288

LEAVING OUR ZIP UNDONE: HOW TO ABUSE ZIP TO DELIVER MALWARE APPS

LEAVING OUR ZIP UNDONE:
HOW TO ABUSE ZIP TO DELIVER

MALWARE APPS

Gregory R. Panakkal
K7 Computing, India

Email gregory.panakkal@k7computing.com

ABSTRACT

2013 saw multiple high-profile vulnerabilities for Android, with
the ‘Master Key’ Cryptographic Signature Verification Bypass
vulnerability topping the charts. Several specially crafted
malicious APKs exploiting this vulnerability appeared after
proof-of-concepts (PoCs) were created by its initial discoverers.
It was the difference in the two ZIP archive-handling
implementations used by Android — one to validate the APK
(using Java), and other to extract the contents of the APK (using
C) — that led to this vulnerability.

ZIP is the de facto standard packaging format for delivering
applications such as Android Package (APK) files, Java Archive
(JAR) files, Metro App (APPX) files, and documents such as
Office Open Format (DOCX, XLSX etc.) files. Both Android and
Java malware, delivered via ZIP-based packages, have reached
high volumes in the wild, and continue to grow at a rapid rate.
Therefore, it is critical for anti-virus engines to scan the contents
of these files correctly, matching the behaviour observed in the
target environment.

This paper explores the ZIP file format, focusing specifically on
APK files as handled by the Android OS. It covers the existing
design, and technical aspects of publicly disclosed vulnerabilities
for Android. The paper also explores new malformations that can
be applied to APK files to break typical AV engine unarchiving,
thus bypassing content scanning, while keeping the APK valid for
the Android OS. It briefly covers the concept of an amalgamated
package (‘Chameleon ZIP’) that could be treated as an APK/JAR/
DOCX file, based on the application that processes it, and the
challenges this poses to the AV engine components that attempt to
scan content based on recognized package type.

APK PRIMER

Android Package (APK) is a ZIP-based file containing
Android-specific metadata, with a directory structure and
package verification metadata similar to that of JAR (Java
Archive). This design makes it easier for the Android Package
Manager to locate, extract and validate the contents within the
APK. (The following section may be skipped if the reader is
familiar with the ZIP file format.)

ZIP file format

The ZIP file format includes a central directory located at the end
of the file. The central directory, containing names of files or
directories and related information, acts as a reference to easily
locate a file’s compressed data.

The three primary headers that are used by the ZIP format are as
follows:

1. End of Central Directory (EOCD) header

An unarchiving application scans the last 64KB of the file
in reverse order to locate the EOCD header’s magic value
(0x06054b50). Once located, this header provides critical
information relating to the location of the start of central
directory file headers, the total header size, and the
number of entries to expect.

Member [6) Value (hex) & Size [8)
§00042C33 struct EndOfCentralDirectory 00000016
0004233 SIGNATURE Signature 06054850 00000004
00042C37 uintl6 DiskNumber 0000 00000002
00042C39 uintlé CentralDirectoryStartDisk 0000 00000002
00042C3B uintl6 CentralDirectoryStartOffset 0021 00000002
00042C3D wintld NumEntries 0021 00000002
00042C3F uint32 CentralDirectorySize 00000CEL 00000004
0004243 uint32 CentralDirectoryOffset 00041F52 00000004
0004247 uintl6 ZipCommentLength 0000 00000002
00042C49 char ZipComment[ZipCommentLength] 00000000

Figure 1: End of Central Directory header.

2. Central Directory File Header (CDFH)

There is one central directory entry per archive file/
directory. It consists of critical information such as the
filename, the offset to the local header, the size of
compressed and uncompressed data, the compression
method used, etc. The CDFH starts with the magic value

0x02014B50.
Member [8] Value (hex) & Size [&)

2:00042BD6 struct CentralDirectoryFileHeader 00000050
00042BD& SIGNATURE Signature 02014850 00000004
00042BDA VERSION_MADE_BY VersionMadeBy 0014 00000002
00042BDC uintld VersionMeededToExtract 0014 00000002
00042BDE uintld GeneralPurposeBitFlag 0808 00000002
00042BE0 COMPRESSION_METHOD Compressio... 0008 00000002
00042BE2 DOSDATE LastModFileTime AT78 00000002
00042BE4 DOSTIME LastModFileDate 42E6 00000002
00042BEG uint32 Cre32 S0EEEDOD 00000004
00042BEA uint32 CompressedSize 00008075 00000004
00042BEE uint32 UncompressedSize 0001538C 00000004
00042BF2 uintl6 FileNamelength 000B 00000002
00042BF4 uintl6 ExtraFieldLength 0024 00000002
00042BF6 uintld FileCommentLength 0000 00000002
00042BF8 uintld DiskNumberStart 0000 00000002
00042BFA uintl6 InternalFileAttributes 0000 00000002
00042BFC uint32 ExternalFileAttributes 00000000 00000004
0004200 wint32 RelativeOffsetOfLocalHeader 00039E80 00000004
[#00042C04 char FileName[FileNamelength] 00000008
00042COF blob ExtraField[ExtraFieldLength] 00000024
00042C33 char FileComment[FileCommentLengt... 00000000

Figure 2: Central Directory File Header.

3. Local File Header (LFH)

The Local File Header precedes the file’s compressed
data, and contains basic information. If specific bits in the
GeneralPurposeBitFlag are set, a DataDescriptor structure
immediately follows the compressed data to indicate the

LEAVING OUR ZIP UNDONE: HOW TO ABUSE ZIP TO DELIVER MALWARE APPS

CRC32, compressed and uncompressed data sizes. This
is typically added by applications that do not know these
values at the time of writing the LFH — in which case
these fields are set to zero.

Member [8] Value (he) #* Size [B)
EEUU(BQEEU struct LocalFileHeader 00000040
00039E80 SIGMATURE Signature 04034850 00000004
00039EE4 uintl6 VersionMeeded ToExtract 0014 00000002
00039E8G uintl6 GeneralPurposeBitFlag 0808 00000002
00039E88 COMPRESSION_METHOD Compressic... 0008 00000002
00039E8A DOSDATE LastModFileTime AT 00000002
00039ERC DOSTIME LastModFileDate 42E6 00000002
00039ESE uint32 Cre32 00000000 00000004
00039E92 uint32 CompressedSize 00000000 00000004
00039E96 uint32 UncompressedSize 00000000 00000004
00039E9A uintl6 FileNamelength 000B 00000002
00039E9C uintlé ExtraFieldLength 0024 00000002
[F00039ESE char FileName[FileNameLength] 00000008
00039EAD bleb ExtraField[ExtraFieldLength] 00000024
00039ECD blob FileData[CompressedSize] 00000000

Figure 3: Local File Header.

Member @ Value (hex) #* Size @

E€0000039E struct DataDescriptor 0000000C
0000039E wint32 Cre32 08074850 00000004
00000342 uint32 CompressedSize 73926403 00000004
00000346 uint32 UncompressedSize 0000036C 00000004

Figure 4: Data Descriptor Header.

The overall layout of the various ZIP headers and data is shown
in Figure 5.

Android Package

The Android Package file follows a predefined directory structure
(shown in Figure 6) that enables the Android Package Manager
to extract metadata and validate contents before installation.

JAR metadata

Files under the META-INF directory found in the root of the
archive enable the Android Package Manager to validate files
found outside of this directory.

= Jy res

. raw

E--H

, drawable-hdpi

[+

| layout

&3]

J xml

= [, META-INF

|| ALIAS.SF

|| MANIFEST.MF
|| ALIAS.RSA

classes.dex
FESOUFCES. IS0
AndreidManifest.aml

L]
L]
@

=i

Figure 6: Typical APK directory structure.

¢ MANIFEST.MF: contains Base64-encoded SHA 1 hashes
of files with their relative location in the archive.

e <CERT>.SF: contains a Base64-encoded SHA1 hash of
MANIFEST.MF, and separate Base64-encoded SHA 1
hashes of the file entries in MANIFEST.MF.

* <CERT>.RSA: certificate file in X.509 format containing

the developer’s public key and the signed blob of <CERT>.

SE.

Android metadata

Prior to app installation, the Android Package Manager looks
for specific files in the package that provide critical information
and are required for the functioning of the app.

* AndroidManifest.xml: A binary XML file specifying

essential information about the app to the Android system, i.e.

information the system must have before it can run any of
the app’s code. This includes information such as the name
of the app, the permissions required, libraries required, etc.

* Classes.dex: A heavily optimized binary in DEX file
format, encompassing the compiled Java classes, strings
and data into one single executable file.

APK verification and installation

The Android installation process initiated by the user involves
three main components of the Android system.

Relative offset 1

Relative offzet 2

Relative offzet 3

Lacal header 3
Local header 2

Local header 1

Relative offzet n

il
‘ File header 3

File headar 2
File header 1

Local headern

Figure 5: ZIP file layout [1].

289

290

LEAVING OUR ZIP UNDONE: HOW TO ABUSE ZIP TO DELIVER MALWARE APPS

Startup

Script

Installd

senvice
(root)

Android App

Zygote Installation

Process (root)

Prompt For
Installation -

System Semwver (System)

Displays
Permissions

Installer
com.android.serverpm

AppDirObSernver
PackageManagerSenice

Create the app directory and set permissions

Change system metadata to reflect app

Display
Installation
Progress

[Install Package Process |
Add package to installation queue
Determine installation location
Determine UID of the application
Request Installd process

Display Final
Installation
Status

Extract dex file to cache directory

Figure 7: APK installation flow.

Installd

This is a daemon process that runs as root and listens on domain
socket /dev/socket/installd for commands to install the APK
with appropriate permissions. This component is a native
program written in C/C++, and configured to start automatically
on OS startup.

Package Manager Service

This runs on startup as part of the system_service process. This
service, written in Java, listens for app installation intent. Once it
receives a request, it cryptographically verifies the APK prior to
invoking the Installd process to perform the on-disk installation.

Package Installer

Package Installer allows the user to install the Android
application interactively. It communicates with the Package
Manager Service to install the application using the Installd
process (see Figure 7).

ANDROID CAUGHT WITH ITS FLY DOWN

The Android system uses two different implementations when
processing an APK file. During verification, it uses the Java
implementation (Package Manager Service), and for final
extraction it uses a C++ based implementation (Installd/libdex).
This has led to breaches in the APK’s cryptographic verification
process, allowing installation of crafted trojanized APKs
without breaking trust.

The first vulnerability abusing the use of multiple ZIP-archive-
handling implementations was discovered by Bluebox Security
and publicized as the ‘Master Key’ vulnerability [2]. A number
of similar vulnerabilities have been discovered since then.

The bugs, and their exploitation, have been documented in
various technical blogs (mentioned in the References section in
detail). The key details of the three vulnerabilities that led to
breaches of trust are briefly described below.

Master Key vulnerability — Bluebox Security
(Bugld: #8219321)

This vulnerability arises from the way in which the two
ZIP-handling modules (Java and C++) handle the occurrence of
multiple files with the same name. It affects Android OS
versions prior to 4.3 (JellyBean).

The Java implementation enumerates the ZIP file’s central
directory file header and adds each entry to a LinkedHashMap.
The filename is used as the key for the LinkedHashMap. In
order to validate the ZIP entries, the Package Manager
enumerates through the LinkedHashMap entries. If more than
one entry with the same filename is added to the
LinkedHashMap, it replaces the previous value. This means that
only the last entry for a particular filename in the ZIP is
validated.

The C++ implementation, used by the libdex (Installd) when
encountering more than one entry with the same name, simply
appends it to an in-memory data structure. An unchained
hashtable with linear probing is used as the lookup algorithm.
So, in this case, when classes.dex is required to be extracted by
the VM, the first matching entry is returned. This entry has
never been validated by the JarVerifier.

Negative ExtraData signature bypass — Android
Security Squad (Bugld: #9695860)

The ZIP implementations processing the Local File Headers
skip the FileName and ExtraField lengths specified in the LFH

LEAVING OUR ZIP UNDONE: HOW TO ABUSE ZIP TO DELIVER MALWARE APPS

[S3=]]
Pa90
DeAD
PEED
PaCO
pPaD0
PRED
PeED
p700
p710

able-hdpi - umeng_
share_send_butto
n_sel.phnog
........ E..

p720
p730 02 00 00 8B 03 00 00 2E 00 00

oo oo 00 oo 00 oo

Figure 8: Malicious ‘Master Key’ APK with two classses.dex central directory entries.

to locate the start of the compressed data. The vulnerability in
Android OS versions prior to 4.4 (KitKat) is that the Java
implementation treated this field as a signed integer, while the
C++ implementation treated it correctly as an unsigned integer.
If a very large unsigned integer is specified as the ExtraData
size, it gets interpreted by the Java layer as a negative value. For
example, an ExtraData size of 65,533 (OxFFFD) is interpreted
as -3. So, while attempting to locate the start of the data, the
read pointer ends up moving backwards. On the contrary, the
C++ layer would jump forwards about 64KB to locate the data.
This discrepancy in the two implementations can be exploited if
one locates an APK containing a classes.dex file that is less than
64KB. Such a file (with padding as necessary) can be placed in
the area following the LFH and the real file data. The Java layer
ends up verifying the benign data, while the attacker-controlled
classes.dex is extracted during installation.

Member @ Value (dec) #* Value.. #

[£100039E80 struct LocalFileHeader [
00039E80 SIGNATURE Signature LocalFileHeader (67324... 04034850
00033EE4 uintl6 VersionMeededToExtract 20 0014
00039E86 uintld GeneralPurposeBitFlag 2056 0808
00039E88 COMPRESSION_METHOD Compress... DEFLATED (8) 0008
00039E8A DOSDATE LastModFileTime 08:59:48 PM ATIS
00039EEC DOSTIME LastModFileDate 06-07-2013 42EB
00039E8E uint32 Cre32 0 00000000
00039E92 uint32 CompressedSize 0 00000000

BOEIS 30 oo UrroTTpresTed e L o

00039E9A uintl6 FileNamelength

BOE3EIE it E-Extrafretdtermyttr & BeHae
[00039EIE char FileMame[FileMamelength] cIass&\

00033EAS blob ExtraField[ExtraFieldLength]
00033ECD blob FileData[CompressedSize]

-3 (Java)

Member @ Value (dec) #* Value (hex) &*

=1 00039E80 struct LocalFileHeader {.}
00039E80 SIGNATURE Signature LocalFileHea... 04034B50
00039E84 uintl6 VersionMeededToExtract 20 0014
00039E86 uintld GeneralPurposeBitFlag 2056 0808
00039E88 COMPRESSION_METHOD Comp... DEFLATED (8) 0008
00039E8A DOSDATE LastModFileTime 08:59:48 PM ATTR
00039E8C DOSTIME LastModFileDate 06-07-2013 42E6
00039EBE wint32 Cre32 0 00000000
00039E92 uint32 CompressedSize 0 00000000
00039E36 uint32 UncompressedSize 0 00000000

i elength 11 0008

00039E9C uintl6 ExtraFieldLength 65533 FFFD

FHO0039ESE char FileName[FileNamelength]
00039EAD blob ExtraField[ExtraFieldLength]
00039ECD blob FileData[CompressedSize]

cIasses.dEt\
-3 (Java)

Figure 10: APK with crafted FileNameLen field.

file. This is a 16-bit field, i.e. 65,536 methods can be defined.
Android’s application package file (APK), which uses the ZIP
format, supports only two compression methods. One is without
any compression, i.e. the STORED method (0x0000), and the
other is the DEFLATE (0x0008) compression algorithm.

The Android OS makes certain assumptions when handling this
field, and processes the ‘compressed’ content based on these
assumptions. The pseudocode is given in Table 1.

Figure 9: APK with crafted ExtraData field.

Negative FileNameLen signature bypass — Jay
Freeman (Bugld: # 9950697)

This vulnerability is very similar to the one described above,
with signed/unsigned treatment of the FileNameLen field in the
Local File Header (see Figure 10).

ANDROID APK COMPRESSION METHODS

The ZIP file format specifies at per-file level the compression
algorithm (method) that the archiver has used to compress the

VA;‘:;:’I‘Id C++ ZIP handling | Java ZIP handling
if Method=Stored if Method=Stored
Android 4.4 RawDataCopy(...) RawDataCopy(...)
and above | else else
InflateAndCopy(...) InflateAndCopy(...)
if Method=Stored if Method=Deflate
Android 4.3 RawDataCopy(...) InflateAndCopy(...)
and below | else else
InflateAndCopy(...) RawDataCopy(...)

Table 1: Pseudocode on processing ‘compressed’ content. (Refer
to the Appendix for relevant Android ZIP-handling code

snippets.)

In most cases, Android ZIP handling assumes the compression
method to be DEFLATE if the method specified does not match
with STORED. In earlier versions of Android (4.3 and below),

291

292

LEAVING OUR ZIP UNDONE: HOW TO ABUSE ZIP TO DELIVER MALWARE APPS

Java ZIP-handling code checks against the method being
DEFLATE, and assumes that the STORED method has been
used if it does not match.

ANTI-VIRUS SCANNING AND APK
MALFORMATION

Anti-virus software typically handles archive file formats with
more stringent checks than any unarchiver utility, or in this case
the Android OS ZIP-handling layer. This behaviour can be
abused by malicious files in order to circumvent the unarchiving
process performed by the anti-virus scanning module.

A crafted APK can be constructed primarily by changing the
compression method to a value other than STORED or
DEFLATE. In this case, the Android OS will continue to treat it
as either STORED or DEFLATE, but the AV scanner’s
unarchiving module will be broken when attempting to process
the compressed data as per the UNKNOWN method, thereby
failing to detect the contents within the APK.

For the purpose of observing the effects of this malformation,
repackaged APKs of DroidSheep [3] (a potentially unwanted
Android app) were used to prepare PoCs. A significant number
of anti-virus vendors detect versions of this app (typically on
classes.dex). Table 2 shows the behaviour observed.

0042BCO 3E A6 5D 7A CE 01 51 47 DF DD
0042BD0 DF DD 36 36 CF 01|20 4B 01 02
0042BED (08 00|78 A7 E& 42 0D ED EE 50
0042BFO (01 00 OB 00 24 00 OO0 00 OO OO0
0o42C00 (80 9E 03 00 63 6C 61 73 73 65
oo42c10 (00 20 00 00 OO0 0O OO O1 OO 18
oo4z2Czo |7A CE 01 B2 AG E1 DD 36 36 CF
0042C30 [36 CF 01|50 4B 05 0s 00 0O OO
oo42c40 (0C 00 00 52 1F 04 00 0O OO0

Figure 11: Droidsheep_v15_DetectCheck.apk bytes.

Structures Izip structures (zip-format.hsl)

Member @ Value (dec) #* Value (hex) &*
|‘;l|000428D6 struct CentralDirectoryFileHeader [
00042BD6 SIGNATURE Signature CentralDirect... 02014B50
00042BDA VERSION_MADE_BY VersionMadeBy 20 0014
00042BDC uintl6 VersionMNeededTobxtract 20 0014
00042BDE uintl6 GeneralPurposeBitFlag 2056 0808

00042BED COMPRESSION_METHOD CompressionMethod DEFLATED (8) 0008

00042BE2 DOSDATE LastModFileTime 08:59:48 PM ATTE
00042BE4 DOSTIME LastModFileDate 06-07-2012 42E6
00042BEG uint32 Cre32 1357835533 S0EEEDOD
00042BEA uint32 CompressedSize 32885 00008075
00042BEE uint32 UncompressedSize 86924 0001538C
00042BF2 uintl6 FileMamelength 11 000B
00042BF4 uintl6 ExtraFieldLength 36 0024
00042BF6 uintl6 FileCommentLength 0 0000
00042BF8 uintl6 DiskMNumberStart 0 0000

Figure 12: Droidsheep_v15_DetectCheck.apk fields.

File name

Android OS <=4.3

Android OS >=4.4

Droidsheep_v15_
DetectCheck.apk

Install - SUCCESS

AV detection —
SUCCESS

Install - SUCCESS

AV detection —
SUCCESS

Droidsheep_v15_
Crafted_43.apk

Install - SUCCESS

AV detection —
FAILED

Install — FAILED

AV detection —
FAILED

To OO0 3T & E3 T Jb TF 0T 77 O T5 a0 Bb 3 PN T
CF 01 5% AD 15 8D 66 37 CF 01 50 4B 01 02 14 00
14 00 08 08|01 00|78 AY Eb6 42 0D ED EE 50 Y5 80
00 oo 8¢ 53 01 00 OB 00 24 00 OO 00 OO0 00 OO OO
oo 0o 41 0C 00 00 63 6C 61 73 73 65 73 2E
64 &5 78 D& 00 20 00 QO OO 00 OO0 01 00 18 0O 00
BE 3E &6 5D 72 CE 01 D9 45 13 80 A6 37 CF 01 D9
4B 13 60 66 37 CF 01[S0 4B 01 02 14 00 14 00 08
05 08 00 7§ AY Ee 42 20 1C DS FS &C 43 00 00 2C

Coooooood
=]
=
o
=

Figure 13: Droidsheep_v15_Crafted_44.apk bytes.

Structures Izip structures (zip-format.hsl)

Droidsheep_v15_
Crafted_44.apk

Install - FAILED

AV detection —
FAILED

Install - SUCCESS

AV detection —
FAILED

Table 2: Behaviour observed with the original and repackaged
versions of DroidSheep.

Figures 11 and 12 show Droidsheep_v15_DetectCheck.apk (the
original APK without any modifications). The ZIP’s central
directory header for classes.dex is highlighted, along with the
compression method (Figure 12).

Figures 13 and 14 show Droidsheep_v15_Crafted_44.apk (APK
crafted to work with Android 4.4 and above). Here, changing
the COMPRESSION_METHOD to SHRUNK (0x0001)
allowed the data still to be treated as DEFLATED, and thus for
installation to proceed on the Android OS. The method was
modified to SHRUNK in both the ZIP’s local file header and the
central directory header.

Finally, we look at Droidsheep_v15_Crafted_43.apk (APK
crafted to work with Android 4.3 and below). It is trickier to
construct an installable APK with an unhandled compression
method considering the mutual reversal of checks in the C++
and Java ZIP-handling layers.

Member [&] Value (dec) #* Value.. 44
2100042064 struct CentralDirectoryFileHeader 1o}
00042064 SIGMATURE Signature CentralDirect.. 02014850
0004206E VERSION_MADE_BY VersionMadeBy 20 0014
00042070 uintld VersionMNeededToExtract 20 0014
00042072 uintlé GeneralPurposeBitFlag 2056 0808

00042074 COMPRESSION_METHOD CompressionMethod

SHRUMEK (1)

00042076 DOSDATE LastModFileTime 08:59:48 PM ATTS
00042078 DOSTIME LastModFileDate 06-07-2013 42E6
0004207 A uint32 Crc32 1357835533 S0EEEDOD
0004207E uint32 CompressedSize 32885 00008075
00042082 uint32 UncompressedSize 86024 0001538C
00042086 uintl FileMamelLength 11 000B
00042088 uintl6 ExtraFieldLength 36 0024
00042084 uintl6 FileCommentLength 0 0000
0004208C uintl6 DiskNumberStart 0 0000

Figure 14: Droidsheep_v15_Crafted_44.apk fields.

Crafting an installable APK involved the following steps:

Step 1: The directory structure required to construct the APK
was prepared (see Figure 15).

Step 2: The classes.dex file to be included in the APK was
compressed using an in-house-developed zlib deflate tool. The
tool skips writing the zlib headers in the output compressed file,

LEAVING OUR ZIP UNDONE: HOW TO ABUSE ZIP TO DELIVER MALWARE APPS

, APKView 4872 KB

=] res 343.0KE

B f raw 259.9 KB

|| droidsheep 1142 KB

|| droidsheep_bak 114.2 KB

|| arpspoof 315KB

| drawable-hdpi 65.1 KB

J layout 109 KB

J xml 71KB

= <Files> 144.2 KB
B oo 300G |

|| resources.arsc 553 KB

= AndroidManifest.xml 40KB

, META-INF 0

Figure 15: Directory layout before compressing classes.dex.

| APKView 4344 KB
=l res 3430KB
El-) raw 2599 KB
|| droidsheep 114.2 KB
|| droidsheep_bak 114.2 KB
|| arpspoof 315KB
. drawable-hdpi 851 KB
. layout 109 KB
, xml T1KE
=] <Files> 914 KB
| resources.arsc 552 KB

[YN
= AndroidManifestaml 40 KB
. META-INF 0

Figure 16: Directory layout after compressing classes.dex.

making it compatible with unzip’s inflate() function. The
uncompressed version of classes.dex was replaced in the
directory with the compressed version (Figure 16).

Step 3: The contents of the directory structure were then ZIP’ed
in STORED mode. This resulted in all the files being packed

without any compression (Figure 17).

Step 4: The APK was signed using the JarSigner tool. This
resulted in the MANIFEST.MF and related files required for
validation containing the SHA1 of the compressed classes.dex
(rather than its uncompressed version, as is typically the case).

Step 5: The APK’s Central Directory Header and Local File
Header then needed to be suitably modified, with the
compression method changed to a value other than STORED or
DEFLATE. In this case, we used the SHRUNK (0x0001)
method. The uncompressed size was also changed to reflect the

Member @ Value (dec) #* Value(hex) #*
[2/0006DB6T struct CentralDirectoryFileHeader {..}

0006DB67 SIGMATURE Signature CentralDirector... 02014B50
0006DB6E VERSION_MADE_BY VersionMadeBy 3 001F
0006DB6D uintl6 VersionNeededToExtract 10 000A
0006DB5F uintlé GeneralPurposeBitFlag 0 0000
00060B71 COMPRESSION_METHOD Compressio... STORED (0}

00060873 DOSDATE LastModFileTime 10:24:38 PM B313
00060875 DOSTIME LastModFileDate 02-03-2014 4462
0006DB77 uint32 Cre32 4232675189 FC497F75
0006DBTB uint32 CompressedSize 32885 00008075
0006DBTF uint32 UncompressedSize 32885 00008075
(0006DBE3 uintl6 FileNamelength 11 000B
0006DBE5 uintl6 ExtraFieldLength 36 0024
0006DBET uintlé FileCommentLength 0 0000
0006DBE9 uintl6 DiskNumberStart 0 0000
0006DBEE uintl6 InternalFileAttributes 0 0000
0006DBED uint32 ExternalFileAttributes 32 00000020
0006DB91 uint32 RelativeOffsetOfLocalHeader 413446 00064F06

[#10006DB35 char FileMame[FileNamelength] classes.dex

Figure 17: Classes.dex ‘compressed’ using the STORED method.

Member @ Value (dec) #* Value (hex) #]
[210006EC58 struct CentralD irectoryFileHeader .

0D06ECS8 SIGMNATURE Signature CentralDirect... 02014850
0006ECSC VERSIOM_MADE_BY VersionMadeBy E 001F
000GECSE uintlG VersionMeededToExtract 10 000A

i I i 2048 0&00 .
EUOOGECGE COMPRESSION_METHOD Compression... SHRUMNK (1) 0001
udlokLod DUSUATE LastModhlelime JUBELEE R | bzl !
0006ECGE DOSTIME LastModFileDate 02-03-2014 4462
0006ECES uint32 Cre32 4232675189 FCA97F75
0006ECEC uint32 CompressedSize 32885 00008075

I 0006ECT0 uint32 UncempressedSize 86924 0001538C I
0006ECT4 uintl6 FileMamelength 11 000B
0006ECT6 uintlh ExtraFieldLength 36 0024
0006ECTS uintl6 FileCommentlLength 0 0000
0006ECTA uintl6 DiskMumberStart 0 0000
0006ECTC uintl6 InternalFileAttributes 0 0000
000GECTE uint32 ExternalFileAttributes 0 00000000
0006ECEZ uint32 RelativeOffsetOfLocalHeader 417554 00065F12
F0005ECEE char FileName[FileNameLength] classes.dex

ONNAECM hlok EvtraFieldlExtraFieldl enathl

Figure 18: Crafted fields for classes.dex data.

C++ ZIP layer: This layer assumes that if the compression
method specified is not STORED, it is DEFLATE. So, when it
encounters classes.dex with SHRUNK compression, it assumes
the DEFLATE method has been used, extracting classes.dex to
disk by uncompressing the pre-compressed data.

MITIGATION

original uncompressed size of the classes.dex file (see Figure 18).

Installation of this crafted APK works on the target Android OS
by satisfying the following criteria:

Java verification layer: This layer assumes that if the
compression method specified is not DEFLATE, it is STORED.
So when it encounters classes.dex with SHRUNK compression,
it assumes the STORED method has been used, and matches the
SHAT hash (of the compressed data) against the one specified in
the MANIFEST.MF file.

Suggested fix for Android OS developers

Android OS should place a stricter check on the compression
method fields in order to block the installation of crafted APKs.
This has been logged as Issue #69184.

Suggested fix for anti-virus vendors

Having identified the file as APK, anti-virus engines should

293

294

LEAVING OUR ZIP UNDONE: HOW TO ABUSE ZIP TO DELIVER MALWARE APPS

choose either to heuristically flag the file if any unsupported
compression method is specified in the Local File or Central
Directory Header, or to extract the files based on assumptions
similar to the ones implemented by the Android OS.

CHAMELEON ZIP

The ZIP file format forms the basis for various application
packages, including Android Package (APK), Java Archive
(JAR), Metro App (APPX) and Microsoft documents (DOCX)
etc., which has created new challenges for the AV industry in
recognizing the type of packages based on content. A package
containing content from various package formats could be treated
as APK/JAR/DOCX based on the application that processes it.
Identifying the correct package type is critical for any automated
analysis system that a security vendor might employ. However,
an anti-virus scanner that defaults to extracting the ZIP contents
as it sees it will not be affected by this concept package.

ZIP packages are typically checked for files with specific names
at specific locations to help identify the package type.

Format | Filenames

JAR META-INF/MANIFEST.MF
META-INF/*.SF
META-INF/*RSA

*.class
APK META-INF/MANIFEST.MF

META-INF/*.SF
META-INF/*RSA
AndroidManifest.xml

classes.dex

DOCX |[Content_Types].xml
Word
docProps

_rels

APPX | AppxManifest.xml

AppxBlockMap.xml

Table 3: Packages are checked for specific filenames at specific
locations.

Relevant file extensions, if available, are usually considered
when making a decision on the package type. However, this
may not always be the case.

An amalgamated package can easily be created that is valid
(with appropriate extension) for the application that processes it
(see Figure 19).

The same package can be installed as an Android app (with .apk
extension), run as a regular Java app/applet (with .jar extension),
opened by a document processor (with .docx extension), etc.

Figure 20 shows the directory tree structure from which we
created the Chameleon ZIP. It contains a mix of files that are all
part of the various file formats.

HelloWorld.docx

HelloWorld.apk HelloWorld.jar

Figure 19: A few of the popular ZIP-based formats.

Mame > Size
=] 5128 KB
4598 KB

<Files= J18KE

| MyGame java JAR 82KB

|| MyGame.class 6.4 KB

41 KB

2.7 KB

15KB

14 KB

13KB

11KB

|| MyGame.cbet 794 Bytes

|| MyGame35.class 743 Bytes

|| MyGameSl.class 670 Bytes

|| MyGame52.class 670 Bytes

|| MyGameS3.class JAR 670 Bytes

|| MyGameS4.class 643 Bytes

|| blugj.pkg 540 Bytes

|| package.blugj 540 Bytes

. TES 10.5 KB
Bl |, META-INF 59KB
|| ALIAS.SF 24 KB

| MANIFEST.MF| JAR/APK 2.2KB

|| ALIAS.RSA 13KB

|, assets 26KE
|€| instructions.html ApK 25KB

[m7] EICARANtiVirusTestFile.co.. | 68 Bytes

. docProps 13KB

. _rels Dock 580 Bytes

Figure 20: Sample Chameleon ZIP layout.

The APK and JAR files follow the same signing process, which
makes them valid for the respective applications. The Android
OS and JAR treat the irrelevant files just as other data files.

We observed that Microsoft Word has a requirement that it is
able to identify and relate to all files within the amalgamated
package renamed to DOCX. Therefore, attempting to open it in
Word fails, with a message declaring the file to be corrupt.
However, OpenOffice was able to successfully open and display
the content without any errors or warnings.

Windows 8 Metro apps also require each known file’s integrity
to be verified, so it may not be possible to create a valid APPX
and APK/JAR due to the fact that the two latter formats require
updating of independent files with hashes needed for validation.
However, having the APPX-related files within the APK/JAR
might be enough to throw off a package type analysing
component.

LEAVING OUR ZIP UNDONE: HOW TO ABUSE ZIP TO DELIVER MALWARE APPS

Format/extension | Application Status
APK Android OS Success
JAR Java Runtime Success
DOCX OpenOffice Success
DOCX Microsoft Word Failed
APPX Windows 8 Failed

Table 4: Chameleon ZIP status.

ZIPPING IT UP

Owing to its flexibility, versatility and popular use, the ZIP
format has been the target of many types of manipulation in
order to bypass anti-virus scanning and OS validation. Based on
the history of the format’s misuse, and the multitude of major
implementations that process the format, we expect this trend to
continue. It is best that the anti-virus vendors remain on their
toes.

Our internal analysis showed that a crafted APK with
non-conformant compression method was affecting various
anti-virus vendors. Both their mobile and Windows products
were affected. The technical details have been shared with the
respective vendors.

The effect of Chameleon ZIP on automated systems was not
evaluated due to practical restrictions. We suggest that the
anti-virus vendors evaluate their own systems based on the
information provided in this paper.

REFERENCES

[1] Sourced from http://en.wikipedia.org/wiki/ZIP_
%?28file_format%?29.

2] https://bluebox.com/technical/uncovering-android-
master-key-that-makes-99-of-devices-vulnerable/.

[3] http://www.droidsheepapk.com/.
[4] http://www.saurik.com/.

[5] Parmar, K. http://www.kpbird.com/2012/10/in-depth-
android-package-manager-and.html.

[6] Mody, S. I am not the D ’r.0,1d You are Looking For:
An Analysis of Android Malware Obfuscation.
Proceedings of the Virus Bulletin International
Conference 2013.

[7] Dhanalakshmi, V. How vulnerable is Android to attack?
AVAR 2013.

[8] https://android.googlesource.com/.

APPENDIX: ANDROID ZIP-HANDLING CODE
SNIPPETS

For Android OS >= 4.4 (after Master Key fixes):

C++ Source @ https://android.googlesource.com/platform/
dalvik.git/+/android-4.4.2_r2/libdex/ZIPArchive.cpp

if (method == kCompressStored) ({
if (sysCopyFileToFile (fd, pArchive->mFd, uncompLen)
'=0)
goto bail;
} else {

if (inflateToFile (fd, pArchive->mFd, uncompLen,
compLen) != 0)
goto bail;

}

Java Source @ https://android.googlesource.com/platform/
libcore.git/+/android-4.4.2_r2/luni/src/main/java/java/util/zip/
ZIPFile java

if (entry.compressionMethod == ZIPEntry.STORED) ({
rafStream.endOffset = rafStream.offset + entry.
size;
return rafStream;
} else {

rafStream.endOffset = rafStream.offset + entry.
compressedSize;

int bufSize = Math.max (1024, (int) Math.min(entry.
getsize(), 65535L));

return new ZIPInflaterInputStream(rafStream, new
Inflater (true), bufSize, entry);

}

For Android OS <= 4.3:

C++ Source @ https://android.googlesource.com/platform/
dalvik.git/+/android-4.2.2_r1/libdex/ZIPArchive.cpp

if (method == kCompressStored) {
if (sysCopyFileToFile (fd, pArchive->mFd, uncompLen)
= 0)
goto bail;
} else {

if (inflateToFile (fd, pArchive->mFd, uncompLen,
compLen) != 0)
goto bail;

}

Java Source @ https://android.googlesource.com/platform/
libcore.git/+/android-4.2.2_r1/luni/src/main/java/java/util/zip/
ZIPFile.java

if (entry.compressionMethod == ZIPEntry.DEFLATED) {

int bufSize = Math.max (1024, (int)Math.min (entry.
getSize(), 65535L));

return new ZIPInflaterInputStream(rafstrm, new
Inflater (true), bufSize, entry);

} else {
return rafstrm;

295

