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ABSTRACT
As an increasing number of automated malware analysis systems 
become mainstream, the emphasis on the relevance of the data 
extracted from the analysis task increases. Conceptually, 
automated malware analysis systems provide information about 
a sample and also identify modifi cations to a computer system 
induced by the sample. Traditionally, the focus of such analysis 
systems has primarily been on monitoring process, disk and 
network-level behaviour with varying levels of granularity. 
While providing a varied set of information, these systems offer 
limited ability to identify and classify rootkits. The very nature 
of rootkits makes them hard to classify (and in some cases even 
detect) using these scanning techniques. Kernel memory 
modifi cations can indicate that samples are trying to conceal 
information or hijack execution paths, thus exhibiting malicious 
behaviour. In an environment with a large throughput of analysis 
jobs, the need arises for an effi cient and accurate way to identify 
such complex threats that could otherwise be misclassifi ed or 
pass unnoticed. We present a system for identifying rootkit 
samples that is based on automated analysis. In this system we 
recognize the performance and memory constraints of a high-
throughput environment; instead of monitoring modifi cations to 
the whole memory, we capture changes to data structures and 
memory regions that, on a Microsoft Windows operating system, 
are known to have been targeted by rootkits in the past. We 
explain the reasons behind the design decisions and how they 
have refl ected on identifying different classes of rootkits. In our 
research, we also explore the effectiveness of using this model as 
a standalone component to identify malicious behaviour. In order 
to do this, we run a large set of known clean versus malicious 
fi les to identify traits that could be indicative of malicious 
activity.

1. INTRODUCTION
The volume of malware is increasing exponentially. The number 
of samples seen by anti-virus vendors each day now exceeds the 
personnel resources available to analyse and classify them. In 
order to reduce the workload, automated analysis systems are used 
to identify, classify and cluster samples based on their malicious 
behaviour. Using static (examining fi le attributes) and dynamic 
(behavioural) techniques, these systems examine each sample, and 
usually make a reasoned assumption about its maliciousness.

Kernel-mode rootkits pose a particular problem when it comes to 
automated analysis. A rootkit is ‘malicious software that allows 

an unauthorized user to maintain access to a computer by 
concealing programs and processes, fi les, or data from the 
operating system’ [1]. Kernel-mode rootkits are a sub-class of 
rootkits that introduce changes in the kernel memory of an 
operating system to conceal or manipulate information provided 
by the kernel itself. Examples of kernel-mode rootkits include 
Necurs [2], TDL [3] and Turla [4]. A rootkit’s ability to hide in 
the operating system increases the likelihood that automated 
analysis systems will fail to produce any intelligible data. Tools 
such as GMER [5] can be used to detect rootkit activity, but scan 
times can be long and the tools can be cumbersome to automate. 
In an environment where the throughput of samples is in the tens 
of thousands, speed of analysis is certainly an issue.

To create an automated analysis system that can detect kernel 
mode rootkits, it is necessary to create a reliable method of 
identifying rootkit-like behaviour that is effi cient and fast to keep 
analysis times to a minimum. We propose a system that fulfi ls 
these criteria, based on the Cuckoo Sandbox [6] modifi ed to use 
the Sophos AV engine. Using the engine, selected areas of the 
kernel are extracted and saved to create ‘Before’ and ‘After’ 
snapshots to identify the changes made to the kernel. By 
examining these changes it is possible to identify rootkit activity. 

2. SYSTEM SPECIFICATIONS
We use a Windows 7 SP1 x86 virtual machine in a VirtualBox 
virtualization environment, version 4.3.10. The kernel memory 
differencing is implemented as part of a Cuckoo Sandbox 
installed on Ubuntu OS version 12.04.

The guest virtual machine has the Sophos anti-virus engine 
installed by default. Detections are reported as part of the 
analysis information and sent to the host component. Once a 
sample executes, a kernel memory scan is started by the analyser 
inside the guest machine. In addition to scanning for known 
malware traits in kernel memory, the scan dumps specifi c kernel 
structure information to disk in JSON format. (More on this data 
is explained in Section 2.1.) This data is saved to the server 
module with other standard behavioural analysis information as 
part of each analysis. 

In order to capture kernel memory changes made by the sample, 
we need a baseline snapshot of the kernel data before execution 
of the sample (the baseline data). The baseline data is associated 
with a virtual machine snapshot. Each snapshot has a unique 
identifi er and baseline data. The baseline data is generated by 
performing a dummy analysis with no fi les submitted. The 
results of the analysis are tagged as baseline data, and 
comparisons are made with data obtained from subsequent 
analysis tasks.

Cuckoo

We utilize the Cuckoo Sandbox as a base framework for 
automating sample analysis. Cuckoo Sandbox is an open-source 
malware analysis system [6]. It supports running different types 
of fi les using different virtualization technologies. 

Cuckoo Sandbox’s modularity makes it ideal for our purposes. It 
can be split into a host-side management component and a 
guest-side component running in a virtual machine (VM). The 
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host-side component is responsible for the core execution of the 
analysis task: starting a VM, preparing an analysis task for 
execution (packaging the guest-side components that run inside 
the VM to collect analysis information), collecting the raw data 
resulting from the analysis, processing it, and fi nally running a 
set of signatures and reports to present the results. The 
guest-side component runs selected modules packaged by the 
host-side component and returns the results to it [6]. 

Cluster requirements
In building an effi cient automated analysis system capable of 
processing high sample volumes, both time and stability are key 
requirements. We did not want the time taken to complete a job 
to extend beyond four minutes. This time interval captures the 
total time from the sample submission to the report generation. 
By adhering to this requirement we could be confi dent that our 
system would work effi ciently in a cluster environment. 

We can split the overall task into three main time frames:

1. Preparation and initialization – starting the VM and 
sending the sample to the VM for execution and analysis.

2. Analysis – running the sample in the VM, returning the 
raw data for processing, and powering off the VM.

3. Processing and reporting – kernel memory data 
differencing and executing the signatures against the 
processed results.

Using generic anti-rootkit tools inside the VM was not feasible 
due to the time it takes to complete a scan (minutes with some 
tools), the inconsistent formats of the log fi les produced by the 
various scanners, and the footprint some of them have on the 
kernel memory, which taints the collected information. A tool 
like GMER [5], for example, could take more than two minutes 
to perform an exhaustive scan.

We measured the time taken for the kernel memory data to be 
produced with our additions, and it added 10–15 seconds to the 
standard analysis time. The default time taken from the point the 
VM stops until the report is produced can be between 20 and 80 
seconds. The time is dependent on the amount of processing 
performed on the raw results retrieved from the job, the number 
and performance of the signatures that are run on the results, 
and the type of report to be produced. On evaluating our 
signatures and the differencing mechanism, we found that the 
added time is between one and two seconds.

Given the minimal amount of time added, we decided to 
maximize utility. We used a default analysis timeout of 120 
seconds and set our kernel memory scan to start after 105 
seconds. By using those intervals we allowed more time for the 
sample to run and make changes to kernel memory and disk so 
that the changes would be picked up during the scan. We are 
aware that this setting could be costly in a cluster environment, 
since many samples do not execute in automated systems and 
thus we would be wasting the 120 seconds. The timeout and scan 
start settings can be altered to reduce the delay before the scan. 
The benefi t for us was that the feature did not add a signifi cant 
time delay in producing the necessary information. 

The overall analysis task time from sample submission to report 
generation using VirtualBox on a standalone machine took 

between three and four minutes. This included the initialization, 
analysis and reporting time. This length of time is acceptable in 
a cluster environment. 

2.1 Usage of the Sophos AV Engine

The requirements for the kernel examination component of this 
system are:

• A presence in the kernel.

• The ability to dump areas of kernel memory selected at 
runtime.

• The ability to write dumped memory to a JSON fi le.

The decision to use the Sophos AV engine to gather the 
required data was based on it meeting the above requirements. 
The Sophos AV engine is already capable of dumping and 
scanning kernel memory, negating the need to design and 
implement new software to do so. Since we were already using 
the Sophos AV engine to scan for malicious traits during 
analysis, we decided to leverage its presence to gather the 
desired information.

Selecting the areas of the kernel to examine

To select which areas of the kernel to examine, it is necessary to 
understand what effect kernel-mode rootkits have on the kernel. 
For a kernel-mode rootkit to have a presence in the kernel it 
must load a driver. The driver will then modify various functions 
or pointers to hide malicious activity from the user, other 
programs, and sometimes from itself.

Drivers

A driver object represents an individual driver in the system [7]. 
The DRIVER_OBJECT structure contains information about a 
driver including its name, initialization routine, unload routine, 
a pointer to the loaded driver image, a pointer to its device 
object, and its MajorFunction dispatch table.

When a rootkit loads its driver, a DRIVER_OBJECT structure 
is created for it. The DriverStart fi eld points to the loaded image 
of the rootkit driver. When the initialization routine is executed, 
as well as creating its own driver object, a rootkit driver can 
modify the driver objects of other drivers.

To track changes, driver objects and device objects are 
enumerated, and data from each is extracted and dumped. For 
speed and memory effi ciency, only specifi c fi elds from the 
structures are dumped.

Modules
A kernel module is a loaded image fi le that resides in kernel 
address space. The address space typically comprises drivers 
and the Windows kernel. Currently, the information dumped to 
the JSON fi le is minimal, consisting of the module name, image 
base and module size. By comparing before and after snapshots 
of the module list, it is possible to tell which modules have been 
added (indicating the possible presence of a new driver), and 
which modules have been changed. Changes to the image base 
or size of a module suggest that the module has been replaced, 
thus indicating the presence of a rootkit. 
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System Service Dispatch Table (SSDT)

The System Service Dispatch Table (SSDT) is an array of 
function pointers that resides in kernel address space. The entries 
in the array reference core functions exported by the Windows 
kernel (e.g. ntoskrnl). These functions provide an interface for 
user-mode programs to perform tasks such as opening a fi le or 
querying a directory. By modifying the address of a function 
pointer or the code that an entry points to, rootkits can hook a 
function and control the data that is passed to and from it.

To detect changes to the SSDT, the entire table is dumped. The 
addresses in the table are checked (during processing) against the 
ones saved in the baseline snapshot to detect any hooks. Typically, 
when the code of a function is hooked, an assembly language 
‘jmp’ instruction is written to the beginning of the function which 
jumps to hook the code. To detect such code hooks, the fi rst eight 
bytes of each function are also dumped, to enable the processing 
module to compare them against the baseline snapshot.

Interrupt Descriptor Table (IDT)

The IDT is a processor-specifi c array that has 256 entries. Each 
entry (an interrupt vector) in the array contains information about 
its corresponding interrupt handler. Interrupts are operating 
system conditions that divert the processor to code from the 
normal fl ow of execution of a program [8]. These interrupts are 
called (using the INT x assembly language instruction) by both 
hardware and software. As defi ned by Intel, the fi rst 32 entries are 
reserved for exceptions [8] (i.e. INT 0 - Division by 0), and the 
rest are ‘user’ defi ned. The Windows operating system and various 
core system drivers also install interrupts, but there remain spare 
entries that rootkit developers can use to their advantage.

The entire IDT for each processor is dumped to the JSON log to 
enable us to fi nd new IDT additions and hooks.

Callbacks

A callback is a function that is executed on completion of a 
specifi c event. The Windows operating system provides routines 
that allow driver writers to register callbacks on a number of 
events that rootkit writers can exploit. The routines that are of 
most interest are:

• CreateProcessNotify – triggered when a new process is 
created

• LoadImageNotify – triggered when a new image is loaded

• CreateThreadNotify – triggered when a new thread is 
created

• CmRegister – triggered when an operation is performed on 
the registry.

A rootkit registering any of these callbacks will be able to hide 
processes, images, threads or registry entries upon creation.

The callbacks of each type are enumerated and added to the 
JSON log.

Disk information

Rootkits reside in kernel address space, but bootkits begin 
outside the operating system. Their execution begins in either a 

modifi ed Master Boot Record (MBR) or a modifi ed Volume 
Boot Record (VBR). A common task of a bootkit is to load a 
driver, typically from hidden storage at the end of the disk, 
which may proceed to hide the modifi ed MBR/VBR. As the 
bootkit executes before the operating system is fully started, it 
can bypass detection by security software.

To detect the presence of a bootkit, checksums of the MBR and 
VBRs for all partitions are written to the JSON log. In addition 
to the initial boot code, the MBR also contains the disk’s 
partition table [9]. The entire partition table is also dumped and 
written to the JSON log so that changes in partition location/
size (also indicative of a hidden fi le system) can be detected.

2.2 A processing module

Cuckoo’s processing modules are Python scripts that analyse the 
raw data from the guest-side component of the sandbox and 
append the result to a global data structure [6]. To identify 
changes in the kernel data we had to add a custom processing 
module that would compare the data received from the analysis 
to the baseline data associated with the guest machine. Since 
new analysis tasks are started from the same snapshot, we do 
not encounter noise caused by ASLR in kernel memory space. 

After differencing both data structures and identifying any new 
changes, the processing module produces two dictionary 
objects. One object encompasses all the changes identifi ed (the 
diff object), while the second object includes all the information 
retrieved from the analysis task (the task object). Both objects 
are then appended to the global container which holds 
information produced by other processing modules. The task 
object will include information about driver objects, modules, 
kernel callbacks, the system service dispatch table, the 
interrupt descriptor table and hashing of the master boot record, 
along with information about each partition defi ned in the 
partition table. 

The diff object will show whether information has been 
changed, added or deleted. The comparison mechanism is 
agnostic to the number or name of the data; it assumes both 
objects are JSON formatted. Post comparison, noise is cancelled 
from the diff object. We identifi ed noise heuristically and used a 
list approach to identify driver objects and modules that we do 
not include in the diff output. We decided to exclude noise 
coming from the following modules, since it was almost always 
due to paging in: 

• \windows\system32\autochk.exe 

• \systemroot\system32\drivers\kmixer.sys

• \systemroot\system32\drivers\spsys.sys

• \systemroot\system32\drivers\asyncmac.sys

• \windows\system32\devobj.dll

• \windows\system32\setupapi.dll

Some drivers will experience the creation of devices once the 
execution starts, while others will change DEVICE_OBJECT 
addresses. The device object attached to \Driver\usbhub named 
‘\Device\_HID00000000’ gets a different address each time the 
job starts. The same problem occurs for \Driver\mouclass, 
which is the class driver for all mouse devices. Namely, a 
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‘\Device\PointerClass’ DEVICE_OBJECT gets a different 
address. This different DEVICE_OBJECT gets attached to the 
list of devices of \Driver\mouhid and \Driver\hidusb.

We also found less common cases of \Driver\swenum and 
\Driver\asyncmac having devices attached to them, so we also 
fi ltered noise coming from them.

The drivers from which noise was fi ltered were:

• \Driver\mouhid

• \Driver\usbhub

• \Driver\mouclass

• \Driver\hidusb

• \Driver\umbus

• \Driver\asyncmac

There was noise introduced in the SSDT information returned 
due to paging of certain portions of the ntoskrnl.exe. We 
excluded all changes introduced due to paging out, and tagged 
data that had been paged in.

2.3 A driver analysis package

Cuckoo uses separate packages to instruct the analyser inside 
the guest machine to conduct the analysis procedure [6]. By 
default, Cuckoo provides packages to handle running dynamic 
link libraries (DLL), PDF, VBS and DOC fi les, among other 
packages. Cuckoo Sandbox is unable to process driver fi les for 
analysis by default. Since kernel-level malicious alteration is 
normally introduced by a malicious kernel module, we wanted 
the ability to run driver fi les alone to capture their pure 
behaviour. 

The driver analysis package (sys package) gets invoked if the 
analyser identifi es that the fi le is of native type. Since our guest 
machine is 32-bit, we restricted the analysis package to 32-bit 
driver fi les.

The sys package will invoke Sc.exe, which is provided in the 
Windows Resource Kit to register the service. This is done by 
running the command:

sc create newservicebinPath=<C:\path_to_fi le.sys> 
type=kernel start=auto error=normal 

The default parameters used to create the service are:

• Servicename=newservice

• Type=kernel

• Start=auto

• Error=normal 

Each parameter can be changed by the user when a sample is 
submitted for analysis. 

‘Sc create’ is the equivalent of calling the CreateService Win32 
API. 

The sys package supports two ways to execute the driver fi le. 
The default method uses the NtLoadDriver Windows API. The 
other method for execution is using sc.exe by running the 
command:

sc start newservice

This is equivalent to calling the StartService Win32 API. 

Using sc.exe, which is a command-line interface to the service 
control manager, takes care of the prep work necessary to 
register a service in the service control manager database.

‘sc create’ creates the service registry key under HKLM\System\
CurrentControlSet\services, which both NtLoadDriver and 
‘sc start’ use to start the service. The sys package also provides 
an option to try both methods (sc.exe and NtLoadDriver) to 
check which one succeeds. 

2.4 The signatures
Cuckoo provides an easy way to interpret the results of an 
analysis by matching the results via signatures. The signatures 
will look for predefi ned patterns in the results and fl ag them if 
they are present [6]. Each signature has an attribute called 
‘severity’ that is used to defi ne how malicious a signature is. 
This allows a user to write purely informative signatures in 
addition to ones that indicate malicious behaviour. (We explain 
more about the values we assigned to each signature to build a 
malicious index in section 3.2.)

We have written a set of signatures in order to identify certain 
modifi cations to the kernel data retrieved from an analysis task. 
Table 1 shows the signatures and their defi nitions. 

2.5 The report
We built a template in the Django framework used by Cuckoo to 
show all the information we gathered from an analysis task. The 
report is split into seven tabs, with each tab showing the 
information specifi c to a certain category in the results data 
container. 

Kernel memory changes
This category shows the changes to the kernel introduced during 
the analysis. For example, in Figure 1 we can see that a new 
device was attached to \Filesystem\FltMgr and \Filesystem\
RAW. Also, the MBR SHA1 has been changed.

Drivers
This section shows a breakdown of all the driver objects found 
in kernel memory after running the sample. The breakdown also 
shows the I/O request packet handlers for each object. 

Modules
This section shows all modules found on the system by 
enumerating the linked list of modules starting with ntoskrnl.exe. 
For each module we get the name, address and size.

SSDT
This section shows the entries in the system service dispatch 
table. For each system call we get its address and starting bytes. 
This shows if any inline hooks are added to the system calls.

Callbacks
These sections show any callbacks installed by any drivers. For 
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Signature name Defi nition

generic_new_driver Flags driver objects that have been created in the analysis job.

generic_modifi ed_driver Flags changes to already existing driver objects. 

generic_deleted_driver Flags driver objects that have been deleted during an analysis job. 

generic_new_module Flags new modules created during an analysis job. 

generic_deleted_module Identifi es modules that were present before the analysis job took place, but which aren’t present anymore. 

generic_modifi ed_module Identifi es changes to properties such as size or address of a module. 

generic_ssdt_hook Identifi es changes to the system service dispatch table. Namely, changes in the address of any of the 
system calls (and fl ags them). 

generic_idt_hook Identifi es changes to the interrupt descriptor table of any processor. 

generic_new_callback Identifi es new driver-supplied callbacks. We check: 

• LoadImageNotify

• CreateThreadNotify

• CreateProcessNotify

• CmRegister (registry callbacks) 

generic_modifi ed_callback Identifi es changes to the table holding driver-supplied callbacks. 

generic_attached_device Identifi es new devices added to driver objects. 

generic_modifi ed_mbr Identifi es if the SHA1 checksum of the MBR has changed during the analysis. 

generic_modifi ed_vbr Identifi es if the SHA1 checksum of the VBR has changed during the analysis

generic_modifi ed_eod_size Identifi es if the size of the unformatted region beyond the fi le system at the end of disk has changed 
during the analysis. 

Table 1: Signatures and defi nitions.

Figure 1: A new device attached to \Filesystem\FltMgr and \Filesystem\RAW.
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each callback we list its type, the driver path that installed it, the 
address and SHA1 of the driver.

MBR

This section contains information available in the MBR and its 
SHA1. In addition to listing each partition’s detailed 
information by parsing the partition table entries, we also list 

the SHA1 of the VBR that this partition points to and the 
address of the last sector of the formatted fi le system and the 
last sector of disk. 

IDT

This section shows the descriptors in the interrupt descriptor 
table. For each descriptor we show its type and address.

Figure 2: Drivers.

Figure 3: Modules.
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3. RESULTS

Approach 

To assess the effectiveness of the system we tested three groups 
of samples. First, we picked a group of rootkits that were 
thoroughly documented and compared the results obtained from 
running the samples in our systems versus the behaviour 
documented by researchers. We also ran a set of known malicious 
driver fi les and a set of known clean driver fi les to analyse the 
results. Finally, we ran a set of known malicious standard 
executables and analysed the results obtained from them.

3.1 Known malicious rootkits

We picked a group of four well documented and researched 
rootkit samples to assess against our system. In cases where the 
report or blog article about the sample contained SHAs, we used 
those, otherwise we selected SHAs which we had previously 
analysed.

TDL

TDL has many variants. We tested a variant that employs an 
MBR infection technique to load its malicious driver. TDL4 is 
discussed thoroughly in [10, 11]. According to [10], on an x86 

Figure 4: SSDT.

Figure 5: Callbacks.
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system, the kernel-mode drivers are tasked with maintaining the 
hidden fi le system to store the bootkit components, injecting the 
payload into system processes, and performing self-defence. 
The dropper tries to employ the print spooler provider load 
method to load its driver in kernel memory. The sample we 
looked at employed direct writes to disk by getting a handle to 
PhysicalDrive0 using NtCreateFile, and then used a sequence of 
DeviceIOControls to write to the disk, as explained in [11].

The SHA of the sample we analysed was c46ac210e06aad56dda
12df3c0ccebb45108a745. Figures 8 and 9 show the changes 
introduced in the kernel. 

\Filesystem\RAW

{u’devicename’:u’(unnamed)’,

u’devobj_extension’:

 {u’deviceobject’: u’0x8482c030’},

u’driverobject’: u’0x83e1f1b8’,

u’deviceobject’: u’0x8482c030’,

u’attacheddevice’:

  {u’devicename’: u’(unnamed)’,

  u’devobj_extension’: 

   {u’attachedtoname’: u’(unnamed)’,

   u’attachedtoobject’: u’0x8482c030’, 

   u’deviceobject’: u’0x84895710’}, 

Figure 6: MBR.

Figure 7: IDT.
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  u’driverobject’: u’0x84a41c40’, 

  u’deviceobject’: u’0x84895710’,

  u’drivername’: u’\\FileSystem\\FltMgr’, 

  u’type’: u’FILE_DEVICE_DISK_FILE_SYSTEM’},

u’drivername’: u’\\FileSystem\\RAW’, 

u’type’: u’FILE_DEVICE_DISK_FILE_SYSTEM’}}]}

\Filesystem\FltMgr

{u’devicename’: u’(unnamed)’, 

u’devobj_extension’: 

  {u’attachedtoname’: u’(unnamed)’,

  u’attachedtoobject’: u’0x8482c030’, 

  u’deviceobject’: u’0x84895710’}, 

u’driverobject’: u’0x84a41c40’,

u’deviceobject’: u’0x84895710’,

u’drivername’: u’\\FileSystem\\FltMgr’, 

u’type’: u’FILE_DEVICE_DISK_FILE_SYSTEM’}}]}

What we observe from the changes to the driver objects are the 
changes seen in the DEVICE_OBJECTs relating to two drivers: 

\FileSystem\FltMgr and \FileSystem\RAW. If we examine the 
changes above, we see that a single device has been created and 
attached to the device pointed to by \Filesystem\RAW. That 
same device is now pointed to by \FileSystem\FltMgr. The 
DEVICE_OBJECT is represented as the one at address 
0x84895710. 

Another change is in the MBR SHA which indicates that the 
sample has written the malicious MBR to disk:

[{u’Original’:u’4b1713e6d41c71667f2af1681fad8be1e1011
63f’}, 

{u’Changed’: u’a192e0fa1db37219932b17ecdd23ad59e5c57e
f0’}]

Finally, there are changes in the SSDT that are the result of 
paging in parts of the kernel. These are marked as paged in during 
processing of the raw results. While they might not necessarily be 
system calls made by the sample, they could lie within a page that 
was paged in and thus show up in the differencing (see Table 2).

Figure 8: Changes introduced in the kernel.

Figure 9: Kernel memory changes.
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Gapz

Gapz is a bootkit that is famous for its sophistication. It was 
thoroughly analysed in [12]. Gapz comes as two different 
variants: an MBR infector and a VBR infector. The 
MBR-infecting version of the bootkit hijacks the boot process to 
hook the int 13 handler. The VBR-infecting variant only alters a 
DWORD: the ‘hidden_sectors’ value in the BIOS Parameter 
block of the VBR, which will instruct the VBR code to transfer 
control to a malicious loader instead of the standard IPL. The 
kernel-mode changes include writing blocks of its malicious 
kernel module to kernel memory in addition to hooks to IRP_
MJ_INTERNAL_DEVICE_CONTROL and IRP_MJ_

DEVICE_CONTROL handlers of the disk miniport driver. Both 
variants employ the same kernel-mode component.

The SHA of the VBR infector we used was 
1f206ea64fb3ccbe0cd7ff7972bef2592bb30c84. As documented 
in [12], this sample injects the shellcode responsible for writing 
to disk into explorer.exe. The sample gets a handle to the 
volume and to the disk by calling NtCreateFile on 
GLOBALROOT\ArcName\multi(0)disk(0)rdisk(0)partition(1) 
and PhysicalDrive0, respectively. As with TDL, it issues a series 
of DeviceIOControls to write to them. 

As can be seen in Figures 10 and 11, the differencing identifi ed 
a change in the VBR for partition 0. 

NtDeletePrivateNamespace {u’startbytes’: {u’Added’: u’8bff558bec83ec10’, u’PagedIn’: 1}}

NtSaveKey {u’startbytes’: {u’Added’: u’8bff558bec83e4f8’, u’PagedIn’: 1}}

NtPulseEvent {u’startbytes’: {u’Added’: u’6a1468a8e6982e8’, u’PagedIn’: 1}}

Table 3: Changes in the SSDT that are showing as paged in calls.

Figure 10: A change in VBR is noted.

Figure 11: A change in the VBR for partition 0 is identifi ed.

Figure 12: MBR.

NtDeletePrivateNamespace {u’startbytes’: {u’Added’: u’8bff558bec83ec10’, u’PagedIn’: 1}}
NtQueryInformationJobObject {u’startbytes’: {u’Added’: u’6890010068d051’, u’PagedIn’: 1}}
NtSaveKey {u’startbytes’: {u’Added’: u’8bff558bec83e4f8’, u’PagedIn’: 1}}
NtGetNextThread {u’startbytes’: {u’Added’: u’6868010068180f’, u’PagedIn’: 1}}
NtPulseEvent {u’startbytes’: {u’Added’: u’6a1468a8e6982e8’, u’PagedIn’: 1}}

Table 2: Changes in the SSDT that are marked as paged in during processing of the raw results.
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{u’vbrsha1sum’: [{u’Original’: u’7a781423dbb768786a816
33441f8d533594583f5’},

{u’Changed’: u’64f08b44562578234af25a1cfef84d2bccf1a5

’}]}

We can also see changes in the SSDT that are showing as paged 
in calls (see Table 3).

In our standard system set-up we did not capture the changes 
introduced in kernel memory during our standard test. We caught 
the write to the VBR, which is suffi cient indication of malicious 
behaviour. The reason we could not see the kernel memory 
changes is because the dropper requests a reboot in order to kick 
off the VBR/MBR loading of its kernel-mode component. 

Turla (a.k.a. Uroburous, Snake)
In March 2014, German security fi rm G Data released a red 
paper which contained an analysis of the Uroburous rootkit 
[13]. Shortly afterwards, BAE Systems also released a 
comprehensive white paper on the rootkit [4]. The G Data paper 
indicated that the rootkit may have been involved in a Russian 
cyber attack against the US. Due to tensions between Russia 
and Ukraine at the time, multiple news companies covered the 
story, including the New York Times [14].

As described in [4] and [13], the rootkit comprises a driver and 
a virtual fi le system that is contained in a fi le on the disk. The 
rootkit creates an entry in the Interrupt Descriptor Table (IDT). 

The code for several functions in the SSDT is then hooked with 
an INT instruction (see [8] for details) that triggers the 
malicious software interrupt. A parameter is passed to the 
interrupt, identifying from which function it was called. This is 
used to look up a function in a custom dispatch table which 
executes the appropriate code for the hook.

From running an analysis on sample 39e492e839ad47ab6b5860
8f0f6b7290b52122eb, we get the results shown in Figure 13. 
The results tell us that SSDT functions have been hooked, and 
that the IDT has been modifi ed, which is consistent with the 
behaviour of Turla.

Upon closer inspection of the SSDT (see Figure 14), we can see 
that a number of functions have been modifi ed. Functions like 
NtQuerySystemInformation and NtReadFile are often targeted 
by rootkits.

The diff is showing that there is a difference in the fi rst eight 
bytes of each function. Closer examination of the 
NtCreateThread start bytes reveals that it is only the fi rst fi ve 
bytes that have changed.

{u’startbytes’: [{u’Original’: u’682403006820b4’}, 
{u’Changed’: u’6a08cdc3906820b4’}]}

On translating the modifi ed bytes into assembly language we get:

6A08 push byte +0x8

CDC3 nt 0xc3

90 nop

Looking up the IDT entry at index 0xc3 on the IDT tab (see 
Figure 15), we see that the code for the interrupt is located at 
0x8495a2b0. Cross referencing this address with the IDT entry 
in the kernel diff (Figure 16), we see that 0xc3 is the newly 
added IDT entry.

Figure 15: Looking up the IDT entry at index 0xc3 on the 
IDT tab.

Figure 16: Cross referencing 0x8495a2b0 with the IDT entry in 
the kernel diff.Figure 13: Results of sample analysis.

Figure 14: A number of functions have been modifi ed.
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Necurs

The Necurs rootkit was fi rst discovered in May 2011 [15], but 
became well established in 2012. It was one of the fi rst 
widespread rootkits to target x64 systems. It was originally 
packaged with fake anti-virus malware, but recently it has 
been used with the infamous Gameover Zeus variant [16]. 
Although it has been around for a while, the rootkit is as 
prevalent as ever.

Necurs is the name for the kernel-mode part of the rootkit. It 
consists of a driver fi le which, when installed on a system, 
works alongside other malware to hide its presence and make it 
diffi cult to remove. The way this is achieved differs depending 
on the processor architecture and operating system of the host 
computer. As our analysis system is only running on x86 
Windows 7, we will only discuss the effects of the rootkit on this 
particular set-up.

When Necurs is installed on Windows 7, a service is created and 
the malicious driver is loaded. The driver hides the service and 
the driver fi le on disk by installing a fi le system fi lter driver. It 
also installs a LoadImageNotify callback to control which 
programs can be loaded.

By looking at the signatures (Figures 17 and 18) after running a 
Necurs sample (412769f14bbc629a16208cda5fd6dc25e5f8e8bb), 
we see that a number of kernel modifi cations have occurred. 
These indicate that a new driver and a new callback have been 
installed.

Figure 17: Signatures after running a Necurs sample.

Figure 18: Signatures after running a Necurs sample.

Closer examination of the driver object (Figure 19) shows a 
name but no path. This means that our system could not access 

the driver. The most likely reason for this is that the driver is 
hidden. Something is hiding it from the fi le system, yet the 
driver object exists in memory. While this is not necessarily a 
malicious trait, it is certainly suspicious, and is worth 
investigating further.

Figure 19: Closer examination of the driver object.

The next point of interest is the addition of device objects. By 
looking at the kernel diff (Figure 20) we see that a device has 
been added to /FileSystem/FtlMgr, which is the fi le system fi lter 
manager. This is defi nitely of interest. Examination of the added 
data shows that the driver object related to the added device 
belongs to the newly added driver.

Similarly, examining the callback that has been added (Figure 
21) also reveals that the code for the callback is contained in the 
newly added driver.

To summarize, the scan has revealed:

• A new driver that is hidden

• A fi le system fi lter

• A LoadImageNotify callback

This collection of traits is indicative of rootkit-like behaviour, 
and is consistent with the behaviour of the Necurs rootkit.

3.2 Building a malware index using kernel 
memory differencing

To assess whether kernel memory differencing can be used to 
build a metric to decide if a sample is malicious, we performed 
two experiments. In the fi rst experiment, we ran a group of 
malicious and clean 32-bit driver fi les and observed the changes 
in the kernel introduced by running the drivers. In the second 
experiment we ran a set of malicious standard executable fi les to 
fi nd out what proportion of them introduced kernel memory 
changes.

Figure 20: A device has been added to /FileSystem/FtlMgr. 

Figure 21: Examining the callback.
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Running a set of driver fi les
We observed from our fi rst experiment that not all successfully 
loaded drivers produced kernel memory data. From the set of 
successfully loaded malicious drivers, 82.3% produced kernel 
memory data that could be used later for differencing. From the 
clean set, 51.2% returned kernel memory data. 

The reasons for failure were shared by clean and malicious 
drivers. A common reason was insuffi cient time for the log to be 
generated. Because the scan starts 105 seconds into the 120 
seconds available for the analysis, and can take between 10 and 
15 seconds, we sometimes miss the log by a second or two. 
Since the agent terminates before the machine shuts down fully, 
this is time taken from the 120 seconds. There is a trade-off 
between speed of analysis and data gathered. Our testing 
produced enough successful replication from malicious fi les for 
an automated analysis system. 

 
From a set of malicious driver fi les:
Total drivers successfully loaded: 1,854
Total tasks with kernel data retrieved: 1,525

Signature Number of hits Percentage

generic_new_driver 1524 99.9

generic_modifi ed_driver 1171 76.8

generic_deleted_driver 0 0

generic_new_module 1523 99.8

generic_deleted_module 0 0

generic_modifi ed_module 0 0

generic_ssdt_hook 30 1.96

generic_idt_hook 0 0

generic_new_callback 1332 87.3

generic_modifi ed_callback 0 0

generic_attached_device 1149 75.3

generic_new_device_links 1441 94.5

generic_modifi ed_mbr 0 0

generic_modifi ed_vbr 0 0 

generic_modifi ed_eod_size 0 0

We expect that a successfully loaded driver would create a 
driver object and a new module. All of the malicious drivers 
created a new driver object on loading, except for one. This 
driver installed ‘CreateProcessNotify’ and ‘LoadImageNotify’ 
callbacks pointing to an ‘unknown/module’, and installed inline 
hooks at ‘NTEnumerateKey’ and ‘NtFlushInstructionCache’. 
This is indicative of highly suspicious behaviour. 

Figure 22: The driver installed ‘CreateProcessNotify’ and ‘LoadImageNotify’ callbacks.

Figure 23: Callbacks pointing to an ‘unknown/module’.
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Another interesting fi nd was a sample that created a new driver 
object upon loading, but which did not show a newly added 
module in the differencing data. Looking at the job we fi nd that 
the sample installs an SSDT hook by altering the VA of the 
service function ‘NtMapViewOfSection’. Again, this is highly 
suspicious behaviour. 

From a set of running clean driver fi les:

Total drivers successfully loaded: 1,053

Total tasks with kernel data retrieved: 5,40

Signature Number of hits Percentage

generic_new_driver 539 99.8

generic_modifi ed_driver 98 18.15

generic_deleted_driver 0 0

generic_new_module 539 99.8

generic_deleted_module 0 0

generic_modifi ed_module 0 0

generic_ssdt_hook 15 2.77

generic_idt_hook 1 0.18

generic_new_callback 45 8.33

generic_modifi ed_callback 0 0

generic_attached_device 74 13.70

generic_new_device_links 472 87.40

generic_modifi ed_mbr 0 0

generic_modifi ed_vbr 0 0

generic_modifi ed_eod_size 0 0

These results show that the number of hits on newly created 
drivers corresponds to the hits on the new module. This makes 
sense, since a successfully loaded driver would also have added 
a module. An interesting fi nding was that on the Windows 7 
machine, the percentage of samples that installed SSDT hooks 
was higher. Delving into those clean samples showed that they 
were either security software drivers that installed hooks in the 
SSDT or ones used for general system administration. For 
example, in Figure 25 we can see the SSDT hooks installed by 
regmon.sys from Microworld Technologies Inc. 

Another interesting sample was a clean driver that installed an 
IDT hook. Checking the results for that job shows that the driver 
also hooks NtOpenKey and NtCreateKey. Furthermore, it 
modifi es the disk driver object by hooking an IRP, namely 
IRP_MJ_POWER. While it looks suspicious, this is actually a 
driver from Aladdin Knowledge Systems called ‘aksfridge.sys’ 

Figure 24: The sample installs an SSDT hook by altering the VA of the service function ‘NtMapViewOfSection’.

Figure 25: SSDT hooks installed by regmon.sys from Microworld Technologies Inc.



UNVEILING THE KERNEL...  ZAKI & HUMPHREY

253VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

of ancillary function driver type. We are still investigating the 
function of this driver.

PE results

We collected a set of malicious PE fi les (detected by a static 
detection) and ran them for analysis to see whether our system 
can identify rootkit behaviour from executables. 

First, we observed that the percentage of jobs that produced 
kernel memory data was much higher than any of the driver 
replication sets. This is positive news for us, since PE fi les 
constitute a large proportion of malicious fi les.

It is clear that the number of malicious PEs that induced 
rootkit-like behaviour was not large. We can still infer useful 
information by delving into the samples that triggered some of 
those signatures. 

We can see an example of a sample that created two new driver 
objects in addition to installing an SSDT hook (Figures 26 and 
27). This sample is detected as Troj/NtRootK-DJ. The sample 
drops two driver fi les in %SYSTEM32%\drivers\. We could see 
the two objects for the two drivers created in addition to the 
SSDT hook installed below in the kernel memory differencing. 
By comparing the VAs, we see that the SSDT hook lies in the 
second driver. 

Figure 28 is a screen capture of the kernel memory 
differencing produced by a sample of Mal/DownLdr-BZ. The 
sample drops a malicious driver fi le in several locations. The 
dropped driver fi le is detected as Mal/Rootkit-X. We can see 
that in the kernel memory differencing there is a newly 
attached device object to the PnP Manager driver. This device 
object is of type FILE_DEVICE_CONTROLLER. This could 
indicate that the sample is trying to hide the existence of 
malicious fi les. The type of the device in addition to the 
location to which it is attached is suffi ciently interesting to 
warrant further investigation.

Ranking severity

Combining the data for all the malicious fi les versus all the 
clean fi les, we get a clearer picture of the high-contributing 
signatures. It is important to note that our set of malicious fi les 
is larger than the set of the clean fi les. 

Total number of malicious fi les with kernel data: 1,828

Total number of clean fi les with kernel data: 540

Signature Malicious Clean Total hits

generic_new_driver 1536 539 2075

generic_modifi ed_driver 1185 98 1283

generic_deleted_driver 0 0 0

generic_new_module 1535 539 2074

generic_deleted_module 0 0 0

generic_modifi ed_module 0 0 0

generic_ssdt_hook 37 15 52

generic_idt_hook 1 1 2

generic_new_callback 1332 45 1377

generic_modifi ed_callback 0 0 0

generic_attached_device 1151 74 1225

generic_modifi ed_mbr 0 0 0

generic_modifi ed_vbr 0 0 0

generic_modifi ed_eod_size 0 0 0

Number of malicious PEs: 319

Number of malicious PEs with kernel memory log: 303

Signature Number of hits Percentage

generic_new_driver 12 3.9

generic_modifi ed_driver 14 4.6

generic_deleted_driver 0 0

generic_new_module 12 3.9

generic_deleted_module 0 0

generic_modifi ed_module 0 0

generic_ssdt_hook 7 2.3

generic_idt_hook 1 0.3

generic_new_callback 0 0

generic_modifi ed_callback 0 0

generic_attached_device 2 0.7

generic_modifi ed_mbr 0 0

generic_modifi ed_vbr 0 0

generic_modifi ed_eod_size 0 0



UNVEILING THE KERNEL...  ZAKI & HUMPHREY

254 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

Combining the results above with our experience in analysing 
rootkits, we assigned maliciousness indexes to each signature 
following the Cuckoo signatures severity style. In Cuckoo, a 
signature’s severity fi eld indicates its maliciousness. For 
example, a signature that triggers to highlight an action that is 
usually performed by clean software will have the lowest 
severity value of ‘1’. An action frequently performed by clean 
software will trigger a signature of a higher severity value, ‘2’. 
Actions that are largely only exhibited by malicious software 
will trigger a signature that has the highest severity value of ‘3.’ 

Our previous assumption that modifying the IDT or the SSDT 
should mainly be performed by malicious drivers proved to be 
incorrect. It transpires that the registration of a new callback is 
more suspicious than, for example, an SSDT hook. We showed 
earlier how a clean driver installed an IDT hook in addition to 
hooking the IRP table of the disk driver. An expected fi nding for 

Figure 26: Two driver fi les are dropped in %SYSTEM32%\drivers\.

Figure 27: The SSDT hook lies in the second driver.

Figure 28: Kernel memory differencing produced by a sample of Mal/DownLdr-BZ.

us was the low severity of generic_new_driver and generic_
new_module, since this is behaviour that can be induced by both 
clean and malicious fi les. Generic_ssdt_hook was also relatively 
low, but we attribute that to the high number of clean software 
security drivers in our clean set. Most of these will add SSDT 
hooks for monitoring purposes. We decided to make the severity 
of this signature medium. Generic_modifi ed_driver, generic_
new_callback and generic_attached_device provided most 
results from this experiment. We can assign a medium severity 
to those, since they are more likely to be performed by 
malicious fi les. For the rest of the samples where we did not get 
any hits, we assigned a severity based on past experience and 
our understanding of how malicious rootkits operate. 

It became obvious from the results that no single signature from 
those that fi red is a clear indication of maliciousness. Some 
were weighted when it came to malicious behaviour, but none 
were suffi ciently high on their own. Some signatures failed to 
trigger so we had to resort to our experienced opinion to assign 
a severity level. Table 4 is a breakdown of the severity levels we 
assigned to indicate maliciousness. 

4. CONCLUSION
We have presented an automated analysis system that performs 
kernel memory differencing, focusing on identifying rootkit-like 
behaviour. After testing this system against some prevalent 
rootkits and a set of clean and malicious drivers we can draw 
several conclusions. 

Primarily, we proved that the system successfully revealed 
rootkit manipulations in the cases of the prevalent rootkits 
tested. Although the system did not capture all the changes 
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documented by other researchers, we believe that in a 
high-throughput cluster environment, the amount of information 
provided will suffi ce to indicate maliciousness. Analysts using 
the system can then perform extensive research on the sample. 
Since the signatures can also match on specifi c data, this system 
will provide the opportunity to cluster samples based on 
induced kernel changes. For example, the system allows 
clustering of samples that add devices to \Filesystem\FltMgr or 
hook IRPs of the disk miniport driver. The signatures can even 
validate IRPs outside drivers by checking the size and address 
of ntoskrnl. Correlating changes in the kernel and validating 
them can be done on static snapshot data, which ensures 
authenticity, unlike trying to query volatile information on a live 
system. 

4.1 Future work
Although we are getting good results, work remains to be done 
before the system is complete. First and foremost, the system 
must reliably be able to replicate every fi le that it receives. 

Exploring other areas of the kernel
It is still worth exploring the possibility of examining other 
areas of kernel memory. For instance, checking the functions 
exported by ntoskrnl for hooks (TDSS hooks IofCallDriver, 
which is a function exported by the kernel). As part of our future 
work we intend to improve the identifi cation of modifi cations to 
modules. We currently only present the image base, size and 
name of a module. Additionally, research will be done into 
comparing individual kernel objects, to see if any useful 
information can be obtained as long as the analysis processing 
time is not increased too much.

Adding features
An obvious enhancement to the system would be the ability to 
handle 64-bit fi les. At the moment the system does not have this 

functionality, but with common rootkits [2] now infecting x64 
systems, this would be a worthwhile improvement.

Straying from the kernel, investigation will be conducted into 
the ability to detect user-mode rootkits building on the system 
we have already. Families like Beta Bot [17] utilize user-mode 
API hooking and other rootkit techniques in order to remain on 
system. This would be useful information to get from an 
automated analysis.

Finally, the reporting needs improvement in order to show 
where the same device is being attached to several driver 
objects. With more data being produced through the kernel 
memory scan like objects, ntoskrnl exports, we also intend to 
give more focus to devices.

Overall, we believe that such an automated system will provide 
greater visibility into the state and prevalence of rootkits in the 
wild. It will enhance the tracking of families and the 
identifi cation of rootkit behaviour whether by clean or malicious 
fi les. It functions as a system that could fl ag malicious 
behaviour and also as an enabler to fl ag samples that could 
prove to be worthy of further investigation.

Improvements to sample clustering
Sample clustering is not just a problem for rootkits, but for all 
malware, with numerous papers being penned on the subject. 
Identifying common behaviours and traits in large sample sets is a 
problem every anti-virus vendor faces. The system presented in 
this paper is not intended to solve sample clustering problems. 
However, we believe that it can serve as a platform for identifying 
behaviour exhibited by samples in ways that other systems 
cannot. For example, many rootkits will typically install a service 
and load a driver. This information alone cannot be relied on for 
clustering purposes. Our system exposes information per service 
and/or driver loaded, such as device names and types, that can be 
used to cluster samples. While the usual static and dynamic 
analysis methods provide a lot of data that can be used to cluster 
samples, the ability to access, dump, and diff areas of kernel 
memory gives a whole new dimension to the dataset.

Using the data exported by our system (as described in Section 
2.1), it is possible to write signatures (as described in Section 
2.4) which can be used to identify common traits. Clustering 
samples that, for example, commonly hook the same APIs, or 
insert devices into the device stack of the same drivers is a good 
way to group rootkits into the respective families.

As the next stage of this project we would like to expose the 
signature output to be utilized by our existing sample clustering 
system to increase the accuracy of clustering rootkit samples.
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