickly filter, sort, and group information as needed.

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/specifying-device-characteristics
https://learn.microsoft.com/en-us/sysinternals/downloads/sigcheck
https://learn.microsoft.com/en-us/windows/win32/seccrypto/signtool
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-addreg-directive
https://cloud.google.com/blog/topics/threat-intelligence/tracking-malware-import-hashing/
https://learn.microsoft.com/en-us/sysinternals/downloads/sigcheck
https://learn.microsoft.com/en-us/windows/win32/seccrypto/signtool
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Figure 4: Using the Timeline Explorer tool for post-processing detected drivers’ information.

Hunting results

The above-described YARA rule was first used against the up-to-date LOLDrivers database. As of June 2024, this database 
contains more than 1,800 Windows drivers (both known-malicious and known-vulnerable drivers), of which 924 are 64-bit, 
signed drivers belonging to the known-to-be-vulnerable group. Using the YARA rule, we were able to confirm that 90% of 
those 924 drivers are accessible by non-privileged users, and approximately 20% passed through the more strict rule, 
filtering only those containing easy-to-abuse capabilities (kernel functions).

This relatively strict YARA rule (detecting non-privileged user accessible, 64-bit, signed drivers containing easy-to-abuse 
capabilities, avoiding LOLDrivers) was used with VT Retrohunt over a one-year period from June 2023 to June 2024, 
resulting in initial detection of about 22.5k Windows at-risk drivers.

Further post-processing of those 22.5k drivers resulted in 4.4k of them passing through signature verification, where 
approximately 1.9k of them survived the de-duplication process (via PE version information and imphash comparison).

Even if the driver is initially detected by the created YARA rule and passes through all the processing, it does not 
necessarily mean that the driver is vulnerable. Only if we can abuse the driver’s capabilities to perform some privileged 
operation can it be considered vulnerable. For this, manual verification (reversing with IDA [16] or a similar disassembler) 
and the creation of a PoC are always needed. Despite the time-consuming procedure, which is barely possible to perform 
reliably on 1.9k drivers (and out of the scope of this research), we found the verification dangerously easy just by going 
through the first few dozen of them, resulting in newly discovered vulnerable drivers that were responsibly reported. 
Because of the overwhelming number of potential at-risk drivers, we decided to share our findings to provide some 
mitigation, still demonstrating one such example that underlines our results.

PRACTICAL DEMONSTRATION
One of the newly discovered vulnerable drivers, which we responsibly reported, was an anti-rootkit module used by 
Dr.Web products [19]. The reported vulnerability was patched, and the public disclosure tracked under the 
BDU:2024‑02836 was assigned a high severity 8.8 base score (CVSS 3.0) [20]. The assigning of an industry-standard CVE 
identifier to this vulnerability is currently in progress (June 2024).

The vulnerable component of Dr.Web products is a 64-bit, valid-signed Windows kernel device driver. Unfortunately, this 
driver has no name and description, but it is usually dropped to disk with a name such as ‘dwt-6088-1976-26975aba.sys’ or 
‘dwt-2444-2348-9cc4e5df.sys’.

https://hex-rays.com/
https://www.drweb.com/
https://bdu.fstec.ru/vul/2024-02836
https://bdu.fstec.ru/vul/2024-02836
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Figure 5: Vulnerable component of Dr.Web products.

The original ‘pdb’ path still reveals the name ‘dwshield_x64.pdb’ (dwshield.sys).

Figure 6: The original ‘pdb’ path revealing the name ‘dwshield_x64.pdb’.

We have found several vulnerable versions of this driver:

MD5 hash SHA-256 hash
4cf84abc9e2d9a85b42c98a6b91bb011 a97fd477edae5dc63b6c8cf71d1602099bb48ee0804373e51bc6961fb0db6d5b

c142d4ce995b37e43e4ff76b6920fc5d c452ae27e934c0a411a840dc8e824ccaeaf22fdfadf9f3072c1c162203a3fc2d

20a385e458b520a7a3decd6157f80c75 ca671b88f6476caa1b55cc4c6d1aef5fef5c546a17fff5b01d5d5a1c53516650

adef75aefdfc84f36fd349c5c2ccda26 a8b6d1426ad2f2ac9e3e03751cbee8f4f4cf0f674f4e09432ba1b92c36d80e4d

e44ab7b12eabc03dad15a882bb1dd8e2 5fb9b947026afab01076f35d9626e996b108af3fe76e0d0dd61eb8177a3d4075

7db0a75f8d6b7b53418a6652234ff595 71542902677be33595419924a33f6dcd6b21080fd177b1c9a6a65dab59ed93cb

Among the affected products that were confirmed to be exploitable are Dr.Web Security Space [21], Dr.Web KATANA [22] 
and Dr.Web CureIt [23], where in all cases, the vulnerability in the driver component leads to local privilege escalation 
(LPE), arbitrary read/write kernel/user mode access and arbitrary process termination.

Vulnerability description
The vulnerable driver does not explicitly specify the DACL (non-privileged user access allowed) for the created device 
(using the IoCreateDevice function) but implements different protection mechanisms to restrict access to the driver’s 
device. All these protections can be bypassed.
The driver creates a device with an auto-generated name but also sets up a symbolic link (using IoCreateSymbolicLink) 
with a randomly generated name (different on each driver load) that can be used to obtain a handle to the device from 
user‑mode. As the device’s symlink name is always quite unique and rare (a 16-character hexadecimal string, e.g. 
46ed8954975a9788), it can be brute-forced by enumerating all symlink names (via QueryDosDeviceA) and finding the 
desired one.
The driver implements a digital signature check of the process that tries to obtain a handle for the driver’s device. To 
bypass this protection, we need to impersonate some of the Dr.Web components that are valid-signed and allowed to 

https://products.drweb.com/win/security_space/?lng=en
https://products.drweb.com/home/katana/?lng=en
https://free.drweb.com/cureit/?lng=en
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iocreatesymboliclink
https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-querydosdevicea
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communicate with the driver. Usually, code-injection techniques can be used to achieve this, but as our target is a security 
product that successfully blocks the majority of them, we need to come up with a different solution.
Digging deeper, we were able to find DLL side-loading vulnerabilities in a few Dr.Web components that are allowed to 
communicate with the driver (valid-signed) and used them to bypass the digital signature protection mechanism:

Dr.Web component SHA-256 hash Side-loaded DLL
dwservice.exe 6e60fdcabdfd74274a7e2da62315fba484ef8c587bafbb3c39cdeb741a39b79c wldp.dll
spideragent.exe ba2a0cba80bb02e6a4fa7a5dca6045804e54d14839ef33af1168a053014719c5 uxtheme.dll

This way, we were able to bypass the driver’s access restrictions and proceed with different IOCTLs that led to LPE, 
arbitrary RW kernel/user mode access, and arbitrary process termination.

IOCTL Functionality
0x22E076 Arbitrary kernel/user mode memory read
0x22E078 Arbitrary kernel/user mode memory write
0x22E044 Obtaining arbitrary full access process token handle
0x22E024 Obtaining arbitrary full access process handle
0x22E034 Obtaining arbitrary full access thread handle
0x22A02C Arbitrary process termination

The main product, Dr.Web Security Space, is a full-featured antivirus and implements another protection to restrict access 
to the vulnerable driver.
First of all, the installed components are different and no longer vulnerable to DLL side-loading. Still, we can bypass the 
digital signature check by deploying a different vulnerable version of dwservice.exe (copied from the Dr.Web KATANA 
product) and using it to side-load the wldp.dll (or a combination of spideragent.exe + uxtheme.dll).
Another protection mechanism added by Dr.Web Security Space is ‘module caching’. DLLs that Dr.Web components can 
load are verified if they are signed by trusted authorities and added to the ‘module cache’. The Dr.Web filter driver monitors 
changes to these files in the cache. However, we were able to bypass this protection by finding a bug in the filter driver 
logic that monitors the changes to files already in the module cache and, as a result, skipping the verification.
By running the Dr.Web component vulnerable to DLL side-loading (dwservice.exe) to side-load an original valid-signed 
DLL (wldp.dll) from the user-accessible location, the DLL is successfully verified and put into the module cache. 
Deleting the original signed DLL and moving our custom implanted DLL (with the same name, wldp.dll) to the same 
location will not result in a new file creation or data changes that the Dr.Web filter driver actively monitors (note, it is 
important to move the custom implanted DLL and not copy it because of different system behaviour – only the NTFS 
metadata change). The second execution of the vulnerable component side-loads our custom implanted DLL, skipping the 
verification and, with that, bypassing the protection.
By chaining all of the above-mentioned vulnerabilities, we were able to reach the LPE even in Dr.Web Security Space.

Figure 7: PoC: LPE in the Dr.Web Security Space product.
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The core of the vulnerability in the Dr.Web anti-rootkit driver is not as complex as the implemented above-mentioned 
protection mechanisms and can easily be addressed. Using the more secure kernel function IoCreateDeviceSecure 
allows explicit setting of a strong DACL that can be used to restrict the device access to only high-privileged accounts 
(Administrator, System). Specifying the FILE_DEVICE_SECURE_OPEN device characteristic ensures the propagation of 
DACL to the whole device namespace. The last step is the repairing of the bug in the Dr.Web filter driver logic responsible 
for the reliability of the module caching protection.
By demonstrating the practical vulnerability of a well-known security product, we underscore the fundamental idea that if a 
design flaw exists within the driver itself, it is only a matter of time and attacker ingenuity before security mechanisms are 
bypassed.

MITIGATION & REMEDIATION
Following all that has been described in previous sections, it is obvious that crossing the security boundary is the main 
aspect when it comes to deciding whether a certain driver’s bug can be considered a vulnerability. The combination of a 
non-privileged user-accessible driver with a demonstrable abuse of its capabilities to commit some privileged operations 
makes the driver vulnerable.
Whenever access to the driver is allowed, even for non-privileged users, the developers must be absolutely sure that none 
of its functionalities that can be used to reach some privileged operation are exposed to them. This can be very problematic 
in a lot of cases as already the idea behind the need to have a kernel module comes from the requirement of certain 
functionality that can be reached only from the kernel. Once this functionality is exposed to other user-mode components 
of certain products, it can also be abused by others in a way that is certainly out of the developer’s initial intention.

It can be relatively easy to track the driver’s user-mode accessible functionalities from its first release, but it gets harder as 
time passes and new versions of the driver are released, enriching the driver with other capabilities and functionalities.

As we already proved, in many cases, the accessibility restriction is lost in time and, sooner or later, some of the latest 
added user-mode-exposed functionality is abused.

To address this issue, there are a few relatively simple steps that can be taken to remediate the resulting vulnerability:

1.	 Always ensure that none of the driver’s functionalities that allow privileged operations are exposed to a 
non‑privileged user.

2.	 Use the ‘secure’ version of the function to create the driver’s device IoCreateDeviceSecure instead of the 
‘non-secure’ IoCreateDevice and combine it with a strong DACL (SDDL) to restrict the access only to 
high‑privileged accounts (Administrator, System), e.g. D:P(A;;GA;;;SY)(A;;GA;;;BA). Usually, whenever 
developers follow best practices, certain product components that are allowed to communicate with the driver are 
already running under the System service, so there is no need to expose the accessibility to a non-privileged user.

3.	 The previous step can be replaced by defining the DACL either directly in the registry or via the configuration file 
(INF AddReg directive).

4.	 Whenever a certain driver’s device is being created, and it is possible to do so, be explicit about the device 
characteristics and set the FILE_DEVICE_SECURE_OPEN flag. This ensures the propagation of DACL to the whole 
device namespace.

Going through some of the newly detected 1.9k drivers accessible by non-privileged users, we quickly noticed that those 
that usually belong to well-known security products attempt to mitigate potential abuse using custom protection 
mechanisms. We examined the common techniques used by such products, which, in most cases, served primarily as an 
added accessibility restriction.

Even though the implemented custom protections complicate the driver’s exploitation of the fundamental design flaw in its 
accessibility, in general, it is merely an obstacle that can be overcome with some ingenuity.

The table below shows some of the most common mitigation techniques usually implemented by security products, 
together with their example bypasses.

Security product mitigation Example bypass
Digital signature check of the process’s main module Code injection techniques, DLL side-loading
IOCTL registration, a specific data structure used as a 
client‑registration Reverse engineering the data structure

PID/TID registration Reverse engineering the registration logic
First-only registration Race condition
Randomly generated device/symbolic link name Brute-force

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-addreg-directive
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Security product mitigation Example bypass
IOCTL code sorting via required access permissions (default, 
only a developer design)

Abusing read-only permission to commit write 
operation

High-privilege check -
Encoding of the IOCTL codes and transferred data Reverse engineering the encoding logic

As the implementation of custom protections that should mitigate the potential abuse of a driver’s accessibility appears to 
be less effective than it should be, we are left with remediation. Unfortunately, even though we remediate the driver’s 
vulnerability (crossing the security boundary) with its access restriction, this driver (‘not vulnerable’) still features some of 
the kernel-restricted capabilities that can possibly be abused using the BYOVD technique.

The other problematic area is what actually happens with a reported vulnerable driver. In the best scenario, the vulnerability 
is patched (typically just by setting the DACL, rejecting non-privileged users’ requests), the certificate is revoked (not so 
often), and a new version of the driver is released. But as Microsoft Windows allows the loading of kernel drivers with 
signatures whose certificates are expired or revoked, there is no real obstacle to prevent attackers from continuing to abuse 
the reported vulnerable driver.

One promising protection available since the Windows 11 2022 update is the Microsoft vulnerable driver blocklist [24]. The 
vulnerable drivers are blocked by default using Hypervisor-Protected Code Integrity (HVCI) [25]. However, this approach 
is only effective if the vulnerable driver is known in advance and part of the blocklist. Note that the blocklist is typically 
updated 1-2 times per year.
Furthermore, not all drivers identified as vulnerable in the LOLDrivers project are included in Microsoft’s vulnerable driver 
blocklist. Once a vulnerable driver is publicly disclosed, it is very likely to be added quickly to the LOLDrivers database. 
Even if Microsoft decides to include such a driver in its blocklist, attackers have a window of at least six months to exploit 
it before the blocklist is updated.

It appears that a more comprehensive solution is needed to protect against vulnerable drivers and their exploitation. 
Preventing the loading of drivers signed with revoked or expired certificates and using Microsoft’s vulnerable driver 
blocklist would be far more effective than relying solely on the blocklist.
Such a solution is unlikely to be implemented soon. Therefore, we can expect that threat actors will continue to exploit both 
known and yet-to-be-discovered vulnerable drivers.

CONCLUSION
This paper presented the findings of our research, focusing on the vulnerable Windows drivers. We revealed that the 
majority of known vulnerable drivers share some of the most common design flaws, resulting in non-restricted access, even 
for the non-privileged user. The crucial condition when the driver can be considered vulnerable begins not with the bug 
itself but with its ability to cross security boundaries. In other words, the combination of a non-privileged user-accessible 
driver with a demonstrable abuse of its capabilities to commit some privileged operations is what makes the driver 
vulnerable. These vulnerabilities are often not complex and can easily be addressed just by properly restricting the access 
to the driver’s device (setting a strong DACL) and propagating the same restriction to the whole device namespace.
Using the same methodology, we put together the common design flaws that lead to non-privileged user-accessible drivers 
and created a YARA rule to conduct a mass hunt for new drivers that may be vulnerable, uncovering thousands of 
potentially at-risk drivers.
Additionally, we examined how some of the newly detected at-risk drivers that belong to well-known security products 
attempt to mitigate abuse and provided some simple common bypasses that underline the non-effectiveness of the 
implemented mitigations.
By demonstrating the practical vulnerability of a well-known security product, we underscored the fundamental idea that if 
a design flaw exists within the driver itself, it is only a matter of time and attacker ingenuity before security mechanisms 
are bypassed.
A more comprehensive solution is needed to protect against vulnerable drivers and their exploitation. Preventing the 
loading of drivers signed with revoked or expired certificates and using Microsoft’s vulnerable driver blocklist would be far 
more effective than relying solely on the blocklist. Such a solution is unlikely to be implemented soon. Therefore, we can 
expect that threat actors will continue to exploit both known and yet-to-be-discovered vulnerable drivers, and we should 
keep monitoring this issue.
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