
DNSSEC: HOW FAR HAVE WE COME? SULLIVAN

83VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

DNSSEC: HOW FAR HAVE WE
COME?

Nick Sullivan
CloudFlare Inc., USA

Email nick@cloudfl are.com

ABSTRACT

DNSSEC is a set of security extensions to DNS intended to
provide a root of trust for DNS records. This paper is a
summary of the state of the art in DNSSEC deployment and
implementation on the Internet. We start with a description of
Kaminsky’s attack on DNS to motivate the need for trust in the
DNS system. From here we describe some of the common
arguments against DNSSEC, including NSEC and NSEC3
walking, and how DNSSEC can be an enabler for UDP
refl ection attacks. We then discuss useful extensions to
DNSSEC, like DANE, and how these can be used to secure
websites without trusting the certifi cate authority system. We
also examine how far the effort has come in the decades since
the technology was standardized, including adoption statistics
and trends.

INTRODUCTION
The Domain Name System (DNS) is one of the oldest and most
fundamental components of the modern Internet. As the
mechanism that maps domain names to Internet Protocol (IP)
addresses, it provides a human-readable layer to navigate the
millions of machines and devices on the Internet. In the early
1980s, when DNS was designed, there was no strong need to add
security mechanisms into the protocol. Computers of the time
were underpowered compared with today’s machines; public key
cryptography was a relatively new concept; and the network was
much smaller, with fewer participants who were relatively well
known and trusted. As the network grew and evolved, DNS
remained pretty much unchanged as an insecure and
unauthenticated protocol.

In 1995, the IETF started a public discussion around how DNS
could be made more trustworthy. Eventually, a set of extensions
to DNS called Domain Name System Security Extensions
(DNSSEC) were settled on and formally published in 2005,
replacing earlier proposals as a defi nitive way forward for
securing DNS. Though it has been almost a decade since this
publication, DNSSEC still has a long way to go to be adopted in
the mainstream.

There are several catalysts pushing DNSSEC
adoption, one of which is Dan Kaminsky’s cache
poisoning attack from 2008 [1]. This attack
highlighted the signifi cant trust issues in traditional
DNS, and how DNSSEC is well positioned to
solve them. Even with the signifi cant work going
into it, there are several factors holding DNSSEC
adoption back. Network operators tend to prefer
stability to complexity (for good reason), and

people have questioned whether DNSSEC is really the right
tool for the job.

This paper presents the evolution of the state of the art in
DNSSEC deployment and implementation on the Internet. We
start with some background about how DNS works and where
DNSSEC fi ts in. We will explore how standard DNS is insecure
and can be exploited with Kaminsky’s attack. We describe some
of the common arguments against DNSSEC, including domain
enumeration with NSEC (NextSECure) and NSEC3 walking,
and how DNSSEC can be an enabler for UDP refl ection attacks.

We then discuss useful extensions to DNSSEC, like DANE, and
how these can be used to secure websites and provide a much
stronger form of trust than the certifi cate authority system. We
also examine how far the effort has come in the decade since the
technology was standardized using adoption statistics and trends.

DNS: A DISTRIBUTED KEY VALUE STORE
BEFORE IT WAS COOL
The concept of DNS is simple: it is a global database of
information about domain names.

If a client wants to connect to an address such as
‘www.example.com’, and needs to know which IP address
corresponds to this address, they can ask DNS. Typically, all
DNS messages are sent over UDP.

There are several types of Resource Records (RR) that DNS can
answer questions about. One of the most important RRs is called
an A record, which stores the IPv4 address associated with the
domain. To fi nd out the value of a record for a given domain, you
can get a tool called a DNS resolver to fi nd out for you.

For example, it you wanted the IP for www.example.com, the
question you could ask would be something like:

‘What is the A record for the domain www.example.com?’

The raw DNS request is a UDP packet as shown in Listing 1.
This request contains an ID (0x27e1), some fl ags to indicate that
it is a request, and the question itself.

The response is shown in Listing 2. The response comes with the
matching ID (0x27e1), a copy of the original request echoed
back, some fl ags (1/0/0), and an answer to the question:
93.184.216.119. It also contains a validity period, called time to
live (TTL), to indicate for how long the record is valid.

The ISP typically provides a nameserver that can answer DNS
requests. You can use a public nameserver like the ones provided
by Google (8.8.8.8, 8.8.4.4) or OpenDNS (208.67.222.222,
208.67.220.220). If a nameserver does not have the answer, it

0x0000: 27e1 0100 0001 0000 0000 0000 0765 7861 ‘............exa

0x0010: 6d70 6c65 0363 6f6d 0000 0100 01 mple.com.....

Listing 1: Raw DNS request.

0x0000: 27e1 8180 0001 0001 0000 0000 0765 7861 ‘............exa

0x0010: 6d70 6c65 0363 6f6d 0000 0100 01c0 0c00 mple.com........

0x0020: 0100 0100 0031 f500 045d b8d8 771...]..w

Listing 2: Response.

DNSSEC: HOW FAR HAVE WE COME? SULLIVAN

84 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

can request it from another server, called an authoritative
nameserver, to get the proper resource record. Any nameserver
that is willing to query other servers for DNS answers is called a
recursive nameserver.

The hierarchy of DNS is very well defi ned: start at the DNS root
nameserver and work your way down the domain name. The top
of the pyramid is a server called the root server, the source of
truth for all requests (there are several root servers maintained
by different organizations [2]). The root servers know the
addresses of the authoritative servers for the top level domains
(.com, .edu, etc.), but nothing else. If you ask the .com
authoritative nameserver for www.example.com, it will return a
record called SOA (start of authority), which points to the
nameserver which should have more information about the
requested zone.

Each of the TLD authoritative nameservers knows about the
authoritative nameservers for the domains under them
(example.com, cloudfl are.com, google.com, etc.). Following
this downward eventually gets you to the server that can answer
queries about the records for the subdomain you are looking for.

Root SOA com authority SOA example.com authority
A www.example.com

The set of DNS recursive and authoritative nameservers is one
of the oldest distributed databases on the Internet. The TTL for
RRs allow each server to act as a cache to help distribute the
load. There are a number of different RRs that you can ask for.
‘A’ records result in IPv4 addresses, ‘AAAA’ for IPv6, ‘SOA’ for
Start of Authority, and there are many more defi ned in various
RFCs [3].

KAMINSKY’S ATTACK
In 2008 [4], Dan Kaminsky revealed an attack on the DNS system
in which you can trick a DNS recursive nameserver into storing
incorrect DNS records. Once the nameserver has stored the
incorrect response, it will return it to everyone who asks as long
as the TTL has not expired. This so-called DNS poisoning attack
could allow arbitrary people to trick DNS and redirect web
browsers to incorrect servers, allowing them to hijack traffi c.

The attack is simple to describe but diffi cult to pull off. Take the
sequence of events described in the last section:

1. Q client recursive

2. Q recursive authoritative

3. A authoritative recursive

4. A recursive client

The attack relies on the fact that UDP is a stateless protocol.
Each of the requests and responses described here is a single
UDP request containing to and from IP addresses. If the sender
of the request lies about the return address, the response is sent
to the wrong place. We will get back to this when we talk about
refl ection/amplifi cation attacks. The main point here is that an
attacker can create a DNS request or response with a forged
from address.

Of the requests above, message number 3 looks like a good
target to attack. The recursive nameserver will accept the fi rst

answer to its question. If you can answer it faster than the
authoritative server can, it will accept your answer as truth. This
is the core of the attack:

1. Pick a domain whose DNS you want to hijack.

2. Send a request to a recursive nameserver for the record
you want to poison.

3. Send fake UDP responses pretending to be the
authoritative server with the answer of your choosing
(i.e. point the A record to an IP you control).

If your malicious response arrives ahead of the real response,
the recursive nameserver will believe your record and cache it
for as long as the TTL is set. Then any other clients asking for
the poisoned record will be directed to your malicious domain.

There are some complications that make this harder than it
sounds in practice. You have to guess the request ID, and you
have to guess the incoming UDP port on the recursive
nameserver. When Kaminsky’s attack was originally proposed,
these two values were easily guessable, making DNS poisoning
a real threat. Since then, request ID and port randomization have
made this specifi c attack more diffi cult to pull off, but not
impossible.

The fundamental issue that allows this kind of attack to happen
is that there is no way to validate that the records are what they
are supposed to be.

DNSSEC

The security extensions to DNS add three important records that
enable the entire DNS to be trusted. From a high level, DNS
starts at the root nameserver and works down. This is the same
way that trust is conferred via DNSSEC. The DNS root is the
defi nitive root of trust, and a chain of trust is built to the root
from any DNS entry. This is a lot like the chain of trust used to
validate TLS/SSL certifi cates, except that, rather than many
trusted root certifi cates, there is one trusted root key managed
by the DNS root.

The point of DNSSEC is to provide a way for DNS records to
be trusted by whoever receives them. The key innovation of
DNSSEC is to use public key cryptography to ensure that DNS
records are authentic. DNSSEC not only allows a DNS server to
prove the authenticity of the records it returns, it also allows a
server to assert the non-existence of records. This is established
by a strict chain of records that identify either a public key or a
signature of a set of resource records. The root of this chain of
trust is the root key, maintained and managed by the operators
of the DNS root.

There are several important new record types:

• DNSKEY: a public key, used to sign RR sets.

• DS: delegation signer, a hash of a key.

• RRSIG: a signature of a minimal set of resource records.

A DNSKEY record is a cryptographic public key, it usually
comes in two fl avours:

• KSK (key signing key): usually used to sign DNSKEY
records only.

DNSSEC: HOW FAR HAVE WE COME? SULLIVAN

85VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

• ZSK (zone signing key): used to sign every other type of
record.

So how do these records fi t together to form a chain of trust?
Let’s examine fi rst how an RRSIG record works. Each RRSIG
record includes a cryptographic hash of all the records of a
given type, sorted in a canonical order. It also includes a tag to
help identify which DNSKEY record was used to sign it. For
every record type other than DNSKEY, the RRSIG is signed
with a ZSK DNSKEY. The DNSKEY is signed by the KSK. So
by checking an RRSIG against the appropriate DNSKEY, you
can assert that the appropriate server has signed the records and
they are trusted.

How do you trust the DNSKEY? The way to do that is to walk
the domain up to the next zone. To verify that the DNSKEY for
example.com is valid, you have to ask the .com authoritative
server. This is where the DS record comes into play. The .com
zone stores the hash of the DNSKEY for each zone it knows
about as a DS record. This record, like all DNSSEC records, is
part of a signed set of records, and has an accompanying RRSIG
signed by the .com DNSKEY. Similarly, the .com has a KSK,
signing all .com DNSKEYs. So if you trust the .com keys, you
can trust the example.com keys, and the A and other records
obtained from the nameserver. The ultimate root of trust is the
KSK DNSKEY for the DNS root. This key is universally known
and published.

Here is the DNSKEY root KSK as of June 2014:

AwEAAagAIKlVZrpC6Ia7gEzahOR+9W29euxhJhVVLOyQbSEW0O8gcC
jFFVQUTf6v58fLjwBd0YI0EzrAcQqBGCzh/RStIoO8g0NfnfL2MTJR
kxoXbfDaUeVPQuYEhg37NZWAJQ9VnMVDxP/VHL496M/QZxkjf5/Efu
cp2gaDX6RS6CXpoY68LsvPVjR0ZSwzz1apAzvN9dlzEheX7ICJBBtuA
6G3LQpzW5hOA2hzCTMjJPJ8LbqF6dsV6DoBQzgul0sGIcGOYl7OyQd
XfZ57relSQageu+ipAdTTJ25AsRTAoub8ONGcLmqrAmRLKBP1dfwhY
B4N7knNnulqQxA+Uk1ihz0=

By following the chain of DNSKEY, DS and RRSIG records to
the root, any record can be trusted.

These records are enough to prove the existence of a given
resource record, but something more is needed in order to prove
that a record does not exist. This is where two additional record
types, NSEC and NSEC3, come into play.

Typically, a DNS authoritative server returns a fl ag called
NXDOMAIN when a resource record defi nitively does not
exist. In practice, this is not enough to prove that the record
does not exist, since the response could be forged by a third
party with no additional knowledge. NSEC works by signing
the gaps between valid responses. There are a fi nite set of
positive answers, and the gaps between positive answers are
covered by NSEC. This effectively doubles the number of
records in the zone, but allows an authoritative nameserver to
serve a signed response for any question.

Say that .com supports NSEC records (in reality it supports
NSEC3). Asking for ‘example.com’ would give you a positive
answer with an IP address and an RRSIG record. Asking for
‘examplf.com’ would give you a negative answer ‘there are no
zones between example.com and exampli.com’, with a
corresponding RRSIG.

For NSEC3 the same logic applies, but for the hash of the
record. Asking for examplf.com (e comes before f) would give

you ‘there are no records with hashes between A and B’, where
A is the next closest hash lexicographically before the hash of
examplf.com, and B is the next closest after.

DNSSEC CONTROVERSIES
As a way to provide a system of trust for DNS records,
DNSSEC works. Implementing such a large change to one of
the core components of the Internet was not expected to be easy,
and it has not been. Not only is there a large operational cost to
implementing DNSSEC, there have been several other
criticisms faced by DNSSEC over the years. In this section I
will examine two major drawbacks to DNSSSEC.

Zone privacy

One of the major issues with the NSEC record is that it allows
anyone to ‘walk’ the DNS zone. This can be used to reveal all of
the domains hosted on the nameserver. Take the example of
‘examplf.com’ – the NSEC responses lets you know that
‘exampli.com’ exists. Trying an invalid record after that one
such as ‘examplia.com’ will give you the next valid DNS name.
This can continue until the entire zone is enumerated.

Technically, DNS records are not supposed to be secret, but in
practice they are considered so. Subdomains have been used to
keep things private for a while, and suddenly revealing the
contents of the zone fi le is not expected or appreciated. This is
why NSEC3 was introduced, but even it can be used to reveal
the existence of subdomains.

The NSEC3 record is designed to provide authenticated denial
of existence by having a signed ring of password equivalents.
Rather than a signed gap of domain names for which there are
no answers to the question, NSEC3 provides a signed gap of
hashes of domain names. This was intended to prevent zone
enumeration.

For NSEC enumeration, you can create the full list of domains
by starting at a given known domain. If the zone has around 100
domains, it will take around 100 requests to enumerate the
entire zone. With NSEC3, when you request a zone that does
not exist, a signed NSEC3 record is returned with the next zone
present ordered lexicographically by hash. By pre-computing
domains that hash to the next gap of domain hashes, it should
take around 100 correctly chosen queries to enumerate all the
hashes. There are many tools that can do this computation for
you, including a plug-in to nmap [5]. Once the hashes that
correspond to all the valid subdomains of the zone are known, a
dictionary attack can commence. Subdomains that have a short
enough name, or are guessable using a dictionary, can be
revealed as existing without having to spam the nameserver with
guesses. Zone privacy is only slightly improved when using
NSEC3 as designed.

This vulnerability is mitigated by a technique introduced by Dan
Kaminsky known as DNSSEC White Lies [6]. When a request
comes in for a domain that is not present, instead of providing an
NSEC3 record of the next real domain, an NSEC3 record of the
next hash lexicographically is presented. This does not break the
NSEC3 guarantee that there are no domains whose hash fi ts
lexicographically between the NSEC3 response and the question.

DNSSEC: HOW FAR HAVE WE COME? SULLIVAN

86 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

The question of implementing NSEC3 White Lies or not comes
down to whether a signature can be computed on the fl y. The
traditional creation of zone records to be served with DNS
resolution happens offl ine: a set of records is saved into a fi le
format like BIND and used by the live DNS server to answer
questions. Having a DNS server with the minimum amount of
logic inside allows the operator to conserve CPU resources. In
order to do NSEC3 White Lies, the records need to be generated
dynamically based on the request. This changes the operational
conditions needed to support DNSSEC: the DNS authoritative
server itself needs to do the cryptographic operations in
response to the incoming query. This demand for live signing
imposes several other security problems in distributed
environments.

Key management
As described above, NSEC and NSEC3 were designed for the
offl ine world. A DNS zone is often a static fi le with all
signatures pre-computed on a machine that is not connected to
the network. If you remove that requirement and allow
cryptographic operations to happen live, you get some valuable
tools like NSEC3 White Lies. The downside is that your key
material is now live on a machine connected to a network. The
main problems with live signing are key security and resource
utilization.

Recently, the world was shocked by a bug known as Heartbleed
that opened up a major security hole in server applications. It
was caused by a coding error in OpenSSL that exposed a remote
memory disclosure vulnerability. By sending a carefully
constructed packet to a server that uses a version of OpenSSL
with the fl aw, an attacker could reveal server memory. In
particular, it is possible to extract the TLS private key from the
server without a lot of effort. Heartbleed-style bugs are just one
of the many threats to private key security when the key is being
used in an active process. The more a machine is exposed to the
Internet, the more vectors of attack there are. Offl ine signing
machines have a much smaller window of exposure to threats.

One way to keep keys secure is to use a hardware-backed
solution such as a hardware security module (HSM). One of the
major drawbacks for this is cost – HSMs are very expensive. This
is one of the stickiest points for running DNS servers that are
spread out geographically in order to be close to their customers.
Running an HSM in every server location can not only be
expensive, but there can be legal complications as well [7].

Refl ection/amplifi cation threat
Another fear for operators running an authoritative DNS server
is that they will be used as a vehicle for malicious distributed
denial of server (DDoS) attacks. This stems from the fact that
DNS uses UDP, a stateless protocol.

In TCP, each connection begins with a three-way handshake.
This ensures that the IP address of both parties is known and
correct before starting a connection. In UDP, there is no such
handshake, messages are just sent directly to an IP with an
unverifi ed ‘from’ IP address. If an attacker can craft a UDP
packet that says ‘hi, from IP X’ to a server, the server will
typically respond by sending a UDP packet to X. Choosing X as

a victim’s IP address instead of the sender’s is called UDP
‘spoofi ng’. By spoofi ng a victim, an attacker can cause a server
that responds to UDP requests to fl ood the victim with
‘refl ected’ traffi c.

DNSSEC also works over UDP, and the answers to DNS queries
can be very long, containing multiple DNSKEY and RRSIG
records. This is a big target for attackers since it allows them to
‘amplify’ their refl ection attacks. If a small volume of spoofed
UDP DNSSEC requests is sent to a nameserver, the victim will
receive a large volume of refl ected traffi c. Sometimes this is
enough to overwhelm the victim’s server, and cause a denial of
service.

Like many services, DNS can also work over TCP. There is a
fl ag called the ‘truncation’ fl ag that can be sent back to a
resolver to indicate that TCP is required. This would fi x the
issue of DNS refl ection at the cost of slower DNS requests. This
solution is not practical at the moment since 16% of resolvers
don’t respect the TCP truncation fl ag, and 4% don’t try a second
server [8]. TCP is not the solution at the moment. Using
resource rate limiting and using proper heuristics into servers
seems to be the best way to mitigate this threat at the moment.

VALUABLE EXTENSIONS

The security provided by DNSSEC is helpful for securing
regular DNS records against poisoning attacks or other
malicious manipulation. Having a secure root of trust is also
useful for securing other systems. One interesting application of
this is providing an alternative root of trust for the standard web
PKI.

Websites are typically secured through a mechanism called
Transport Layer Security (TLS). When a browser accesses a site
over the HTTPS protocol, the web server authenticates itself to
the client using its TLS certifi cate and the two parties establish a
shared key for further encrypted communication. In order to
prove authenticity of the server’s certifi cate, it is digitally signed
by a third party known as a Certifi cate Authority (CA). To
ensure that the site is who it says it is, the browser validates the
site’s certifi cate against the domain name of the site and ensures
that the certifi cate authority that was used to sign the certifi cate
is trusted.

Different browsers on different platforms have different lists of
CAs that they trust. For example, Windows 8.1 trusts 227
so-called root certifi cates, and Firefox (version 30) only trusts
143 certifi cates. One of the main criticisms of web PKI is that
there are too many trusted certifi cate authorities. In 2011, a CA
called TURKTRUST mis-issued an intermediate certifi cate [9]
that allowed rogue entities to create certifi cates that were valid
for google.com and other high-profi le web domains [10]. In the
same year, another CA called Diginotar was found to have been
compromised by attackers [11]. Clearly trusting so many
different entities is dangerous for web browsing.

Enter DANE (DNS-based Authentication of Named Entities), an
extension of TLS that allows a website owner to embed its TLS
certifi cate into the DNS. With DNSSEC signatures used to
validate the correctness of the certifi cate, it is no longer
necessary for the browser to trust the CA, they can trust DNS

DNSSEC: HOW FAR HAVE WE COME? SULLIVAN

87VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

instead. With one heavily protected root of trust, website
identities are much more diffi cult to subvert.

Defi ned in RFC 6698 [12], DANE adds a new resource record
to DNS: TLSA. This new record can be used to indicate the
expected certifi cate for a given domain, or identify which CA
should be expected as the root of trust for the certifi cate. If
DANE had been implemented and validated by browsers during
the TURKTRUST incident, attackers would not have been able
to spoof google.com because they not only had a new certifi cate,
but the one presented was signed by the wrong certifi cate
authority (google.com’s certifi cate is signed by GeoTrust).

DEPLOYMENT STATISTICS
It has been more than nine years since the publication of the
DNSSEC RFCs and, needless to say, deployment is far from
complete. There are many different components involved. We
will summarize the progress in each of the following areas:

• Signing the root zone

• Signing the TLD zones

• Registrar integration

• Validating resolvers

Signing the root
The fi rst step in getting DNSSEC to work is signing the root.
This is the most important piece of DNSSEC as this key forms
the root of trust for the entire system.

ICANN has specifi ed a set of instructions for managing the root
keys and signing the root zone [13]. This is called a key
ceremony and involves many of the original creators of the
Internet. The fi rst root zone keys were published on 15 July
2010, just after the fi rst and second key-signing ceremonies.

Signing the TLDs

After the signature of the DNS root zone, the next step is
signing and managing the keys for the various top level domains
(.com, .net, .gov, etc.). The fi rst generic TLD (gTLD) to be
signed was .org in June 2009 [14]. As of 29 June 2014, 445 out
of 630 TLDs in the root zone are signed [15]. The full list has
been visualized by .se’s DNSCHECK tool [16].

Figure 1 shows the number of TLDs that have registered their
keys with the root [17]. There was a large increase starting in
late 2013 when many more gTLDs were added, all of which
were required to implement DNSSEC from the outset [18].

Recently, the TLD for the European Union, .eu, presented the
history of its deployment of DNSSEC [19]. The .eu registry
started accepting DNSKEY material in June 2010, and got the
.eu KSK’s DS record signed by the root in September 2010. By
May 2014, 267,000 of 3,840,000 (6.9%) .eu zones had been
signed. The progress is shown in Figure 2.

Another large TLD with DNSSEC enabled is .cn [20], which
updated its zone’s DS in the root in September 2013 and
became fully operational in December of that year. For this
zone, the keys are kept by fi ve key administrators who are each

Figure 1: Number of TLDs that have registered their keys with the root.

DNSSEC: HOW FAR HAVE WE COME? SULLIVAN

88 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

Figure 2: Progress of .eu domain signing.

Figure 3: DNSSEC adopion continues at a steady rate – surpassing 350,000 .com domains in 2014.

DNSSEC: HOW FAR HAVE WE COME? SULLIVAN

89VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

given a smart card containing a segment of the keys. The full
key can be constructed from any three of the fi ve segments.

The process is still young, and each TLD is developing its own
set of standards and practices. ICANN has published RFC 4641
[21] to help explain and standardize the process, including
expiration and validity periods for keys. For the .cn keys, the
following approach was taken:

ZSK: RSA-SHA256 1024-bit, NSEC3

KSK: RSA-SHA256 2048-bit, NSEC3

Key rotation cycle:

ZSK: 100 days, RRSIG period: 30 days

KSK: 13 months, RRSIG period: 30 days

Going back to 2012, DNSSEC deployment was much less
advanced [22], only 86/313 TLDs were signed. As shown in
Figure 3, adoption is continuing at steady rate, surpassing
350,000 .com domains in 2014 [23]. It should be noted that this
accounts for less than 0.5% of domains in either the .com or .net
zones, as Figure 4 shows [24].

Registrar integration

Part of the DNSSEC process for domains is getting their DS
record into the proper TLD zone and signed. The KSK can be

created and added to a zone, but without a DS record there is no
way for resolvers to validate or connect the signatures to the
root. This is handled by the site’s registrar.

As of 27 May 2014, 35 registrars can accept DS records. This
includes many leading registrars such as GoDaddy, DYN and
OVH. Several of these registrars also handle signing services if
needed. A full list is provided by ICANN [25]. As of 2013, all
new registrar applicants are required to support DNSSEC [26].

Validating resolvers
Even with all of the root, TLD, and authoritative servers serving
valid DNSSEC records, they need to be validated by resolvers
to have any weight.

Comcast was one of the fi rst major services to validate
DNSSEC records by default. All of Comcast’s domains were
signed and customer DNSSEC validation was turned on in
January 2012 [27]. Google Public DNS is another popular DNS
resolver service that started validating DNSSEC responses by
default on 6 May 2013 [28].

CONCLUSIONS
DNSSEC is a valuable tool for improving the trust and integrity
of DNS, the backbone of the modern Internet. DNSSEC

Figure 4: Less than 0.5% of domains in either the .com or .net zones are accounted for.

DNSSEC: HOW FAR HAVE WE COME? SULLIVAN

90 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

deployment is still in its infancy, less than fi ve per cent of all
zones had been signed as of mid-2014. Though is has its
detractors, adoption is increasing and DNSSEC is becoming a
core tool in the development of a safer and more trustworthy
Internet.

REFERENCES
[1] https://kb.isc.org/article/AA-00924/0/CVE-2008-

1447%3A-DNS-Cache-Poisoning-Issue-Kaminsky-
bug.html.

[2] http://www.iana.org/domains/root/servers.

[3] http://www.zoneedit.com/doc/rfc/.

[4] http://spectrum.ieee.org/images/oct08/images/
phish03.pdf.

[5] http://nmap.org/nsedoc/scripts/dns-nsec3-enum.html.

[6] http://dankaminsky.com/2011/01/05/djb-ccc/#whitelies.

[7] http://www.kslaw.com/imageserver/KSPublic/library/
publication/2011articles/ 11-
11WorldECRCloutierCohen.pdf.

[8] http://www.circleid.com/posts/20130820_a_question_
of_dns_protocols/.

[9] http://nakedsecurity.sophos.com/2013/01/08/the-
turktrust-ssl-certifi cate-fi asco-what-happenedand-what-
happens-next/.

[10] https://krebsonsecurity.com/2013/01/turkish-registrar-
enabled-phishers-to-spoof-google/.

[11] http://threatpost.com/fi nal-report-diginotar-hack-shows-
total-compromise-caservers-103112/77170.

[12] http://tools.ietf.org/html/rfc6698.

[13] http://www.root-dnssec.org/wp-content/
uploads/2010/02/draft-icann-dnssec-ceremonies-00.txt.

[14] http://www.circleid.com/posts/20090602_org_fi rst_
open_top_level_domain_dnssec/.

[15] http://stats.research.icann.org/dns/tld_report/.

[16] http://tldwithdnssecandipv6.se/.

[17] http://rick.eng.br/dnssecstat/.

[18] https://www.dnssec-deployment.org/index.php/2012/
01/new-gtlds-will-support-dnssec-fromthe-start/.

[19] https://london50.icann.org/en/schedule/wed-dnssec/
presentation-dnssec-eu-25jun14-en.

[20] http://www.apirc.org/previous/2013/wjxz/201309/
P020130930491213318448.pdf.

[21] http://www.ietf.org/rfc/rfc4641.txt.

[22] https://www.icann.org/en/system/fi les/fi les/menog-
dnssec-deployment-30apr12-en.pdf.

[23] http://scoreboard.verisignlabs.com/count-trace.png.

[24] http://scoreboard.verisignlabs.com/percent-trace.png.

[25] https://www.icann.org/resources/pages/deployment-
2012-02-25-en.

[26] http://www.internetsociety.org/deploy360/
blog/2013/09/icanns-2013-raa-requires-domainname-
registrars-to-support-dnssec-ipv6/.

[27] http://www.internetsociety.org/deploy360/resources/
case-study-comcasts-dnssecimplementation/.

[28] https://groups.google.com/forum/?hl=en#!topic/public-
dns-announce/67oxFjSLeUM.

