
LEAVING OUR ZIP UNDONE: HOW TO ABUSE ZIP TO DELIVER MALWARE APPS PANAKKAL

288 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

LEAVING OUR ZIP UNDONE:
HOW TO ABUSE ZIP TO DELIVER

MALWARE APPS
Gregory R. Panakkal
K7 Computing, India

Email gregory.panakkal@k7computing.com

ABSTRACT
2013 saw multiple high-profi le vulnerabilities for Android, with
the ‘Master Key’ Cryptographic Signature Verifi cation Bypass
vulnerability topping the charts. Several specially crafted
malicious APKs exploiting this vulnerability appeared after
proof-of-concepts (PoCs) were created by its initial discoverers.
It was the difference in the two ZIP archive-handling
implementations used by Android – one to validate the APK
(using Java), and other to extract the contents of the APK (using
C) – that led to this vulnerability.

ZIP is the de facto standard packaging format for delivering
applications such as Android Package (APK) fi les, Java Archive
(JAR) fi les, Metro App (APPX) fi les, and documents such as
Offi ce Open Format (DOCX, XLSX etc.) fi les. Both Android and
Java malware, delivered via ZIP-based packages, have reached
high volumes in the wild, and continue to grow at a rapid rate.
Therefore, it is critical for anti-virus engines to scan the contents
of these fi les correctly, matching the behaviour observed in the
target environment.

This paper explores the ZIP fi le format, focusing specifi cally on
APK fi les as handled by the Android OS. It covers the existing
design, and technical aspects of publicly disclosed vulnerabilities
for Android. The paper also explores new malformations that can
be applied to APK fi les to break typical AV engine unarchiving,
thus bypassing content scanning, while keeping the APK valid for
the Android OS. It briefl y covers the concept of an amalgamated
package (‘Chameleon ZIP’) that could be treated as an APK/JAR/
DOCX fi le, based on the application that processes it, and the
challenges this poses to the AV engine components that attempt to
scan content based on recognized package type.

APK PRIMER
Android Package (APK) is a ZIP-based fi le containing
Android-specifi c metadata, with a directory structure and
package verifi cation metadata similar to that of JAR (Java
Archive). This design makes it easier for the Android Package
Manager to locate, extract and validate the contents within the
APK. (The following section may be skipped if the reader is
familiar with the ZIP fi le format.)

ZIP fi le format

The ZIP fi le format includes a central directory located at the end
of the fi le. The central directory, containing names of fi les or
directories and related information, acts as a reference to easily
locate a fi le’s compressed data.

The three primary headers that are used by the ZIP format are as
follows:

1. End of Central Directory (EOCD) header

 An unarchiving application scans the last 64KB of the fi le
in reverse order to locate the EOCD header’s magic value
(0x06054b50). Once located, this header provides critical
information relating to the location of the start of central
directory fi le headers, the total header size, and the
number of entries to expect.

Figure 1: End of Central Directory header.

2. Central Directory File Header (CDFH)

 There is one central directory entry per archive fi le/
directory. It consists of critical information such as the
fi lename, the offset to the local header, the size of
compressed and uncompressed data, the compression
method used, etc. The CDFH starts with the magic value
0x02014B50.

Figure 2: Central Directory File Header.

3. Local File Header (LFH)

 The Local File Header precedes the fi le’s compressed
data, and contains basic information. If specifi c bits in the
GeneralPurposeBitFlag are set, a DataDescriptor structure
immediately follows the compressed data to indicate the

LEAVING OUR ZIP UNDONE: HOW TO ABUSE ZIP TO DELIVER MALWARE APPS PANAKKAL

289VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

CRC32, compressed and uncompressed data sizes. This
is typically added by applications that do not know these
values at the time of writing the LFH – in which case
these fi elds are set to zero.

Figure 3: Local File Header.

Figure 4: Data Descriptor Header.

The overall layout of the various ZIP headers and data is shown
in Figure 5.

Android Package
The Android Package fi le follows a predefi ned directory structure
(shown in Figure 6) that enables the Android Package Manager
to extract metadata and validate contents before installation.

JAR metadata
Files under the META-INF directory found in the root of the
archive enable the Android Package Manager to validate fi les
found outside of this directory.

• MANIFEST.MF: contains Base64-encoded SHA1 hashes
of fi les with their relative location in the archive.

• <CERT>.SF: contains a Base64-encoded SHA1 hash of
MANIFEST.MF, and separate Base64-encoded SHA1
hashes of the fi le entries in MANIFEST.MF.

• <CERT>.RSA: certifi cate fi le in X.509 format containing
the developer’s public key and the signed blob of <CERT>.
SF.

Android metadata
Prior to app installation, the Android Package Manager looks
for specifi c fi les in the package that provide critical information
and are required for the functioning of the app.

• AndroidManifest.xml: A binary XML fi le specifying
essential information about the app to the Android system, i.e.
information the system must have before it can run any of
the app’s code. This includes information such as the name
of the app, the permissions required, libraries required, etc.

• Classes.dex: A heavily optimized binary in DEX fi le
format, encompassing the compiled Java classes, strings
and data into one single executable fi le.

APK verifi cation and installation
The Android installation process initiated by the user involves
three main components of the Android system.

Figure 5: ZIP fi le layout [1].

Figure 6: Typical APK directory structure.

LEAVING OUR ZIP UNDONE: HOW TO ABUSE ZIP TO DELIVER MALWARE APPS PANAKKAL

290 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

Installd

This is a daemon process that runs as root and listens on domain
socket /dev/socket/installd for commands to install the APK
with appropriate permissions. This component is a native
program written in C/C++, and confi gured to start automatically
on OS startup.

Package Manager Service

This runs on startup as part of the system_service process. This
service, written in Java, listens for app installation intent. Once it
receives a request, it cryptographically verifi es the APK prior to
invoking the Installd process to perform the on-disk installation.

Package Installer

Package Installer allows the user to install the Android
application interactively. It communicates with the Package
Manager Service to install the application using the Installd
process (see Figure 7).

ANDROID CAUGHT WITH ITS FLY DOWN

The Android system uses two different implementations when
processing an APK fi le. During verifi cation, it uses the Java
implementation (Package Manager Service), and for fi nal
extraction it uses a C++ based implementation (Installd/libdex).
This has led to breaches in the APK’s cryptographic verifi cation
process, allowing installation of crafted trojanized APKs
without breaking trust.

The fi rst vulnerability abusing the use of multiple ZIP-archive-
handling implementations was discovered by Bluebox Security
and publicized as the ‘Master Key’ vulnerability [2]. A number
of similar vulnerabilities have been discovered since then.

The bugs, and their exploitation, have been documented in
various technical blogs (mentioned in the References section in
detail). The key details of the three vulnerabilities that led to
breaches of trust are briefl y described below.

Master Key vulnerability – Bluebox Security
(BugId: #8219321)
This vulnerability arises from the way in which the two
ZIP-handling modules (Java and C++) handle the occurrence of
multiple fi les with the same name. It affects Android OS
versions prior to 4.3 (JellyBean).

The Java implementation enumerates the ZIP fi le’s central
directory fi le header and adds each entry to a LinkedHashMap.
The fi lename is used as the key for the LinkedHashMap. In
order to validate the ZIP entries, the Package Manager
enumerates through the LinkedHashMap entries. If more than
one entry with the same fi lename is added to the
LinkedHashMap, it replaces the previous value. This means that
only the last entry for a particular fi lename in the ZIP is
validated.

The C++ implementation, used by the libdex (Installd) when
encountering more than one entry with the same name, simply
appends it to an in-memory data structure. An unchained
hashtable with linear probing is used as the lookup algorithm.
So, in this case, when classes.dex is required to be extracted by
the VM, the fi rst matching entry is returned. This entry has
never been validated by the JarVerifi er.

Negative ExtraData signature bypass – Android
Security Squad (BugId: #9695860)

The ZIP implementations processing the Local File Headers
skip the FileName and ExtraField lengths specifi ed in the LFH

Figure 7: APK installation fl ow.

LEAVING OUR ZIP UNDONE: HOW TO ABUSE ZIP TO DELIVER MALWARE APPS PANAKKAL

291VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

to locate the start of the compressed data. The vulnerability in
Android OS versions prior to 4.4 (KitKat) is that the Java
implementation treated this fi eld as a signed integer, while the
C++ implementation treated it correctly as an unsigned integer.
If a very large unsigned integer is specifi ed as the ExtraData
size, it gets interpreted by the Java layer as a negative value. For
example, an ExtraData size of 65,533 (0xFFFD) is interpreted
as -3. So, while attempting to locate the start of the data, the
read pointer ends up moving backwards. On the contrary, the
C++ layer would jump forwards about 64KB to locate the data.
This discrepancy in the two implementations can be exploited if
one locates an APK containing a classes.dex fi le that is less than
64KB. Such a fi le (with padding as necessary) can be placed in
the area following the LFH and the real fi le data. The Java layer
ends up verifying the benign data, while the attacker-controlled
classes.dex is extracted during installation.

Figure 9: APK with crafted ExtraData fi eld.

Negative FileNameLen signature bypass – Jay
Freeman (BugId: # 9950697)
This vulnerability is very similar to the one described above,
with signed/unsigned treatment of the FileNameLen fi eld in the
Local File Header (see Figure 10).

ANDROID APK COMPRESSION METHODS
The ZIP fi le format specifi es at per-fi le level the compression
algorithm (method) that the archiver has used to compress the

fi le. This is a 16-bit fi eld, i.e. 65,536 methods can be defi ned.
Android’s application package fi le (APK), which uses the ZIP
format, supports only two compression methods. One is without
any compression, i.e. the STORED method (0x0000), and the
other is the DEFLATE (0x0008) compression algorithm.

The Android OS makes certain assumptions when handling this
fi eld, and processes the ‘compressed’ content based on these
assumptions. The pseudocode is given in Table 1.

Android
version

C++ ZIP handling Java ZIP handling

Android 4.4
and above

if Method=Stored
 RawDataCopy(...)
else
 Infl ateAndCopy(...)

if Method=Stored
 RawDataCopy(...)
else
 Infl ateAndCopy(...)

Android 4.3
and below

if Method=Stored
 RawDataCopy(...)
else
 Infl ateAndCopy(...)

if Method=Defl ate
 Infl ateAndCopy(...)
else
 RawDataCopy(...)

Table 1: Pseudocode on processing ‘compressed’ content. (Refer
to the Appendix for relevant Android ZIP-handling code

snippets.)

In most cases, Android ZIP handling assumes the compression
method to be DEFLATE if the method specifi ed does not match
with STORED. In earlier versions of Android (4.3 and below),

Figure 8: Malicious ‘Master Key’ APK with two classses.dex central directory entries.

Figure 10: APK with crafted FileNameLen fi eld.

LEAVING OUR ZIP UNDONE: HOW TO ABUSE ZIP TO DELIVER MALWARE APPS PANAKKAL

292 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

Java ZIP-handling code checks against the method being
DEFLATE, and assumes that the STORED method has been
used if it does not match.

ANTI-VIRUS SCANNING AND APK
MALFORMATION

Anti-virus software typically handles archive fi le formats with
more stringent checks than any unarchiver utility, or in this case
the Android OS ZIP-handling layer. This behaviour can be
abused by malicious fi les in order to circumvent the unarchiving
process performed by the anti-virus scanning module.

A crafted APK can be constructed primarily by changing the
compression method to a value other than STORED or
DEFLATE. In this case, the Android OS will continue to treat it
as either STORED or DEFLATE, but the AV scanner’s
unarchiving module will be broken when attempting to process
the compressed data as per the UNKNOWN method, thereby
failing to detect the contents within the APK.

For the purpose of observing the effects of this malformation,
repackaged APKs of DroidSheep [3] (a potentially unwanted
Android app) were used to prepare PoCs. A signifi cant number
of anti-virus vendors detect versions of this app (typically on
classes.dex). Table 2 shows the behaviour observed.

File name Android OS <= 4.3 Android OS >= 4.4

Droidsheep_v15_
DetectCheck.apk

Install – SUCCESS

AV detection –
SUCCESS

Install – SUCCESS

AV detection –
SUCCESS

Droidsheep_v15_
Crafted_43.apk

Install – SUCCESS

AV detection –
FAILED

Install – FAILED

AV detection –
FAILED

Droidsheep_v15_
Crafted_44.apk

Install – FAILED

AV detection –
FAILED

Install – SUCCESS

AV detection –
FAILED

Table 2: Behaviour observed with the original and repackaged
versions of DroidSheep.

Figures 11 and 12 show Droidsheep_v15_DetectCheck.apk (the
original APK without any modifi cations). The ZIP’s central
directory header for classes.dex is highlighted, along with the
compression method (Figure 12).

Figures 13 and 14 show Droidsheep_v15_Crafted_44.apk (APK
crafted to work with Android 4.4 and above). Here, changing
the COMPRESSION_METHOD to SHRUNK (0x0001)
allowed the data still to be treated as DEFLATED, and thus for
installation to proceed on the Android OS. The method was
modifi ed to SHRUNK in both the ZIP’s local fi le header and the
central directory header.

Finally, we look at Droidsheep_v15_Crafted_43.apk (APK
crafted to work with Android 4.3 and below). It is trickier to
construct an installable APK with an unhandled compression
method considering the mutual reversal of checks in the C++
and Java ZIP-handling layers.

Crafting an installable APK involved the following steps:

Step 1: The directory structure required to construct the APK
was prepared (see Figure 15).

Step 2: The classes.dex fi le to be included in the APK was
compressed using an in-house-developed zlib defl ate tool. The
tool skips writing the zlib headers in the output compressed fi le,

Figure 11: Droidsheep_v15_DetectCheck.apk bytes.

Figure 12: Droidsheep_v15_DetectCheck.apk fi elds.

Figure 13: Droidsheep_v15_Crafted_44.apk bytes.

Figure 14: Droidsheep_v15_Crafted_44.apk fi elds.

LEAVING OUR ZIP UNDONE: HOW TO ABUSE ZIP TO DELIVER MALWARE APPS PANAKKAL

293VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

making it compatible with unzip’s infl ate() function. The
uncompressed version of classes.dex was replaced in the
directory with the compressed version (Figure 16).

Step 3: The contents of the directory structure were then ZIP’ed
in STORED mode. This resulted in all the fi les being packed
without any compression (Figure 17).

Step 4: The APK was signed using the JarSigner tool. This
resulted in the MANIFEST.MF and related fi les required for
validation containing the SHA1 of the compressed classes.dex
(rather than its uncompressed version, as is typically the case).

Step 5: The APK’s Central Directory Header and Local File
Header then needed to be suitably modifi ed, with the
compression method changed to a value other than STORED or
DEFLATE. In this case, we used the SHRUNK (0x0001)
method. The uncompressed size was also changed to refl ect the
original uncompressed size of the classes.dex fi le (see Figure 18).

Installation of this crafted APK works on the target Android OS
by satisfying the following criteria:

Java verifi cation layer: This layer assumes that if the
compression method specifi ed is not DEFLATE, it is STORED.
So when it encounters classes.dex with SHRUNK compression,
it assumes the STORED method has been used, and matches the
SHA1 hash (of the compressed data) against the one specifi ed in
the MANIFEST.MF fi le.

C++ ZIP layer: This layer assumes that if the compression
method specifi ed is not STORED, it is DEFLATE. So, when it
encounters classes.dex with SHRUNK compression, it assumes
the DEFLATE method has been used, extracting classes.dex to
disk by uncompressing the pre-compressed data.

MITIGATION

Suggested fi x for Android OS developers

Android OS should place a stricter check on the compression
method fi elds in order to block the installation of crafted APKs.
This has been logged as Issue #69184.

Suggested fi x for anti-virus vendors

Having identifi ed the fi le as APK, anti-virus engines should

Figure 17: Classes.dex ‘compressed’ using the STORED method.

Figure 18: Crafted fi elds for classes.dex data.

Figure 15: Directory layout before compressing classes.dex.

Figure 16: Directory layout after compressing classes.dex.

LEAVING OUR ZIP UNDONE: HOW TO ABUSE ZIP TO DELIVER MALWARE APPS PANAKKAL

294 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

choose either to heuristically fl ag the fi le if any unsupported
compression method is specifi ed in the Local File or Central
Directory Header, or to extract the fi les based on assumptions
similar to the ones implemented by the Android OS.

CHAMELEON ZIP
The ZIP fi le format forms the basis for various application
packages, including Android Package (APK), Java Archive
(JAR), Metro App (APPX) and Microsoft documents (DOCX)
etc., which has created new challenges for the AV industry in
recognizing the type of packages based on content. A package
containing content from various package formats could be treated
as APK/JAR/DOCX based on the application that processes it.
Identifying the correct package type is critical for any automated
analysis system that a security vendor might employ. However,
an anti-virus scanner that defaults to extracting the ZIP contents
as it sees it will not be affected by this concept package.

ZIP packages are typically checked for fi les with specifi c names
at specifi c locations to help identify the package type.

Format Filenames

JAR META-INF/MANIFEST.MF

META-INF/*.SF

META-INF/*RSA

*.class

APK META-INF/MANIFEST.MF

META-INF/*.SF

META-INF/*RSA

AndroidManifest.xml

classes.dex

DOCX [Content_Types].xml

Word

docProps

_rels

APPX AppxManifest.xml

AppxBlockMap.xml

Table 3: Packages are checked for specifi c fi lenames at specifi c
locations.

Relevant fi le extensions, if available, are usually considered
when making a decision on the package type. However, this
may not always be the case.

An amalgamated package can easily be created that is valid
(with appropriate extension) for the application that processes it
(see Figure 19).

The same package can be installed as an Android app (with .apk
extension), run as a regular Java app/applet (with .jar extension),
opened by a document processor (with .docx extension), etc.

Figure 20 shows the directory tree structure from which we
created the Chameleon ZIP. It contains a mix of fi les that are all
part of the various fi le formats.

The APK and JAR fi les follow the same signing process, which
makes them valid for the respective applications. The Android
OS and JAR treat the irrelevant fi les just as other data fi les.

We observed that Microsoft Word has a requirement that it is
able to identify and relate to all fi les within the amalgamated
package renamed to DOCX. Therefore, attempting to open it in
Word fails, with a message declaring the fi le to be corrupt.
However, OpenOffi ce was able to successfully open and display
the content without any errors or warnings.

Windows 8 Metro apps also require each known fi le’s integrity
to be verifi ed, so it may not be possible to create a valid APPX
and APK/JAR due to the fact that the two latter formats require
updating of independent fi les with hashes needed for validation.
However, having the APPX-related fi les within the APK/JAR
might be enough to throw off a package type analysing
component.

Figure 19: A few of the popular ZIP-based formats.

Figure 20: Sample Chameleon ZIP layout.

LEAVING OUR ZIP UNDONE: HOW TO ABUSE ZIP TO DELIVER MALWARE APPS PANAKKAL

295VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

Format/extension Application Status

APK Android OS Success

JAR Java Runtime Success

DOCX OpenOffi ce Success

DOCX Microsoft Word Failed

APPX Windows 8 Failed

Table 4: Chameleon ZIP status.

ZIPPING IT UP

Owing to its fl exibility, versatility and popular use, the ZIP
format has been the target of many types of manipulation in
order to bypass anti-virus scanning and OS validation. Based on
the history of the format’s misuse, and the multitude of major
implementations that process the format, we expect this trend to
continue. It is best that the anti-virus vendors remain on their
toes.

Our internal analysis showed that a crafted APK with
non-conformant compression method was affecting various
anti-virus vendors. Both their mobile and Windows products
were affected. The technical details have been shared with the
respective vendors.

The effect of Chameleon ZIP on automated systems was not
evaluated due to practical restrictions. We suggest that the
anti-virus vendors evaluate their own systems based on the
information provided in this paper.

REFERENCES

[1] Sourced from http://en.wikipedia.org/wiki/ZIP_
%28fi le_format%29.

[2] https://bluebox.com/technical/uncovering-android-
master-key-that-makes-99-of-devices-vulnerable/.

[3] http://www.droidsheepapk.com/.

[4] http://www.saurik.com/.

[5] Parmar, K. http://www.kpbird.com/2012/10/in-depth-
android-package-manager-and.html.

[6] Mody, S. I am not the D ’r.0,1d You are Looking For:
An Analysis of Android Malware Obfuscation.
Proceedings of the Virus Bulletin International
Conference 2013.

[7] Dhanalakshmi, V. How vulnerable is Android to attack?
AVAR 2013.

[8] https://android.googlesource.com/.

APPENDIX: ANDROID ZIP-HANDLING CODE
SNIPPETS

For Android OS >= 4.4 (after Master Key fi xes):

C++ Source @ https://android.googlesource.com/platform/
dalvik.git/+/android-4.4.2_r2/libdex/ZIPArchive.cpp

if (method == kCompressStored) {
 if (sysCopyFileToFile(fd, pArchive->mFd, uncompLen)
!= 0)
 goto bail;
} else {
 if (infl ateToFile(fd, pArchive->mFd, uncompLen,
compLen) != 0)
 goto bail;

}

Java Source @ https://android.googlesource.com/platform/
libcore.git/+/android-4.4.2_r2/luni/src/main/java/java/util/zip/
ZIPFile.java

if (entry.compressionMethod == ZIPEntry.STORED) {
 rafStream.endOffset = rafStream.offset + entry.
size;
 return rafStream;
} else {
 rafStream.endOffset = rafStream.offset + entry.
compressedSize;
 int bufSize = Math.max(1024, (int) Math.min(entry.
getSize(), 65535L));
 return new ZIPInfl aterInputStream(rafStream, new
Infl ater(true), bufSize, entry);

}

For Android OS <= 4.3:

C++ Source @ https://android.googlesource.com/platform/
dalvik.git/+/android-4.2.2_r1/libdex/ZIPArchive.cpp

if (method == kCompressStored) {
 if (sysCopyFileToFile(fd, pArchive->mFd, uncompLen)
!= 0)
 goto bail;
} else {
 if (infl ateToFile(fd, pArchive->mFd, uncompLen,
compLen) != 0)
 goto bail;

}

Java Source @ https://android.googlesource.com/platform/
libcore.git/+/android-4.2.2_r1/luni/src/main/java/java/util/zip/
ZIPFile.java

if (entry.compressionMethod == ZIPEntry.DEFLATED) {
 int bufSize = Math.max(1024, (int)Math.min(entry.
getSize(), 65535L));
 return new ZIPInfl aterInputStream(rafstrm, new
Infl ater(true), bufSize, entry);
} else {
 return rafstrm;

