
ANDROID PACKERS: FACING THE CHALLENGES, BUILDING SOLUTIONS YU

266 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

ANDROID PACKERS: FACING
THE CHALLENGES, BUILDING

SOLUTIONS
Rowland Yu

Sophos, Australia

Email rowland.yu@sophos.com.au

ABSTRACT
Recently, SophosLabs has noticed an increase in the use of
Android packers on APK fi les. Android packers are able to
encrypt an original classes.dex fi le, use an ELF binary to decrypt
the dex fi le to memory at runtime, and then execute via
DexclassLoader. In other words, Android packers have the ability
to change the overall structure and fl ow of an Android APK fi le –
which is more complicated than obfuscation techniques such as
the use of ProGuard, DexGuard and junk byte injection.

Android packers were originally created to prevent the
intellectual property of applications being copied or altered by
others for profi t. ApkProtect.com and Bangcle.com are the fi rst
two legitimate providers of online packing services. Bangcle.com
even employs virus-scanning engines in an attempt to prevent
malicious applications being packed. However, the developers’
centralized measuring systems and scanning engines have not
been able to prevent malware authors from using their services.
A growing percentage of malware, including Zeus, SMSSend,
and re-packaged applications, are packed by their services.
SophosLabs has also found malware packed with a customized
packer.

As a result, security researchers are facing a great challenge in
overcoming these packers’ complex anti-decompiler and
anti-debugging strategies. Existing reverse engineering (RE)
tools are not able to unpack and inspect hidden payloads within
packed applications. Android sandboxes have trouble offering
dynamic analysis information, as packed applications on Android
Emulator keep crashing. Therefore, distinguishing Android
malware from a group of packed applications is much harder
than it is from a number of obfuscated applications.

This paper attempts to address the anti-decompiler and
anti-debugging techniques of the above packers, reveal the latest
statistics on Android packed malware, use static RE utilities to
analyse their logic fl ow and data structures, and demonstrate
runtime behaviours via dynamic tools. Furthermore, we are
building solutions to investigate hidden payloads via restoration
of the original Android dex fi les from memory dump. Finally, the
paper will present a generic method to detect packed Android
malware.

1. INTRODUCTION

A packer is a program that is used to compress and/or encrypt an
executable fi le without affecting its execution semantics [1].
Packers were originally created to reduce the overall fi le size for
distribution, and/or to protect fi les’ intellectual property against

reverse engineering (RE). Later on, malware authors took
advantage of these benefi ts and began to utilize packers as a
means to avoid detection by anti-virus (AV) scanners.

While on the one hand, Android packers have anti-tamper,
anti-decompiler, anti-runtime injection and anti-debug
capabilities for the protection of legitimate applications against
loss of intellectual property, on the other hand, they present
enormous challenges for existing RE tools and dynamic analysis
systems when diagnosing potential mobile threats.

A rise in the use of packers in Android malicious applications
has recently been seen by SophosLabs. These include Zeus,
SMSSend and re-packaged adware, all of which are packed
either by legitimate online packing services such as ApkProtect.
com and Bangcle.com, or using customized packers. The key
step in verifying a packed application – malicious or otherwise –
is acquiring the original dex fi le.

This paper will:

1. Present an overview of the online Android packing
services of ApkProtect.com, Bangcle.com and Ijiami.cn.

2. Address the anti-decompiler and anti-debug techniques of
Android packers, and look at why Android packers are
more complicated than obfuscation tools.

3. Report on Android malware families using various
packers, and their challenges for existing threat
researching tools and systems.

4. Describe the Volatility project and a plug-in for analysing
packed malware and restoring the original dex fi le via
memory dump.

5. Present a solution for detecting packed malware.

The rest of this paper is structured as follows: in section 2, we
provide a deep insight into the working process of Android
packers and their techniques; section 3 discusses the challenges
for existing RE tools and dynamic systems; section 4 presents
the Volatility project, describes a new Volatility plug-in, and
demonstrates its results for a packed application. Finally, section
5 draws a conclusion.

2. OPENING THE BLACK BOX OF ANDROID
PACKERS
There is a well-known saying: ‘Know the enemy and know
yourself, and you can fi ght a hundred battles with no danger of
defeat.’ It is necessary to understand the operating principles of
Android packers in order to know what kinds of challenges
confront us and how to build solutions. This section will
illustrate our subjects – the top three Android packing service
providers – ApkProtect.com, Bangcle.com and Ijiami.cn.

All Android packing services are based on online black box
systems. Developers upload their applications then obtain packed
applications without any knowledge of the internal workings of
the packer. However, for a malware researcher, it is vitally
important to understand the inner workings of the packed fi les so
as to be able to analyse the payloads of malicious applications
and offer suitable detection.

To make reverse engineering simpler, a test application was
created and uploaded to all three online packing services. The

ANDROID PACKERS: FACING THE CHALLENGES, BUILDING SOLUTIONS YU

267VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

application contained the main Android components: Activity,
Service, Content Provider, BroadcastReceiver and Intent,
together with JNI and native library. Subsequently, the packed
applications were examined to determine the differences
between them and the original fi le in terms of static and
dynamic analysis in order to gain a comprehensive
understanding of the packing services.

2.1 Inspect changes in APK fi le structure

Figure 1 shows the differences in the fi le structure of the
test application before and after packing by the three
providers.

Table 1 lists the fi les added in the packed APKs, while Table 2
lists the fi les modifi ed in the corresponding APKs.

Figure 1: The APK fi le structure (top left: original APK, top right: fi le packed with ApkProtect, bottom left: fi le packed with Ijiami,
bottom right: fi le packed with Bangcle).

Pack provider Added fi le Comments

ApkProtect lib/armeabi/libapkprotect2.so ARM shared native library binary

Bangcle

assets/meta-data/manifest.mf
assets/meta-data/rsa.pub
assets/meta-data/rsa.sig
assets/bangcle_classes.jar
assets/bangcleplugin/collector.dex
assets/bangcleplugin/container.dex
assets/bangcleplugin/dgc
assets/com.sophos.andrpacker
assets/com.sophos.andrpacker.x86
assets/libsecexe.x86.so
assets/libsecmain.x86.so
lib/armeabi/libsecexe.so
lib/armeabi/libsecmain.so

APK manifest fi le
Signature fi le
The real signature fi le with certifi cate
Encrypted original classes.dex fi le
Bangcle information collector plug-in
Bangcle implementation plug-in
Bangcle plug-in log fi le
ARM executable fi le
x86 executable fi le
x86 shared native library binary
x86 native main binary
ARM shared native library binary
ARM native main binary

Ijiami

META-INF/signed.bin
META-INF/af.bin
META-INF/sdata.bin
assets/ijiami.dat
lib/armeabi/libexecmain.so
lib/armeabi/libexec.so

Ijiami signed binary fi le
Ijiami binary fi le
Ijiami RSA signature fi le
Encrypted original APK fi le
ARM JNI load/unload native binary
ARM shared native library binary

Table 1: The fi les added in the packed APKs.

ANDROID PACKERS: FACING THE CHALLENGES, BUILDING SOLUTIONS YU

268 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

2.2 Decompiling classes.dex to observe the
difference in code tree
Figure 2 displays the code tree of the decompiled classes.dex
fi le for the original APK, and for the fi le packed with
ApkProtect, Ijiami and Bangcle (from left to right, respectively).

After investigating the code tree of the decompiled classes.dex,
we can conclude that ApkProtect is not an Android packing
service, but an obfuscating and junk code injecting tool. It is
able to encrypt most sensitive strings by using the AES cipher
algorithm in the apkprotect2 class, but will not touch the
original logic fl ow and code structures. Therefore, it is relatively
simple to analyse and detect applications guarded by
ApkProtect.

On the other hand, both Bangcle and Ijiami provide complete
packing services. Bangcle supplies a group of standard classes,
but still shows encapsulated BroadcastReceiver and Content
Provider components from the original classes.dex. Ijiami goes
a step further, by replacing the original dex fi le with its own
standard NativeApplication and SuperApplication classes.

2.3 Supplemental investigation of Ijiami
Sections 2.1 and 2.2 covered the APK fi le structure and the code
tree of the packed application. However, several key technical
issues need to be addressed in order to understand the
unpacking process of Ijiami:

Technical issue (1): How to make sure the unpacked code is
executed initially.

The key to this technical issue is the Android Application class.
The Android reference page [2] describes the Application class

Pack provider Modifi ed/replaced fi le Comments

ApkProtect classes.dex Modifi ed original classes.dex fi le

Bangcle
AndroidManifest.xml
classes.dex

Confi gure to implement Bangcle class
Classes.dex replaced by Bangcle

Ijiami
AndroidManifest.xml
classes.dex

Confi gure to implement Ijiami class
Classes.dex replaced by Ijiami

Table 2: The fi les modifi ed/replaced in the packed APKs.

Figure 2: Code tree of decompiled classes.dex. From left to right: original, ApkProtect, Ijiami and Bangcle.

as the ‘Base class for those who need to maintain global
application state. You can provide your own implementation by
specifying its name in your AndroidManifest.xml’s
<application> tag, which will cause that class to be instantiated
for you when the process for your application/package is
created.’ As the context of the entire application, the Application
class will be the starting point when executing the program.

When expanding the code tree and taking a detailed view of two
standard classes in Ijiami, we found that the SuperApplication
class extends Application class accounts to load and run the
NativeApplication class, while the NativeApplication class is
responsible for loading the native library binary for unpacking
(shown in Listing 1).

Technical issue (2): Where and how to unpack the original dex
fi le, then how to dynamically load the unpacked code.

Lib/armeabi/libexec.so supplies comprehensive code to
implement the above functionalities. First, it recognizes and
interprets fi les in the META-INF directory to verify the
signature and integrity of encrypted data by using the RSA and
AES crypto algorithms, then it decrypts assets/ijiami.dat to the
original classes.dex in memory. The library binary then uses the
DexClassLoader class to realize the dynamic loading of the
unpacked code.

Technical issue (3): Stop runtime anti-debug by modifying the
dex header.

When analysing the Ijiami packing service, we discovered that
it has the ability to change the original dex header. The
modifi cation starts at the beginning of the dex fi le and runs to
0x28 bytes, fi lling it with random values. As a result, it can stop

ANDROID PACKERS: FACING THE CHALLENGES, BUILDING SOLUTIONS YU

269VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

runtime debugging to trace the original dex fi le in memory by
searching for DEX_FILE_MAGIC ‘dex\n035\0’. However, this
also causes problems for the Volatility project (described in
section 4) in locating the original dex fi le in memory.

2.4 Additional studies on Bangcle
This subsection explains the anti-tamper, anti-decompiler,
anti-runtime injection and anti-debug capabilities of Bangcle,

package com.shell;

import android.app.Application;

public class NativeApplication
{
 static
 {
 System.loadLibrary(“exec”);
 System.loadLibrary(“execmain”);
 }

 public static native boolean load(Application paramApplication, String paramString);
 public static native boolean run(Application paramApplication, String paramString);
 public static native boolean runAll(Application paramApplication, String paramString);
}

package com.shell;

import android.app.Application;
import android.content.Context;

public class SuperApplication
 extends Application
{
 protected void attachBaseContext(Context paramContext)
 {
 super.attachBaseContext(paramContext);
 NativeApplication.load(this, “com.sophos.andrpacker”);
 }

 public void onCreate()
 {
 NativeApplication.run(this, “android.app.Application”);
 super.onCreate();
 }
}

Listing 1: NativeApplication and SuperApplication classes of Ijiami.

 public void onCreate()
 {
 super.onCreate();
 if (Util.getCustomClassLoader() == null) {
 Util.runAll(this);
 }
 String str = FirstApplication;
 try
 {
 this.cl = ((DexClassLoader)Util.getCustomClassLoader());
 realApplication = (Application)getClassLoader().loadClass(str).newInstance();
 if (realApplication != null)
 {
 localACall = ACall.getACall();
 localACall.at1(realApplication, getBaseContext());
 localACall.set2(this, realApplication, this.cl, getBaseContext());
 }
}...

Listing 2: Entrypoint of Bangcle source code – ApplicationWrapper class.

based on detailed reverse engineering analysis. Let us begin
with the entrypoint of the source code – the ApplicationWrapper
class, as shown in Listing 2.

The Util class in the entrypoint of the source code implements
the main functionalities in the Applications layer of the Android
architecture. The functionalities include verifying the integrity of
classes.dex, checking if the architecture is x86 or ARM, copying
the required native library binaries, encrypted classes.jar, and

ANDROID PACKERS: FACING THE CHALLENGES, BUILDING SOLUTIONS YU

270 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

JNI binary to specifi c locations, creating child processes, then
using the MyClassLoader class to load the decrypted classes.jar
at runtime. Listing 3 displays the core method in the Util class.

Meanwhile, Bangcle’s ACall class deals with binaries such as
libsecexe.so in the Android Libraries layer. However, it is
impossible to establish a relationship between the Java source
code and the libsecexe.so binary since almost all function names
in the binary are encrypted (shown in Figure 3). The standard
format of the method name should follow the following
template: Java_package_class_method, namely the Java
package name, class name, then function method name [3].

When it is running, the Bangcle-packed application creates three
processes (shown in Figure 4) instead of only one process in the
original application. Moreover, the three processes in Bangcle
are performing ptrace (process trace) so that debugging tools
like gdb have trouble connecting them. This is because ptrace in
Android limits only one process to observe and examine the
trace’s memory and registers. Figure 4 also demonstrates the
evidence of mutual tracing in three Bangcle processes [4, 5].

Finally, we summarize Bangcle’s capabilities:

• Anti-temper – the Util class provides hash checking to
check the integrity of classes.dex.

 public static void runAll(Context paramContext)
 {
 x86Ctx = paramContext;
 doCheck(paramContext); // checking integrity of classes.dex
 checkUpdate(paramContext);
 try
 {
 File localFile = new File(“/data/data/” + paramContext.getPackageName() + “/.cache/”);
 if (!localFile.exists()) {
 localFile.mkdir();
 }
 checkX86(paramContext); // If it is x86 platform, copy related library binary
 CopyBinaryFile(paramContext); // copy encrypted classes.jar and JNI binary
 createChildProcess(paramContext); // create child processes
 tryDo(paramContext);
 runPkg(paramContext, paramContext.getPackageName()); // call MyClassLoader
 return;
}...

Listing 3: Runall method of Bangcle’s Util class.

Figure 3: The function names in the ACall class and libsecexe.so.

• Anti-decompiler – the Util class also decrypts classes.jar in
memory and employs MyClassLoader to load the decrypted
.jar fi le at runtime.

• Anti-runtime injection – it is impossible to establish a

Figure 4: Three processes from a single Bangcle application as
well as the anti-ptrace log.

ANDROID PACKERS: FACING THE CHALLENGES, BUILDING SOLUTIONS YU

271VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

relationship between the ACall class and libsecexe.so due
to the encryption.

• Anti-debug – Bangcle employs an anti-ptrace technique to
prevent analysis by debugging tools.

3. FACING THE CHALLENGES
Section 2 demonstrated the packing and unpacking processes of
ApkProtect, Bangcle and Ijiami on the basis of comparing the
fi le structures, analysing decompiled resource code, and runtime
debugging. This section will introduce and describe the
challenges for security researchers posed by the above packing
services.

3.1 Explosive growth of packed malware

Figure 5 shows a trend line of Android malicious applications
based on three packers. Since September 2013, there has been a
dramatic increase in the number of malicious applications packed
using Bangcle – Bangcle’s scanning engines have not been able
to achieve the developers’ aim of avoiding packing malware
applications. Meanwhile, the use of ApkProtect and Ijiami has
seen a continuous and steady growth over the last fi ve months.

Figure 5: The trend lines of Android malicious applications
based on three packers.

3.2 Ineffective reverse engineering (RE) tools
Existing RE tools are not able to disassemble the payloads of
packed samples due to the anti-decompiler characteristics of
packers. The payloads of packed samples are encrypted by
advanced cryptographies such as AES and DES. The packing
process and the crypto key generation are classifi ed as
confi dential. Moreover, the algorithms are embedded in the
native binaries to make RE much more diffi cult.

3.3 Failure of dynamic analysis systems
Dynamic analysis systems such as DroidBox, Apk-Analyzer.net
and Ijinshan.com [6] are unable to offer successful dynamic
results for packed Android applications. The systems either
provide very basic static information or simply crash when
attempting to start applications. Figure 6 shows screenshots of
the running behaviours of the test application in DroidBox and
Ijinshan.com.

3.4 Runtime anti-debug

So far, Android packers present two runtime anti-debug
challenges: Ijiami is capable of modifying the dex header to
prevent memory searching, while Bangcle prevents
anti-debugging by creating three interactive processes. Both
cause serious consequences for existing debugging tools – even
the Volatility project (see section 4).

3.5 Diffi cult to detect by security solutions

By taking advantage of Android packers, cybercriminals are
able to change an application’s dex fi le as a means of
thwarting signature-based scanners. Even if an anti-virus
scanner has a database that includes the signature of the original
APK sample, it will be unable to detect the newly packed

Figure 6: Neither DroidBox nor Ijinshan.com is able to offer
dynamic analysis.

ANDROID PACKERS: FACING THE CHALLENGES, BUILDING SOLUTIONS YU

272 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

version of the malware. Figure 7 displays a recent SMSSend
example, showing the original malware as well as the version
packed with ApkProtect.

Figure 7: An original SMSSend sample plus its packed version
(packed with ApkProtect).

4. BUILDING SOLUTIONS

This part is split into three sections: section 4.1 will outline the
required environment and steps for memory acquisition. Section
4.2 will concentrate on the Volatility framework and describe a
new plug-in for analysing acquired memory and locating the
offset of the unpacked dex fi le in the memory map. Finally,
section 4.3, will demonstrate the usage of the Volatility plug-in
to locate the offset of the unpacked dex fi le, write selected
memory mapping to disk and patch back the dex header if
required.

4.1 Memory acquisition from Android emulator

In order to perform memory analysis, a copy of the RAM from
a target Android device or emulator is required. As Android is
based on Linux, a newly developed Loadable Kernel Module
(LKM), named LiME (Linux Memory Extractor) [7] is used for
acquisition of volatile memory. It is necessary to cross compile
LiME for use on an Android device/emulator. Additional steps
are required for the prerequisites and environment setting. These
steps, which can be found in several online wiki documents
[8–11], consist of:

1. Initialize an Android build environment including path
and required package on either a Linux or OSX system.

2. Download the Android SDK and NDK.

3. Download the Android kernel source code.

4. Cross compile the kernel.

5. Create AVD then emulate the custom kernel with the
AVD.

6. Download and cross compile LiME.

7. Load LiME on the Android device/emulator.

8. Acquire memory.

4.2 Performing memory forensics with Volatility
plug-ins

Volatility [12] is a single and cohesive framework for memory
analysis of Windows, Linux, Mac and Android systems. It is
open source, Python based, extensible and has scriptable APIs.
Volatility also pre-ships with a list of very useful plug-ins for
Android including Linux_pslist (which gathers active tasks by
walking the task_struct), Linux_proc_maps (which gathers
process maps for Linux), and Linux_dump_map (which writes
selected process memory mappings to disk). However, a
working Android Volatility profi le with specifi c module.dwarf
and the System.map is required to use these plug-ins. The
confi guration can be found in [12].

The following is the core part of this paper: a Volatility plug-in
is designed to locate the offset of the original dex fi le in the
memory map via a specifi c process ID (PID). The relevant code
of the plug-in is shown in Listing 4.

In Volatility, each plug-in is able to call another one.
Additionally, the results from one plug-in can be provided for
further processing in other plug-ins [13]. A plug-in usually
consists of a class name and three standard functions [14]:
__init__(), calculate() and render_text(). In Listing 4, the class
name is apk_packer_fi nd_dex. The fi rst function of the
__init__() plug-in is the constructor of the class object with the
capability of calling the super class constructor and/or defi ning
additional command line options. The apk_packer_fi nd_dex
plug-in specifi es a parameter name (--PID), a short option (-p)
and help description.

The calculate() function loads an address space, accesses and
parses the data, then prepares the output. Line 21 in the
calculate() function in Listing 4 gets a process mapping list
from a specifi c PID (the same as /proc/$PID/maps). The list
contains the mapped memory regions and the access
permissions of the heap, stack, and dynamically linked libraries.
Lines 23–33 are a loop to read data from anonymous mappings
because the original dex fi le should be unpacked in one of them.
Lines 36-37 utilize a YARA rule to locate the offset of the
map_list in the dex fi le. The YARA rule is declared in variable
signatures based on the map_list structure shown in Table 3.

As discussed in section 2.3, the dex header is modifi ed by the
Ijiami packer, the map_list structure is thus a credible alternative
for fi nding the original dex fi le. We know that the map_items in
a map_list should start from TYPE_HEADER_ITEM, then
TYPE_STRING_ID_ITEM followed by TYPE_TYPE_ID_
ITEM. We also know that the size (count of the number of

ANDROID PACKERS: FACING THE CHALLENGES, BUILDING SOLUTIONS YU

273VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

items) of HEADER_ITEM must be one, while HEADER_
ITEM_OFFSET should begin from 0x0000, and header_size is
always 0x70. All of these fi ndings help to assign a specifi c
search string for $hex in the YARA rule.

Once the offset of the map_list has been discovered, lines 41–47
in the calculate() function keep scanning map_list to fi nd
TYPE_MAP_LIST and the corresponding map_list_offset. Line
48 uses yield to generate a list of outputs including virtual

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

signatures = {
 ’map_header’ : ’rule map_header { \
 strings: \
 $hex = {00 00 ?? ?? 01 00 00 00 00 00 00 00 01 00 ?? ?? ?? ?? ?? ?? 70 00 00 00 02 00} \
 condition: $hex }’
}

class apk_packer_fi nd_dex(linux_common.AbstractLinuxCommand):
 ”””Gather information about the dex Dump in Memory running in the system”””

 def __init__(self, confi g, *args, **kwargs):
 linux_common.AbstractLinuxCommand.__init__(self, confi g, *args, **kwargs)
 self._confi g.add_option(’PID’, short_option=’p’, default=None,
 help=’Operate on a specifi c Android application Process ID’,
 action=’store’, type=’str’)

 def calculate(self):
 ””” Required: Runs YARA search to fi nd hits ”””
 rules = yara.compile(sources = signatures)

 proc_maps = linux_proc_maps.linux_proc_maps(self._confi g).calculate()

 for task, vma in proc_maps:
 if not vma.vm_fi le:
 if vma.vm_start <= task.mm.start_brk and vma.vm_end >= task.mm.brk:
 continue
 elif vma.vm_start <= task.mm.start_stack and vma.vm_end >= task.mm.start_stack:
 continue
 elif vma.vm_end - vma.vm_start > 0x1000:
 proc_as = task.get_process_address_space()
 maxlen = vma.vm_end - vma.vm_start

 data = proc_as.zread(vma.vm_start, maxlen - 1)

 if data:
 for match in rules.match(data = data):
 for moffset, _name, _value in match.strings:
 (usize,) = struct.unpack(‘I’, data[moffset - 4 : moffset])

 i = 0
 offset = moffset
 while i < usize:

 (maptype,) = struct.unpack(’H’, data[offset: offset+2])
 (mapoffset,) = struct.unpack(’I’, data[offset+8: offset+12])

 if maptype == 0x1000:
 yield task, vma, moffset - 4 - mapoffset, moffset
 break
 i += 1
 offset += 12

 def render_text(self, outfd, data):
 self.table_header(outfd, [(”Task”, ”10”),
 (”VM Start”, ”[addrpad]”),
 (”VM End”, ”[addrpad]”),
 (”Dex Offset”, ”[addr]”),
 (”Map Offset”, ”[addr]”)])
 for (task, vma, offset, moffset) in data:
 self.table_row(outfd, task.pid, vma.vm_start, vma.vm_end, offset, moffset - 4)

Listing 4: Apk_packer_fi nd_dex plug-in.

memory start and end offsets as well as the dex and map_list
offset in the memory. Finally, the render_text() function accepts
the outputs and prints the data on screen in a standard fashion.

4.3 From memory dump to ‘original’ dex fi le
We use quotation marks around the word ‘original’ because we
can’t acquire the raw dex fi le: Bangcle inserts its monitoring
code into the original dex fi le before packing, and it is diffi cult

ANDROID PACKERS: FACING THE CHALLENGES, BUILDING SOLUTIONS YU

274 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

to restore the fi rst 0x28 bytes in the header section for an Ijiami
dex fi le. However, the closest to the original dex fi le can be
acquired using the following four steps:

1. Get the process ID of the target application by using
Linux_pslist.

2. Locate the header and map_list offset of the unpacked

Table 3: The header_item and map_list structure in a dex fi le, and their relationship.

$ python vol.py --profi le=LinuxGolfi sh-2_6_29ARM -f lime.dump apk_packer_fi nd_dex -p 876

Volatility Foundation Volatility Framework 2.3.1
Task VM Start VM End dex Offset Map Offset
---------- ---------- ---------- ---------- ----------
 876 0x4c10d000 0x4c1a4000 0x28 0x8ffc8

Listing 5: Example output of the apk_packer_fi nd_dex plug-in.

Figure 8: Patch DEX_FILE_MAGIC back into an unpacked Ijiami dex fi le.

dex fi le by looking at the apk_packer_fi nd_dex plug-in
output (shown in Listing 5).

3. Dump a memory range specifi ed by the Linux_dump_
map plug-in to disk.

4. Patch DEX_FILE_MAGIC back if required, for
instance, into an unpacked dex fi le from Ijiami packer.

ANDROID PACKERS: FACING THE CHALLENGES, BUILDING SOLUTIONS YU

275VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

5. CONCLUSIONS
This paper provides an overview of the most popular Android
packers: Bangcle, ApkProtect and Ijiami. It demonstrates the
working principles of each in terms of static and dynamic
analysis. Moreover, the paper describes some particular
characteristics including dex header modifi cation by Ijiami as
well as the anti-ptrace technique employed by Bangcle.

A series of challenges have been discussed in section 3. These
challenges include the explosive increase of Android malicious
applications packed by three different packers, the ineffi ciency
of existing reversing engineering tools, the failure of dynamic
analysing systems, the anti-debug features, and the obstruction
of generic detection.

Section 4 delivered an outline of the Volatility project. The
Volatility project provides an open and complete framework for
memory extraction and investigation. Volatility supports
memory dump from Windows, OSX, Linux and Android, and
supplies plenty of plug-ins for memory analysis. However, a
customized plug-in named apk_packer_fi nd_dex has been
created to explore the process map list and locate the offset of
the unpacked dex fi le in memory. We also demonstrated the
acquisition of the original dex fi le with DEX_FILE_MAGIC
patching.

In conclusion, the paper provides a practical solution for
acquiring the original dex payload for a packed Android
application. However, developing an effi cient and effective
detection solution for packed malware is a complicated task as it
is impossible to unpack a piece of packed malware and detect
the payload in the real world. On account of the background and
information given in section 2, a detection solution can be based
on a combination of AndroidManifest.xml, the size of the
encrypted payload, resource fi les, and resources.arsc.

6. REFERENCES
[1] Guo, F.; Ferrie, P. Chiueh, T.-C. A Study of the Packer

Problem and Its Solutions. Symantec Research
Laboratories, Pages 98 – 115, ISBN: 978-3-540-87402-
7.

[2] http://developer.android.com/reference/android/app/
Application.html.

[3] Android on x86: Java Native Interface and the Android
Native Development Kit. http://www.drdobbs.com/
architecture-and-design/android-on-x86-java-native-
interface-and/240166271.

[4] http://blog.csdn.net/pxb1988/article/details/17167795.

[5] http://blog.csdn.net/androidsecurity/article/
details/8892635.

[6] http://fi reeye.ijinshan.com/analyse.html?md5=ac8a265
6fb865a854bfc906cec744947&sha1=f8435c148596399
4b778d28c36ad34613369f26b&type=1.

[7] LiME – Linux Memory Extractor. https://code.google.
com/p/lime-forensics/.

[8] https://code.google.com/p/volatility/wiki/
AndroidMemoryForensics.

[9] Getting Started: Building Android From Source.
http://xda-university.com/as-a-developer/getting-
started-building-android-from-source.

[10] http://source.android.com/source/building.html.

[11] https://lime-forensics.googlecode.com/fi les/LiME_
Documentation_1.1.pdf.

[12] Volatility – An advanced memory forensics framework.
https://code.google.com/p/volatility/.

[13] Macht, H. Live Memory Forensics on Android with
Volatility. https://www1.informatik.uni-erlangen.de/
fi lepool/publications/Live_Memory_Forensics_on_
Android_with_Volatility.pdf.

[14] https://code.google.com/p/volatility/wiki/
Vol20PluginInterface.

