
EVOLUTION OF ANDROID EXPLOITS...  SZALAY & CHANDRAIAH

257VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

EVOLUTION OF ANDROID 
EXPLOITS FROM A STATIC 

ANALYSIS TOOLS PERSPECTIVE
Anna Szalay & Jagadeesh Chandraiah

Sophos, UK

Email {anna.szalay, jagadeesh.chandraiah}@
sophos.com

ABSTRACT
With Android being the fastest-growing mobile OS, and with a 
rapidly increasing number of Android malware samples, it is 
important to acknowledge the risk of exploitation of security 
vulnerabilities by malware. 

According to Common Vulnerabilities and Exposures (CVE) 
data, over the past few years the total number of documented 
Android vulnerabilities has reached 36, with seven of them 
discovered in the last year. The most serious of the recent ones is 
the so-called ‘Master Key’ vulnerability (CVE-2013-4787), 
which is reported to have affected 99% of devices, 
compromising the APK signature validation process.

With the total number of Android samples in our database 
exceeding 900,000, and 2,000 new Android malware samples 
appearing every day, we estimate that approximately 10% of the 
samples exploit some vulnerability, of which one tenth will be a 
‘Master Key’ exploit.

In this paper, we will investigate Android malware that has 
attempted to exploit vulnerabilities, and identify the most 
relevant threat families from the perspective of static analysis 
tools. The research will reveal the evolution of the threat 
families. Additionally, we will provide an evaluation of the 
various analysis tools that are currently available, exploring their 
successes and failures, and highlighting the differences between 
them. These results will be used to identify the best approach for 
future analysis, to ensure it keeps up with the rapid development 
of Android malware, and the increasing sophistication of device 
exploitation.

1. INTRODUCTION
According to Gartner [1], collectively, 2.5 billion devices are 
expected to be shipped in 2014, with Android expected to be 
loaded on more than one billion of them (see Figure 1).

The continuously growing popularity of Android devices, as well 
as the specifi cs of the Android environment, its open source 

nature, the non-complicated process of adding applications to 
Google Play and other Android application markets, forums and 
fi le-sharing sites, plus the possibility of redistribution in the form 
of ‘cracked’ and repackaged apps, all make it the number one 
target for mobile malware writers, with the number of malware 
samples in our database reaching 900,000 this year (see Figure 2).

Figure 2: Android malware samples timeline.

It also means that exploitation of security vulnerabilities is 
inevitable, and it is important to acknowledge the risk of 
exploitation of vulnerabilities by malware. 

The cumulative share of malware samples exploiting different 
vulnerabilities has reached 10% (Figure 3).

Figure 3: Share of malware exploit samples.

But when we consider the signifi cance of the prevalent malware 
families that have surfaced over years, there are several 

Figure 1: Worldwide device shipment by operating system (thousands of units).



EVOLUTION OF ANDROID EXPLOITS...  SZALAY & CHANDRAIAH

258 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

well-known families that have used an exploit(s). In this paper, 
we will aim to identify those families based on our collection of 
Android malware samples.

We will concentrate on Android exploits and their evolution by 
evaluating malware families using static analysis tools. We will 
look at the important families that have used exploits to obtain 
access to and gain control of infected devices, limiting our 
research to the families that could be considered as the most 
well known for exploiting one vulnerability or more.

We will evaluate popular analysis tools by running them against 
malware families containing the exploits and analysing the 
results. We will look at how successful they are, highlight their 
failures, and document our case studies in order to identify the 
best approach for similar cases in the future.

Our aim is to show how the development of Android malware 
and the increasing sophistication of Android exploits has made 
popular static analysis tools unreliable.

We will argue that the evolution of exploits needs to be matched 
by the development of analysis tools, and highlight the need to 
develop more robust static and dynamic tools in the future. 

2. EXPLOITS OVERVIEW
Based on Common Vulnerabilities and Exposures (CVE) data 
[2], the total number of documented Android vulnerabilities has 
reached 36, with seven of them discovered in the last year, and 
six in the fi rst quarter of 2014.

Since it began in 2010, the evolution of Android malware can be 
matched with the exploitation of Android vulnerabilities. Based 
on our samples, we will take a closer look at those that we think 
are the most signifi cant milestones.

Android vulnerabilities exploitation timeline: 

• Q4 2010: Android WebKit browser exploit 

• Q4 2010: Android data-stealing vulnerability

• Q1 2011: Android local root exploit, a.k.a .‘Rage against 
the cage’ or ‘Lotoor’ exploit

• Q2 2011: Android ClientLogin protocol vulnerability

• Q3 2011: Android Gingerbreak root exploit, a.k.a. 
CVE-2011-1823

• 2012 …

• Q2 2013: Dex2jar exploitation

• Q2 2013: ‘Master Key’ vulnerability 

• Q3 2013: ‘Extra Field’ vulnerability 

3. EXPLOITS EVOLUTION

3.1 Android WebKit browser exploit

The fi rst serious proof-of-concept exploit for the Android 
platform was related to the Android WebKit browser and, while 
it was not related only to Android OS (and thus was not a 
platform vulnerability), it allowed remote attackers to execute 
arbitrary code or cause a denial of service (application crash) 

via a crafted HTML document, related to non-standard NaN 
representation. In other words, it was making Android devices 
vulnerable to drive-by exploits [3].

It has been reported that the targeted vulnerability was fi xed by 
Google in the following Android release (2.2 Froyo). According 
to Google, Froyo was used by 36% of all Android devices at the 
time – which meant that the majority of devices could still 
successfully be attacked using the exploit [4].

3.2 Android data-stealing vulnerability

Next on our list is an Android data-stealing vulnerability [5], a 
general vulnerability in Android which allowed a malicious 
website to obtain the contents of any fi le stored on the device’s 
SD card. It would also be possible to retrieve a limited range of 
other data and fi les stored on the phone using this vulnerability. 
This is a simple exploit involving JavaScript and redirects, 
meaning it should also work on multiple handsets and multiple 
Android versions without any effort. One limiting factor of this 
exploit is that you have to know the name and path of the fi le 
you want to steal. However, there are a number of applications 
that store data with consistent names on the SD card, and 
pictures taken on the camera are stored with a consistent naming 
convention too, so it is not hard to guess the correct names and 
paths. This is not a root exploit either, meaning it runs within 
the Android sandbox and cannot reach all fi les on the system, 
only those on the SD card and a limited number of others.

3.3 Android local root exploit, a.k.a. ‘rage against 
the cage’ or ‘Lotoor’ exploit

At the beginning of 2011, the Android root was attacked by 
exploiting privilege escalation. Both exploits for the Linux 
kernel udev vulnerability and an adb privilege escalation attack 
are relatively old, but they worked with the versions of Android 
used by the majority of Android phones. 

Note that we are still seeing samples with different variations of 
this exploit. The cumulative share of malware samples that use 
variations of this exploit has reached 2% of the total number of 
samples, as shown in Figure 4.

Figure 4: Malware root exploit samples share.

When looking at the different pieces of malware that have taken 
advantage of this vulnerability, up to 14% is made up of variants 
of the so-called ‘classic’ Android local root exploit samples 
based on using an ELF executable that comprises exploit code 
(see Figure 5).



EVOLUTION OF ANDROID EXPLOITS...  SZALAY & CHANDRAIAH

259VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

Figure 5: Share of root-exploit-based malware samples.

DroidKungFu is a well-known malware family that has taken 
root exploitation to a different level – it alone accounts for 15% 
of root-exploit-based malware samples.

DroidKungFu was included in repackaged apps that were made 
available through a number of alternative app markets and 
forums targeting Chinese-speaking users. This malware would 
add into the infected app a new service and a new receiver. The 
receiver would be notifi ed when the system fi nished booting so 
that it could automatically launch the 
service without user interaction. 
DroidKungFu had encrypted udev and ‘rage 
against the cage’ exploits, and decrypted 
them upon running, executing and launching 
the attack.

Reports suggest that Gingerbread (Android 
2.3) was the only Android version that was 
not vulnerable at the time, which would 
mean that 99% of Android phones were 
potentially affected.

Another 2% of the root exploits pie was 
occupied by the so-called BaseBridge family. 
This malware used a privilege escalation 
exploit to elevate its privileges and install 
additional malicious apps onto an Android 
device. It used HTTP to communicate with a 
central server and leaked potentially 
identifi able information. These malicious 
apps could send and read SMS messages, 
potentially costing the user money. In fact, it 
could even scan incoming SMS messages 
and automatically remove warnings that alert 
the user to the fact that they are being 
charged a fee for using premium rate 
services.

Also, insignifi cant in share, but a piece of 
malware that attracted public attention at the 
time, is DroidDream. It surfaced in spring-
summer 2011 and represents the fi rst 
Android botnet to take advantage of a root 
exploit. DroidDream became an ‘Android 
Market nightmare’ when over 50 infected 
apps were identifi ed and removed from the 
market [6].

3.4 Android ClientLogin protocol vulnerability 

The Android ClientLogin protocol vulnerability has the highest 
score based on CVE details, and was discovered by German 
researchers in May 2011 [7]. It allowed remote attackers to gain 
privileges and access private data by interfering with the 
transmitting of an authentication token (authToken), meaning 
that it could potentially allow Wi-Fi traffi c to be sniffed, and the 
authToken that had just been generated to be stolen. It has been 
reported that 99% of Android devices were at risk from this 
vulnerability at the time [8].

3.5 Android Gingerbreak root exploit

Another milestone in the evolution of exploiting vulnerabilities 
was claimed by GingerMaster, the fi rst Android malware to use 
a root exploit on Android 2.3 (Gingerbread), CVE-2011-1823 
[7]. It takes up 68% of the root exploits pie! 

The GingerMaster malware was repackaged into popular 
legitimate apps in order to attract user downloads and 
installation. Within the repackaged apps, the malware 
registered a receiver so that it would be notifi ed when the 
system fi nished booting. Inside the receiver, it would silently 
launch a service in the background. Accordingly, the 

Figure 6: Inside GMaster APK, exploit code in a picture fi le.

Figure 7: Inside GMaster APK, exploit code in a picture fi le.



EVOLUTION OF ANDROID EXPLOITS...  SZALAY & CHANDRAIAH

260 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

background service would collect various pieces of information 
including the device ID, phone number and others (e.g. by 
reading /proc/cpuinfo) and then upload the information to a 
remote server. The actual exploit was packaged into the 
infected app in the form of a regular fi le named ‘gbfm.png’, 
which could be deciphered as ‘Ginger Break for Me’ (see 
Figures 6 and 7).

3.6 Dex2jar exploitation: Obad

Labelled as one of the worst trojans ever, Obad hit the headlines 
in June 2013. It combined a few unknown exploits and made 
analysis incredibly diffi cult. Obad exploited the way in which 
the OS was processing the AndroidManifest.xml fi le (which is 
generated during the build process, and contains information 

about the application structure, including 
how different components are related and 
launched, as well as what permissions an 
application requests). Obad’s authors also 
found a way to silently extend Device 
Administrator privileges so that the 
malware would not appear on the list of 
the applications running with these 
privileges. In addition, the malware 
authors introduced complex code 
encryption, with all external methods 
called via refl ection, and all strings 
encrypted, including the names of classes 
and methods. Each class would have a 
local descriptor method which would 
obtain the string required for encryption 
from the locally updated byte array. See 
Figures 8 and 9.

From our point of view, however, Obad 
was most famous for fi nding an error in 
the dex2jar software. Dex2jar is one of 
the most popular and well-used static 
analysis tools. The disruption of the 
conversion of Davlik bytecode into Java 
bytecode by fi nding an error in the 
software was quite signifi cant as it made 
static analysis extremely diffi cult.

3.7 ‘Master Key’ vulnerability

In July 2013, it was reported that an 
Android APK signing had been 
compromised. The error was found in the 
way cryptographic signatures for 
applications were handled – this allowed 
attackers to execute arbitrary code via an 
application package fi le (APK) that is 
modifi ed in a way that does not violate the 
cryptographic signature: CVE -2013-
4787, a.k.a. Android security bug 8219321 
and the ‘Master Key’ vulnerability [2]. In 
short, the application update validation 
process was compromised: it was found 
possible to repackage a legitimate 
application while inserting malicious code 
in the form of duplicates of the original 
AndroidManifest and classes.dex fi les, 
thus providing a way for a legitimate app 
to be updated with a malicious version. 

An interesting addition to this 
vulnerability is that the simple unpacking 
of an APK using any Zip-based unpacker 

Figure 8: Obad obfuscation, example of decompiled by dex2jar dex code output.

Figure 9: Obad obfuscation, example of decompiled by dex2jar dex code output.

Figure 10: Inside ‘Master Key’ malware, example of multiple fi les.



EVOLUTION OF ANDROID EXPLOITS...  SZALAY & CHANDRAIAH

261VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

will overwrite multiple fi les unless special settings are applied, 
thus complicating static analysis. See Figure 10.

3.8 ‘Extra Field’ vulnerability

Following in the steps of ‘Master Key’, just a couple of weeks 
later a similar vulnerability that would allow the bypassing of 
code verifi cation was found by Chinese researchers [9]. It was 
based on the way in which an APK fi le is verifi ed as an archive 
and used an object extra fi eld, hence the name ‘Extra Field’ 
vulnerability. It did not reach the same sample numbers as the 
‘Master Key’ vulnerability, but was reported to have comparable 
possible implications due to the fact that it exploited 
fundamentals of the Android APK, which is a ZIP archive with 
some special object fi elds. The fl aw was based on a 
signed-unsigned integer mismatch and, as some researchers 
have pointed out, relevant code testing could have prevented it 
[10]. Recognition of the exploited APK is based on identifying 
an object in a ZIP archive with the changed extra fi eld length 
followed by the fi lename ‘classes.dex’, where the extra fi eld 
length is FDFF, i.e. 65,533 (unsigned) or -3 (signed), as shown 
in Figure 11.

Figure 11: Example of malware exploiting the ‘Extra Field’ 
vulnerability, showing a changed fi eld.

The fact that it was treated as a signed integer during the 
classes.dex checksum verifi cation forced a verifi er to step back 
exactly three bytes and read bytes starting from the ‘dex’ 
characters and following the contents of the extra fi eld. 
However, on loading an APK, FDFF is treated as an unsigned 
integer, which causes the loader to go forward for the length of 
the extra fi eld, i.e. 65,533 bytes. This could result in the loading 
of the malicious code that has been inserted into the hacked 
APK. 

Google responded with a fi x labelled ‘Values in ZIP are 
unsigned’ [11]. Both the ‘Master Key’ and ‘Extra Field’ 
vulnerabilities were based on compromising an Android app 
installer package (APK).

4. STATIC ANALYSIS TECHNIQUES AND 
TOOLS 
In this section we will provide an overview of the static analysis 
techniques and tools used for analysing Android malware. There 
are different approaches for static analysis according to one’s 
knowledge and tools arsenal, but here we will discuss the most 
widely used and straightforward technique. We can broadly 
classify the static analysis steps as follows:

• Unarchiving – the APK fi le is in ZIP format, to verify its 
contents we need to extract them using tools like UnZip.

• Decoding – AndroidManifest.xml and Resources.arsc are 
decoded using tools like apktool and Androguard.

• Decompiling .dex – dex2jar and jd-gui are used for 
converting .dex fi les to .jar format, and then decompiling to 
Java code respectively. 

• Disassembling .dex – smali/baksmali and IDA Pro can be 
used to disassemble the .dex fi les.

5. EVALUATION OF STATIC ANALYSIS TOOLS 
AGAINST EXPLOIT SAMPLES
In this section, static analysis tools will be evaluated against 
popular exploit samples to highlight the challenges faced when 
analysing such samples. We won’t explain the whole of each 
exploit, as we have already discussed the details earlier in the 
paper. Instead, we will discuss only the part that is relevant to 
the tools analysis. Although we have evaluated tools in the 
context of exploit samples, most of the evaluation will also be 
applicable to malware samples that don’t use any exploits. The 
methodology used was to run the samples as an analyst would 
to verify for analysis, and all the samples that weren’t successful 
in executing, or that posed a challenge for analysis, are 
discussed below. 

The set of samples evaluated were:

Andr/MstrKey 

Andr/DroidD (DroidDream)

Andr/DroidRt

Andr/Obad

Andr/Kongfu (DroidKungFu) 

Andr/Gmaster (GinMaster)

5.1 Andr/MstrKey-A – challenge of multiple 
entries of the same fi le

Andr/MstrKey-A SHA1 – (APK) 
78adcaa663d0f33ca014080870ff7a7e27461086

The Master Key vulnerability works by having multiple entries 
of the same fi lename [12]. As shown in Figure 12, there are 
multiple classes.dex, AndroidManifest.xml and icon.png fi les.

Because of the duplicate entries with same name, we should pay 
extra attention when using analysis tools to achieve what we 
want.

As the APK fi le is in ZIP format, the fi rst thing we should do is 
to extract the APK to verify the classes.dex and 



EVOLUTION OF ANDROID EXPLOITS...  SZALAY & CHANDRAIAH

262 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

AndroidManifest.xml fi les. When you try to extract the archive 
contents, if you are not aware of the exploit, it is possible to 
unintentionally overwrite the fi les with similar names, as shown 
in Figure 13. 

The exploited APK fi le used for testing has two 
AndroidManifest fi les and two classes.dex fi les. Apktool is the 
tool most commonly used to decode AndroidManifest.xml fi les 
and generate smali code from classes.dex. In this case, apktool 
(v1. 5.2) decodes just one AndroidManifest fi le and one 
classes.dex fi le, but the dodgy permissions and code are in the 
other set of fi les. In order to decode these fi les, you have to fi x 
the APK manually to decode the right fi les, or else decode them 
yourself manually. Even though this tool is designed to decode 
only one set of fi les, it would be useful for it to be able to 
decode more than one set in future.

5.2 Andr/DroidD – Dex header issue

SHA (dex) – b5b41c7c75182ced4121d01a6328f626aaf5a997

We came across an Andr/DroidD-Gen sample which IDA Pro 
showed as corrupt (Figure 15). When we investigated, we found 
that the classes.dex fi le in question had a dex036 header 
(Figure 16).

Figure 15: IDA 6.4adv corrupt error message.

Figure 16: Dex fi le with dex036 header.

Figure 17: Dex header format to offset 0x28.

According to the dex fi le format [13], the fi rst eight bytes of 
the dex fi le are DEX_FILE_MAGIC (Figure 17), with 

Figure 12: Andr/MstrKey-A APK fi le showing multiple fi les with 
the same name.

Figure 13: UnZip prompting to replace the existing fi le.

Figure 14: Files after the ‘apktool d’ command.



EVOLUTION OF ANDROID EXPLOITS...  SZALAY & CHANDRAIAH

263VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

‘dex\n<2 byte version number>\0’. In our database, we found 
that most of the malware had dex035 headers – which is an 
older, but still recognized version (API level 13 and earlier), and 
dex036 is used in the current version (4.x) of dex fi les [14]. This 
issue had already been noticed in IDA, and a fi x has been made 
available [15], but at the time of writing this paper we still don’t 
have a fi x available for the default installation of IDA version 
6.4adv.

5.3 Android/DroidRt, Andr/Obad-A – use of 
unfamiliar opcodes and decompilation

SHA (dex) – 90462f3ada7f4d551fc8f7d1e2672c4eea9e8cc8 

In Windows PE fi les it is common to see use of obfuscation and 
anti-analysis codes in order to hinder sample analysis. We have 
seen previous work where illegal and improper use of opcodes 
has been suggested to break analysis tools [16]. Malware 

Figure 18: Error on dex2jar decompilation of fi le.

Figure 19: Error on baksmali 1.4.1, but works with baksmali 2.03.

Figure 20: Decompiled Obad fi le with error.



EVOLUTION OF ANDROID EXPLOITS...  SZALAY & CHANDRAIAH

264 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

authors and developers of commercial packers are aware of this, 
and use this technique extensively to make analysis of samples 
diffi cult. 

We encountered an Andr/DroidRt sample which failed to 
decompile with dex2jar (Figure 18). 

Dex2jar failed, saying that the format for opcode 64 could not 
be found. The opcode 64 documentation says ‘Reads the byte 
static fi eld identifi ed by the fi eld_id into vx’ [16] – unfamiliar 
opcodes are usually used to delay reversing. Inserting 
junk bytes and bad opcodes is a known technique for 
thwarting reverse engineering, and in the past researchers 
have shown how insertion of these opcodes has broken 
analysis tools [16, 17] (these techniques are still used 
effectively). As an added bonus, this sample also failed to 
work with baksmali 1.4.1 (Figure 19), but managed to work 
with the 2.03 version.

Obad has been called one of the most advanced pieces of 
Android malware. It has posed challenges in static analysis as it 
takes advantage of a vulnerability in the Davlik to Java 
conversion in dex2jar [18] (Figure 20).

Because of the error, the analyst would not be able to see a 
proper decompiled representation of the code and could come to 
the wrong conclusion if not analysed correctly. Obad is 
protected with the dexguard commercial packer [19] – this 
means that any application protected with this packer will 
produce the same issue with dex2jar.

6. BEST APPROACH 
From our evaluation, we have found that several popular and 
commonly used tools are not suitable for effective static 
analysis of certain Android malware samples. While Android 
malware is growing both in complexity and volume at an 
exponential rate, the development of new tools and maintenance 
of existing ones are not matching that pace.

Even though most of the errors and tricks employed by malware 
authors to break analysis tools have been known to researchers 
for a while, the tools are not suffi ciently well maintained to 
implement the necessary changes to overcome these issues. The 
Android SDK tools baksmali/smali are updated frequently, but 
they alone are not suffi cient to provide full in-depth analysis of 
malware. In order to be able to understand how complex 
sophisticated malware works, analysts have to combine static 
analysis with dynamic tools. The consequence of this is that it 
buys more time for malware authors to continue their work while 
analysts spend more time analysing the samples. As a result, the 
security of Android applications and users is affected. To tackle 
this problem, Google should provide resources and funding for 
widely used tools and maintain them with regular updates to 
keep in line with malware advancements. Static analysis should 
be combined with the dynamic and sandbox environment.

7. CONCLUSION
Android malware is growing at a steady rate to match its 
counterparts in the PC world – we already have several malware 
families using Android exploits. From a web browser exploit to 
extensive root exploitation, cybercriminals have created 

complex pieces of malware that comprise multiple exploits and 
have a high level of obfuscation. Even an Android application 
installer, an APK fi le validation, has been compromised. By 
comparing the evolution of Android malware from an 
exploitation of vulnerabilities point of view with the evolution 
of tools used to analyse the exploit samples, we conclude that 
existing tools are not suffi ciently well maintained to match 
advancements in malware. 

We would like to add that, despite the fact that Google 
constantly attempts to improve its app verifi cation processes, it 
is obvious that it is just playing catch-up. We keep seeing cases 
that involve compromised applications, whether it is down to 
the process of signature verifi cation or compromised signatures. 
We anticipate that Android malware will grow and become more 
complex in the future. In order to combat it effectively, we need 
to fi nd new ways of tackling it, keeping existing tools up to date 
and investing in new tools to make analysis easier. 

REFERENCES 
[1] Gartner (March 2014). http://techcrunch.com/2014/03/

27/gartner-devices-forecast-2014/. 

[2] http://www.cvedetails.com/vulnerability-list/vendor_id-
1224/product_id-19997/Google-Android.html&sa=X&
ei=rxZ6U4u2N6XN7AaNlYG4BA&ved=0CCgQ7xYo
AA&biw=1920&bih=846.

[3] http://www.cvedetails.com/vulnerability-list/vendor_id-
1224/product_id-19997/Google-Android.html. 

[4] http://nakedsecurity.sophos.com/2010/11/08/pressure-
to-improve-android-security-is-building-up/.

[5] http://thomascannon.net/blog/2010/11/android-data-
stealing-vulnerability/.

[6] http://www.pcworld.com/article/221247/droiddream_
becomes_android_market_nightmare.html.

[7] CVE-2011-2344. http://www.cvedetails.com/
vulnerability-list/vendor_id-1224/product_id-19997/
Google-Android.html. 

[8] http://www.uni-ulm.de/en/in/mi/staff/koenings/
catching-authtokens.html.

[9] http://www.h-online.com/open/news/item/Second-
Android-signature-attack-disclosed-1918061.html.

[10] Ducklin, P. Anatomy of another Android hole – Chinese 
researchers claim new code verifi cation bypass. 
http://nakedsecurity.sophos.com/2013/07/17/anatomy-
of-another-android-hole-chinese-researchers-claim-
new-code-verifi cation-bypass/.

[11] https://android.googlesource.com/platform/libcore/+/
9edf43dfcc35c761d97eb9156ac4254152ddbc55.

[12] Ducklin, P. Anatomy of a security hole – Google’s 
‘Android Master Key’ debacle explained. 
http://nakedsecurity.sophos.com/2013/07/10/anatomy-
of-a-security-hole-googles-android-master-key-
debacle-explained/.

[13] Dex File Format. http://source.android.com/devices/
tech/dalvik/dex-format.html.



EVOLUTION OF ANDROID EXPLOITS...  SZALAY & CHANDRAIAH

265VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

[14] Android 4.1.2 Dexfi le.h source. http://osxr.org/android/
source/dalvik/libdex/DexFile.h.

[15] http://www.strazzere.com/blog/2013/02/loose-
documentation-leads-to-easy-disassembler-breakages/. 

[16] http://pallergabor.uw.hu/androidblog/dalvik_opcodes.
html.

[17] http://archive.hack.lu/2013/
AbusingDalvikBeyondRecognition.pdf.

[18] Dex2Jar. http://code.google.com/p/dex2jar/.

[19] Dexguard. http://www.saikoa.com/dexguard.

[20] Unzip. http://linux.about.com/od/commands/l/blcmdl1_
unzip.htm. 

[21] Unuchek, R. The most sophisticated Android Trojan. 
https://www.securelist.com/en/blog/8106/The_most_
sophisticated_Android_Trojan.

[22] http://www.strazzere.com/papers/DexEducation-
PracticingSafeDex.pdf.




