
PROTECTING FINANCIAL INSTITUTIONS... WANG & ZHAO

78 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

PROTECTING FINANCIAL
INSTITUTIONS FROM MAN-IN-

THE-BROWSER ATTACKS
Xinran Wang & Yao Zhao
Shape Security Inc., USA

Email {xinran, yzhao}@shapesecurity.com

ABSTRACT
Banking malware is one of the most serious threats to both
end-users and fi nancial institutions. It is reported that over 1,400
fi nancial institutions have been targeted by attackers using
banking trojans and the top 15 targeted fi nancial institutions
were attacked by more than 50 per cent of the trojans in 2013.
One major tactic of banking malware is the use of man-in-the-
browser attacks (web injection attacks). In fact, almost all
modern banking malware uses this tactic. In this paper, we fi rst
explain how banking malware conducts credential stealing and
automatic transactions with man-in-the-browser attacks, and we
analyse several web injection scripts from prevalent banking
malware families. Then we present our survey of existing
techniques against these malware families, as well as their
limitations. Next, inspired by the observation that banking
malware’s web injection is based on a certain context of the
target web pages, we propose HoneyWeb, an application layer
system to protect fi nancial institutions from web injection
attacks.

The HoneyWeb system works as an HTTP reverse proxy in front
of protected web servers, and injects fake context into the target
page, according to the malware’s web injection confi guration.
The fake context traps the banking malware’s web injection
scripts in an invisible HTTP element. An alert is also triggered
when injection happens, so the system detects the ongoing
attacks. More importantly, it prevents credential stealing as the
web injection scripts are injected into invisible decoy elements.

1. INTRODUCTION
Banking malware is one of the most serious threats to both
end-users and fi nancial institutions. It is reported that over 1,400
fi nancial institutions have been targeted by attackers using
banking trojans and that the top 15 targeted fi nancial institutions
were targeted by more than 50 per cent of the trojans in 2013 [1].

Man-in-the-browser (MitB) attacks are one of the main
techniques used by prevalent banking malware such as Zeus,
Gameover and SpyEye. A classic goal of a MitB attack is
stealing credentials – not only usernames and passwords, but
also other sensitive personal information such as social security
numbers and PIN numbers. Generally, banking malware uses
web injection techniques to get bank customers to type in their
sensitive personal information when they are browsing
legitimate web pages. This kind of attack is much more powerful
than phishing. Recently, criminals have taken a further step to
use Automatic Transaction Systems [2] to automatically and
stealthily make transactions to steal money from bank customers.

The sophisticated attacks even hide the real balance of the bank
accounts, so that the victim doesn’t know the attack is
happening.

Existing solutions to mitigate man-in-the-browser attacks fall
into two categories: detection and prevention. Web tripwire [3]
and Zarathustra [4] detect if any unexpected content appears in
the HTML text or the DOM (Document Object Model) of the
browser. But one disadvantage of this type of approach is that the
adversaries can upgrade their MitB tools to not only inject
content, but also remove or disable detection scripts. Web page
obfuscation [5] and polymorphism [6] can be used to stop the
malicious content injection, or stop the automatic transactions.

In this paper, we propose HoneyWeb, which is a combination of
both detection and prevention ideas. HoneyWeb uses existing
obfuscation and polymorphism techniques to prevent web
injection attacks. At the same time, using the philosophy of
Honeynet, HoneyWeb itself injects fake content (called the
honey object) into web pages in order to trap malicious web
injection.

HoneyWeb has the ability to detect the compromise of a
customer’s machine with an extremely low false positive rate.
This detection allows banks to notify victims and advise them to
clean up the malware, change their credentials, etc.

This paper is organized as follows: we provide some background
information in Section 2, and survey related work in Section 3.
In Section 4 we describe the details of the HoneyWeb system.
Then we discuss our future work and conclude the paper in
Section 5.

2. BACKGROUND

2.1 From keylogging to form grabbing

Keyogging is a common method for banking malware to steal
credentials. Keyloggers capture every key typed into a system. But
key log data can be messy and the technique misses any data the
user inputs without using the keyboard. For example, keyloggers
may miss sensitive data that a user copies and pastes into a form or
selects via an options dropdown provided by autocomplete.

Some banks use a virtual keyboard for the password entry, which
does not trigger keystrokes either. To overcome this, banking
malware such as SpyEye and Zeus record screenshots at regular
intervals or upon each mouse click in order to defeat the virtual
keyboard.

Form grabbing retrieves authorization and login credentials from
a web data form by intercepting the HTTP POST data before the
data passes through encryption routines [7]. This method is more
effective than keylogger software because it acquires the user’s
credentials even if they are inputted using a virtual keyboard,
autofi ll, or copy and paste. Form grabbing provides much
cleaner, better structured data based on its variable names, such
as username and password.

SpyEye implements form grabbing by hooking
HttpSendRequestA and HttpSendRequestW to intercept
content-bearing HTTP requests (usually POST requests) made
by Internet Explorer-based browsers [8].

PROTECTING FINANCIAL INSTITUTIONS... WANG & ZHAO

79VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

2.2 Web injection

Keylogging and form grabbing are passive ways to steal
credentials, while a man-in-the-browser attack (also known as
web injection) is a proactive way to steal credentials. For
example, MitB can steal additional credentials which may not
be requested by banks, such social security number (SSN) and
PIN. MitB is a technique in which malware hooks into the
browser and manipulates data before it is displayed. A simple
MitB attack scenario is described as follows: a user attempts to
log into a banking website. Banking malware intercepts the
request, then injects a form or extra fi elds such as SSN or PIN
into the response. The victim unknowingly submits the sensitive
information to the attacker. As a MitB attack happens at the
presentation layer, there are no obvious indications of malicious
activity. The domain is legitimate and the security certifi cate
has not been tampered with, which all adds credibility to
attacker’s requests and can end up fooling the user.

Web injection for both SpyEye and Zeus is implemented as a
WebInject confi guration fi le. A WebInject fi le is a text fi le
which contains JavaScript and HTML code. The fi le allows the
banking malware to target fi nancial institutions and inject
specifi c code into victims’ browsers so they can modify the
web pages the users access in real time. Banking malware
equipped with a WebInject fi le can easily make deceptive
forms or fi elds that ask victims for specifi c credentials (e.g.
SSN and PINs).

Figure 1 shows an example of WebInject confi guration. The
‘set_url’ parameter sets the attack target; the ‘data_before’
parameter describes the bank web data to search for before the
injection; the ‘data_inject’ parameter is the actual script that
will be injected. The example in Figure 1 shows that the code
snippet will be injected into any URL that contains
‘https://www.bankofexample.com/login.html’, that it will be
injected after the data in ‘data_before’, and the code itself takes
the form of additional fi elds in the form requesting ‘SSN’.

Figure 1: A simple web injection confi guration.

2.4 Automatic Transaction System

Unlike traditional WebInject fi les that inject extra forms or
fi elds to steal victims’ credentials, a sophisticated web injection
called ATS (Automatic Transaction System) can automatically
execute transactions in the background [2]. It checks account
balances and performs wire transfers using the victim’s
credentials without alerting them. ATS is invisible. ATS also
changes account balances and hides illegitimate transactions.
As long as a system remains infected with an ATS, its user
will not be able to see the illegitimate transactions made from
his accounts.

This essentially makes online banking fraud automatic, because
cybercriminals no longer need user intervention to obtain
money.

Figure 2 shows an example of code injected into a WebInject
fi le. It calls a remote fi le that contains the JavaScript or HTML
code that will perform the injection. Figure 3 shows the actual
JavaScript code that performs the wire transfer.

Figure 2: ATS web injection confi guration.

Figure 3: An ATS JavaScript performing wire transfers.

3. RELATED WORK
There are several other research projects that are closely related
to our work.

3.1 Web page inspection

Reis et al. proposed ‘web tripwire’ [9]. A web tripwire uses
JavaScript code to detect textual changes in an HTTP web page,
with the ability to report any changes both to the user and to the
publisher. This JavaScript code runs in the user’s browser and
compares the page the user receives what it is expected to be.
This technique has been suggested as a countermeasure [3] to
detect banking malware’s web injection. However, web tripwire
is not secure: adversaries could remove the web tripwire if they
wish to avoid detection.

3.2 Web injection fi ngerprint extraction

Bosatelli proposed ‘Zarathustra’, an automated system that
detects the activity of banking trojans that perform web
injection on the client side [4]. Zarathustra extracts the DOM
differences by fi rst rendering a banking website’s page multiple
times in an instrumented browser running on distinct and clean
virtual machines. This builds a model of legitimate differences
(e.g. due to ads, A/B testing, cookies, load balancing,
anti-caching mechanisms, etc.). Zarathustra repeats the same

PROTECTING FINANCIAL INSTITUTIONS... WANG & ZHAO

80 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

procedure on an infected machine and extracts and generalizes
the differences called ‘fi ngerprints’. The fi ngerprints are
generated on dedicated machines, which operate offl ine, without
any interaction with real clients. The system has the advantage
of requiring no reverse engineering effort: the only requirement
is a binary sample of the malware to infect the controlled
machine, which is used to identify differences in web pages
generated by the malware’s web injection techniques.

3.3 Web page obfuscation

As shown in Figures 1 and 2, Zeus and SpyEye use web
injection confi guration fi les to perform web injection. The
location of injected code (context) is described in the
‘data_before’ or ‘data_after’ parameters of confi guration fi les.
Mador et al. [5] proposed a method to obfuscate the context and
thus prevent banking malware’s web injection. They encrypt the
web page content in JavaScript and only decrypt when the web
page is loaded in a browser. The obfuscation method was
originally used in exploit kits by cybercrimals to avoid
detection. It is now used to confuse banking malware and
prevent web injection.

Once banking malware is aware of the obfuscation, it can
perform deobfuscation. However, security researchers have
responded by making the variable name of the decrypted
function polymorphic so that banking malware cannot detect the
obfuscation.

4. HONEYWEB SYSTEM
In this section, we describe the details of the HoneyWeb system,
which combines prevention and detection of MitB attacks.

4.1 Overview of HoneyWeb

Figure 4: HoneyWeb deployment.

HoneyWeb works as a reverse proxy, which is transparent to
both web server and browsers (as well as the end-users behind
the browsers). Figure 5 shows the overall function of the
HoneyWeb system. We defi ne the honey object as some HTML,
CSS or JavaScript code that is injected by HoneyWeb. An
important feature of the honey object is that it is ‘invisible’ to
the human eye when the browser renders the web page.

When a user visits a protected web page, HoneyWeb takes the
original content of the requested URL and rewrites it with three
basic changes (see Figure 5 as an example):

1. It obfuscates the original content so that banking
malware fails to inject its malicious content into the
original target. In the example shown in Figure 5, the
target form is obfuscated, and for example, we can use
techniques introduced in [5] to change HTML clear text
to JavaScript code.

2. It adds a honey object to the web page, so that banking
malware will match the fake content and inject their
malicious content there. Note that the honey object will
be invisible to the user when the web page is rendered by
a real browser.

3. It adds a piece of JavaScript code to monitor the honey
object. If anything malicious is injected into the honey
object, it reports a detection result back to the HoneyWeb
system.

4.2 Details of HoneyWeb

In this section, we describe the details of the three modules of
the HoneyWeb system.

4.2.1 Obfuscation module

The obfuscation of HTML and JavaScript has been well studied
in literature, e.g. [5]. HoneyWeb can use any existing
obfuscation technique to prevent the target code (e.g. form)
being found by banking malware (e.g. using a regular
expression). As a reverse proxy, the procedure can be
summarized as three steps:

1. Given the web page URL, HoneyWeb loads the
obfuscation confi guration, which might be as simple as a
regular expression.

2. HoneyWeb matches the content in the web page using
the obfuscation confi guration.

3. The matched content is replaced with a piece of
JavaScript code that generates the same content.

4.2.2 Honey object injection

As mentioned previously, the honey object is the fake content
that is injected by HoneyWeb to be matched by the banking
malware’s injection rules such as exact matching or regular
expressions. It seems to be quite simple to inject honey content
that will satisfy the requirements, however, in practice there are
a couple of problems to overcome.

Invisibility

The honey object must be invisible to a real human user. To
achieve this, HoneyWeb places the fake content inside a div or
iframe that is invisible, by setting the proper CSS style (e.g.
display:None).

Figure 5: HoneyWeb modules.

PROTECTING FINANCIAL INSTITUTIONS... WANG & ZHAO

81VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

No interference

Injecting new content into a web page may interfere with the
existing content, especially JavaScript.

For example, assume the banking malware looks for the string
‘<input name=‘password’ id=‘password’ type=‘password’>’
and inserts a line to request a PIN number below. A simple
honey object may look like the code shown in Figure 6.

<div style="display:none">
<input name='password' id='password' type='password'>
</div>

Figure 6: Honey object example.

However, the honey object code in Figure 6 introduces an
element with id name ‘password’, which also appears in the
obfuscated code. This means there will be two inputs with the
same ID ‘password’ in the DOM. As indicated in the HTML
specifi cation, it leads to undefi ned behaviour when JavaScript
calls document.getElementById(“password”). In general, we’d
like to avoid such interference being introduced by honey
content.

HoneyWeb has a couple of solutions to deal with different
situations. Here we list some of them:

• Put the honey object into HTML comments. This way, the
honey object can still be matched and located by banking
malware, but the honey object means nothing to the
DOM.

• Use JavaScript to avoid duplicated IDs. For example, we
inject the honey object before the corresponding obfuscated
code. Then we can use JavaScript to locate the elements in
the honey object, and change the ID dynamically. For
example, the code below avoids duplication of IDs via a
line of JavaScript.

<div id="honeydiv" style="display:none">
<input name='password' id='password' type='password'>
</div>
<script type="text/javascript">document.getElementById
('password').id="xxxx"</script>

Figure 7: Example of changing the element ID at runtime.

4.2.3 Honey object monitoring
The purpose of the honey object is to passively detect when
bank customers’ computers are compromised. The monitoring
component detects the compromise and sends this information
to the bank.

HoneyWeb injects a piece of JavaScript at random location in
the original web page. The JavaScript code does the following
work on the browser side:

• It schedules the malware detection code to run when the
whole page is loaded and every few seconds periodically.

• The detection code reads the static content of the honey
object (i.e. via object.innerHTML) and DOM elements of
the honey object.

• If any injection into the honey object is detected, a
synchronized data transfer (i.e. Ajax POSTs) is used to

send an alert. Meanwhile, the code may also alert the end-
user about the compromise by popping up a message.

HoneyWeb collects both compromise alerts, as well as the login
information (e.g. username and password), if possible. Next,
HoneyWeb may send all the compromise information to the
bank. The bank can inform its customers according to the login
information via other communication methods such as email
and phone calls.

5. CONCLUSION AND FUTURE WORK

In this paper, we describe HoneyWeb, a system that prevents
web injection attacks by banking malware, while also retaining
the ability to detect the compromise of a machine by the
malware.

Similar to HoneyNet that attracts malicious traffi c, HoneyWeb
uses invisible fake contents to attract malicious injected web
content, and then detects the injection with very few or no false
positives. This advantage allows banks to cooperate with their
customers to remove the future lost cost by the compromise.

Currently, HoneyWeb relies on known malware signatures to
determine which part of web content to be obfuscated, and then
to inject invisible trapping contents. An improved system may
combine automatic signature extraction systems such as
Zarathustra [10] and HoneyWeb. This fully automated system
can extract malware signature fi rst, update obfuscation and
honey object injection module automatically, and then fi nally
alert on the compromise.

REFERENCES

[1] Doherty, S.; Krysiuk, P.; Wueest, C. The State of
Financial Trojans 2013, Security Response White
Papers, Symantec.

[2] Kharouni, L. Automating Online Banking Fraud.
Automatic Transfer System: The Latest Cybercrime
Toolkit Feature. http://www.trendmicro.com/
cloudcontent/us/pdfs/securityintelligence/whitepapers/
wp_automating_online_banking_fraud.pdf.

[3] Barnett, R.; Grossman, J. Web Application Defender’s
Cookbook: Battling Hackers and Protecting Users.

[4] Bosatelli, F.; Zarathustra: Detecting Banking Trojans
via Automatic, Platformindependent WebInjects
Extraction, https://www.politesi.polimi.it/
handle/10589/78343, 2013.

[5] Mador, Z.; Barnett, R. An Arms Race: Using Banking
Trojan and Exploit Kit Tactics for Defense, RSA
Conference, 2014.

[6] Wang, X.; Kohno, T.; Blakley, B. Polymorphism as a
Defense for Automated Attack of Websites, Applied
Cryptography and Network Security Lecture Notes in
Computer Science, 2014.

[7] Capturing Online Passwords and Antivirus. Web log
post. Business Information Technology Services, 24
July 2013.

PROTECTING FINANCIAL INSTITUTIONS... WANG & ZHAO

82 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

[8] IOActive, Inc. Reversal and Analysis of Zeus and
SpyEye Banking Trojans. http://www.ioactive.com/
pdfs/ZeusSpyEyeBankingTrojanAnalysis.pdf.

[9] Reis, C.; Gribble, S.; Kohno, Y.; Weaver, N. Detecting
InFlight Page Changes with Web Tripwires, NSDI,
2008.

[10] Criscione, C.; Bosatelli, F.; Zanero, S,; Maggi, F.
Zarathustra: Extracting WebInject Signatures from
Banking Trojans, 20th Annual International Conference
on Privacy, Security and Trust, 2014.

