
SMART HOME APPLIANCE SECURITY AND MALWARE OH

296 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

SMART HOME APPLIANCE
SECURITY AND MALWARE

Jeong Wook Oh
HP, USA

Email oh@hp.com

ABSTRACT
Smart home devices are becoming increasingly popular. Sales of
smart TVs alone are expected to increase to 141 million units in
2015. This number may be small when compared with sales of
PCs and mobile devices, but it is an impressive indication of
what’s to come. And it’s not only our TVs that are getting
smarter; our refrigerators, surveillance systems and thermostats
are becoming ‘smart’ too. They are connected to the Internet.
They are in the cloud. They have more functionality than ever
before, and they’re making our lives easier. Conversely, they may
also be providing new opportunities for crime.

The current upward trend in smart appliance adoption might
resemble similar historic trends seen with PCs and smartphones.
At this early stage of the adoption process, we might think that
the smart devices in our home are safe, but what do we really
know about them? They are like black boxes and there is very
little information available about their internals. Worryingly,
what little published research exists in this area suggests our
confi dence may be misplaced.

Maybe we won’t see prevalent malware on these platforms in the
near future, but this is not because smart appliances aren’t prone
to attack. It is more about the current expected ROI for malware
writers. The market for smart appliances isn’t even remotely
close to saturation at this point, so the potential number of
targets, and therefore incentive to compromise, remains
relatively low. However, this gives us a good opportunity to think
about the security of these smart devices and get ahead of the
game. We can learn important lessons from the history of PCs,
smartphones and malware.

In this paper, we discuss the current security status of popular
smart home appliances (TVs, thermostats and surveillance
cameras). We share our fi ndings from reverse engineering those
devices and analysing their defences, including noting possible
attacks or vulnerabilities (such as memory corruptions, MITM
issues, etc.). We also elaborate on possible ways to mitigate
future threats on these increasingly popular platforms.

INTRODUCTION
Smart home appliances are becoming increasingly popular as the
trend of everything being connected continues apace. These
interconnections, moderated by our mobile devices or networked
PCs, make our lives more convenient and productive – and this is
just the start. Imagine the possibilities if you could control and
monitor all your intelligent appliances and home equipment
remotely.

But we might be missing something here. We have put a strong
emphasis on PC and mobile phone security, and many measures,

including anti-malware, have been developed to defeat malicious
software and exploits. Vendors like Microsoft, Apple and Google
have put signifi cant effort and resources into making their
products and the ecosystem more secure. The positive cycle of
bug reporting, fi xing and crediting is mostly stable in this space.
But smart home appliances, such as smart TVs and smart
refrigerators, are manufactured by large vendors who are not
familiar with the software industry and its established security
best practices. Then there are other, smaller vendors who have
great ideas as to how to make life easier with many different
Internet-enabled devices, but security may not be at the forefront
of their minds. Neither of these groups has the experience in
security that forged the current policies for addressing
vulnerabilities and malware in the more conventional IT space.

ANALYSIS TARGET
Among the growing number of smart appliances, smart TVs have
shown very impressive sales recently and are projected to
increase to 141 million units worldwide in 2015 [1]. This
number is still small compared to the number of PCs and mobile
devices being sold, but it is a number we can’t ignore. For this
paper, I picked one smart TV model (Samsung F-series) as a
case study and performed a detailed security assessment. In this
paper I discuss the attack vectors from the point of view of the
attackers and malware creators. Hopefully this will give you a
glimpse into the state of security in this space.

The target device I chose was a 55UF6350 model purchased
from a US retail store in 2013. In other words, very typical of the
sort of TV you might purchase nowadays. This model is usually
called an F-series (most of the Samsung TV models sold in 2013
fall into this category). Table 1 shows the basic features of this
TV. From the specifi cation alone, it almost sounds like it is a
small computer with huge screen.

Features

Processor Dual core (ARMv7)

Screen size 55’’

AllShare™ Content sharing and screen mirroring

SmartView Clone view

Smart phone remote
support

Yes (requires SmartView app)

USB HID support Yes

Motion rate 240

Network One built-in wireless adapter

Browser WebKit-based with Flash 11.1 support
(ActionScript 3.0)

Installed apps Netfl ix, Picasa, Skype, YouTube,
Facebook

Table 1: Features of Samsung TV model 55UF6350.

INTERNALS
The TV runs a Linux operating system, as illustrated in Figure 1,
which shows the dmesg command result from the TV. There’s
some interesting information here, like the memory size of

SMART HOME APPLIANCE SECURITY AND MALWARE OH

297VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

616MB total and an ARMv7 model CPU. The machine doesn’t
look as powerful as a PC, but it feels more like an embedded
Linux system.

Figure 2 shows the mount command result with a number of
partitions mounted on the system. Of the multiple partitions

Figure 1: The dmesg command result from the TV.

Figure 2: The mount command result from the TV.

mounted, some are mounted as read-only and some are mounted
as read-write.

Figure 3 shows the ps command result. An interesting process
like X, which is used for X-Windows, is shown. There are other
interesting processes too, like udhcpc (a dhcp client) and

SMART HOME APPLIANCE SECURITY AND MALWARE OH

298 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

WebkitWebProcess (a Webkit process). The process name
exeAPP (also fi gured) is responsible for the related operations
of apps overall, and the process name exeTV is responsible for
showing television programs.

Table 2 shows some of the TCP ports on the system, related
processes and their usage. The exAPP process listens on many
ports including 55000 and 55001. These ports are used for the
SmartView application. Other SOAP-related ports from lighttpd
are mostly for Universal Plug and Play (UPNP) related
operations. UPNP is a set of network protocols that enables
network devices to discover each other and perform additional
operations with each other seamlessly.

Information source

For Samsung TV rooting resources and other general
information, the Samygo forum (http://www.samygo.tv/) is very
useful. A lot of information from independent hobbyists is
accumulated here.

Figure: 4 Samygo forum.

Debug port access
Most embedded devices allow technicians to access fi rmware
through hardware interfaces like JTAG or UART ports. In most
cases, they don’t want end-users to abuse the feature, so it is

Figure 3: The ps -eaf command result from the TV.

Protocol Port Process Usage

TCP 6000 X X Windows

TCP 55000 exeAPP SmartView

TCP 55001 exeAPP SmartView

TCP 9090 exeAPP SmartView

TCP 7676 exeAPP SOAP

TCP 80 lighttpd SOAP

TCP 4443 lighttpd SOAP

TCP 443 lighttpd SOAP

Table 2: Ports of interest on the TV.

SMART HOME APPLIANCE SECURITY AND MALWARE OH

299VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

common for the interfaces to be obfuscated. The Samsung TV is
known to use a modifi ed version of a serial port called
EX-LINK (Figure 5).

Figure 5: EX-LINK port on the back of the TV.

The schematics for the EX-LINK cable are shown in Figure 6.
At one end of the cable is a DB9 female connector, and the other
end uses a stereo audio plug interface. You can easily make a
cable by combining a DB9 cable and a stereo audio jack cable.

Figure 6: EX-LINK cable schematics (source: [2]).

After building an EX-LINK cable, you need to enable debug
mode from the TV. As shown in Figure 7, EX-LINK is
confi gured in UART mode by default. This needs to be changed
to debug mode, as shown in Figure 8.

If everything is working well, you will see a screen similar to
that shown in Figure 9. More detailed log messages are shown
in Figure 10. A lot of debug messages from the system processes
are displayed, which is very helpful when reverse engineering
system features. Also, with special key sequences, you can gain
access to the Top-Debug-Menu (TDM). Through the TDM, you
can control sensitive features of the TV at a very low level. Most
of this information is available from the Samygo forum.

Rooting
To research smart TV internals, gaining access to the system
shell is essential. To achieve that, I used the SamyGO rooting
app. Interestingly, the way this app works implies a weakness
with a Samsung TV security feature.

First, you download the SamyGO rooting package from the
Samygo forum site and put the package on a USB thumb stick.
From the TV, go into the ‘More Apps’ menu. When you plug in

Figure 7: RS-232 jack is UART mode by default.

Figure 8: Debug mode enabled.

Figure 9: Connecting to the TV through the EX-LINK cable.

Figure 10: Detailed debug messages from the TV.

SMART HOME APPLIANCE SECURITY AND MALWARE OH

300 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

your USB stick, it shows the SamyGO application on the
application list. Figure 11 shows the application icon with the
name ‘SamyGO-F’ on the screen.

Table 3 shows the fi les inside the SamyGO app. Essentially, a
TV app is just a ZIP archive fi le with HTML, JavaScript and
additional fi les inside. Samsung TV apps are written in HTML
and JavaScript. The main code that does the rooting is inside
index.html and JavaScript\Main.js.

Name Description

widget.info Basic widget information
(resolution, alpha blending usage)

confi g.xml Program confi guration (widget id,
name, description, etc.)

index.html Main HTML fi le loaded

JavaScript\Main.js Main exploit fi le in JavaScript code

data\patch Main patch fi le (zip format)

icon\samygo.jpg

Program icons

icon\samygo_106.png

icon\samygo_115.png

icon\samygo_85.png

icon\samygo_95.png

CSS\Main.css CSS fi le

Table 3: Main program structure.

The data\patch fi le is actually a ZIP archive that contains the
fi les shown in Table 4. The remoteSamyGO.zip fi le inside this
fi le is another ZIP archive that contains ELF binary fi les and a
shell script that is installed on the target machine (Table 5).
LibSkype.so is a fi le that replaces the original Skype shared
library fi le with a fi le of the same name.

Name Description

AutoStart Dummy AutoStart fi le

libSkype.so Skype hooking library fi le

remoteSamyGO.zip Main SamyGO package fi le

runSamyGO.sh SamyGO package run script

Table 4: Patch fi le structure.

Name Description

busybox Busybox package (including various utilities,
etc.)

remshd Remote shell

UEP_killer.sh UEP killer

Table 5: remoteSamyGO.zip fi le structure.

The busybox fi le is a small binary containing many different
functions including shell and FTP. The remshd fi le is an ELF
binary that listens on port 23 and gives out a shell when anyone
connects to the port. The UEP_killer.sh fi le is a shell script that
kills a watchdog process on the system that blocks unauthorized
processes (killing the watchdog process disables this security
feature).

When the program is run, it displays a screen similar to that
shown in Figure 12. It overwrites Skype’s shared library fi le
(libSkype.so) with its own version. Whenever Skype runs on the
TV, the main Skype binary loads this replaced shared library and
runs the SamyGO app’s code inside it. The shared library runs
its own code for installing a remote shell and providing other
features.

Figure 12: Rooting process from the rooting program.

How rooting works and its security implications

You might be wondering how this rooting process is possible.
The cause of the problem is that when a USB stick is inserted,
the More Apps feature does not verify the applications on the
USB drive – it skips the application verifi cation process and lets
the user run the program(s). Moreover, the process has root
privileges. The TV apps are written in HTML and JavaScript,
and the underlying system exposes JavaScript objects that
support network, display and fi le system access, etc.

The SamyGO app fi rst loads the SAMSUNG-INFOLINK-
FILESYSTEM object, as shown at line 11 in Figure 13.
Through this object, the JavaScript code can perform fi le-
system-related operations. After that, as shown at line 15 in
Figure 13, the HTML page calls the Main.onLoad JavaScript.

Figure 14 shows that the fi lePlugin variable is resolved from the
previous SAMSUNG-INFOLINK-FILESYSTEM object.

Line 156 in Figure 15 shows how the Unzip method from this
object can be used. Basically, you can extract an arbitrary ZIP
fi le to an arbitrary folder.

Figure 11: SamyGO rooting app.

SMART HOME APPLIANCE SECURITY AND MALWARE OH

301VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

The target location for the ZIP operation is shown in Figure 16.
This path is where the Skype engine’s fi les, including the shared
library, are stored.

The rootSamyGO function from the script extracts a
‘data/patch’ fi le to the Skype engine’s location, overwriting the
libSkype.so fi le. Now, when the Skype program runs on the
system, it loads the SamyGO version of the libSkype.so shared
library.

SMARTVIEW FLAW
SmartView is a feature of Samsung TVs that lets you enjoy TV
content from your PC or smart phone. An iPhone app (Figure
18) and a PC application (Figure 19) are available. The
SmartView feature is related to other features like AllShare, etc.

Figure 13: Special clsids and Main.onLoad() calling.

Figure 14: Main.onLoad resolves the fi le system plugin object.

Figure 15: Unzip function using fi lesystem plugin.

Figure 16: Skype engine path defi nition.

Figure 17: Extracting exploit packages to the Skype engine folder.

Figure 18: SmartView iPhone App.

SMART HOME APPLIANCE SECURITY AND MALWARE OH

302 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

The SmartView feature is representative of smart TVs with
network capability. Looking into how this feature works is
interesting, as well as a benefi cial exercise in order to gain a
better understanding of the security implications of some
features of smart TVs.

SSDP
Simple Service Discovery Protocol (SSDP [3]) is used for
discovering and propagating device information on the local
network. The SmartViewApp application sends M-SEARCH
requests over the multicast network (Figure 20).

The payload of the M-SEARCH packets is shown in Figure 21.
It tries to fi nd Samsung remote control receiver devices.

The TV replies with additional information about itself using
the SSDP protocol (Figure 22).

Figure 23 shows the contents of this reply packet. It has a
‘LOCATION’ header that can be used for further operations.
The URL is ‘http://192.168.1.9:7676/smp_2_’ and the IP
address of the TV is 192.168.1.9.

Basic information request
From the response of the M-SEARCH request, the client can

Figure 19: SmartView PC application.

Figure 20: M-SEARCH packets.

Figure 21: M-SEARCH packet payload.

Figure 22: M-SEARCH response.

determine the URL for more operations. It tries to connect to
and request information from the TV by sending a simple GET
request to this URL (Figure 24).

Figure 24: Smp_2_ application request.

The result of this GET request is shown in Figure 25. The
message contains basic device information including model
number and a detailed description of the device. Also note that
there is a service entry named urn:samsung.com:serviceId:
MainTVAgent2. The entry has a controlURL of /smp_4_. This

Figure 23: M-SEARCH response payload.

SMART HOME APPLIANCE SECURITY AND MALWARE OH

303VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

URL is where the client can perform additional SOAP
operations.

Figure 25: Smp_2_ application response.

Advanced operations
So smp_4_ is a SOAP application that provides additional
operations. Figure 26 shows one of the requests: it is sending a
GetDTVInformation request to the TV using a SOAP message.

The response to the GetDTVInformation request is shown in
Figure 27. The response contains basic information about the
features the TV supports. It includes the video format it
supports, TV version, and the presence of additional networking
ports like Bluetooth.

There are many different services available through this
application, including the following functions:

• AddSchedule

• ChangeSchedule

• DeleteRecordedItem

• DeleteSchedule

• DestroyGroupOwner

• EnforceAKE

• GetACRCurrentChannelName

• GetACRCurrentProgramName

• GetACRMessage

• GetAPInformation

• GetAllProgramInformationURL

• GetAvailableActions

• GetBannerInformation

• GetChannelListURL

• GetCurrentBrowserMode

• GetCurrentBrowserURL

• GetCurrentExternalSource

• GetCurrentMainTVChannel

• GetCurrentProgramInformationURL

• GetDTVInformation

• GetDetailProgramInformation

• GetFilteredProgramURL

• GetMBRDeviceList

• GetMBRDongleStatus

• GetRecordChannel

• GetScheduleListURL

• GetSourceList

• PlayRecordedItem

• RunBrowser

Figure 26: Smp_4_ application request.

Figure 27: Smp_4_ application response.

SMART HOME APPLIANCE SECURITY AND MALWARE OH

304 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

• SendBrowserCommand

• SendMBRIRKey

• SetAntennaMode

• SetMainTVChannel

• SetMainTVSource

• SetRecordDuration

• StartCloneView

• StartInstantRecording

• StopBrowser

• StopRecord

• StopView

Figure 28: Remote controller packets.

Figure 29: Remote controller authentication packet.

Figure 30: Remote controller authentication packet bytes.

REMOTE CONTROL PROTOCOL
In addition to SOAP services, the TV provides a remote control
service on port 55000. The details of the protocol are
undocumented. Figure 28 shows some of the packets using this
protocol. The protocol enables the client to send remote
controller keys over the network, which means that you can
emulate remote controller key presses from your application on
a PC or smart phone.

Design weakness

There is a design weakness in the authentication process.
Figure 29 shows an authentication packet from the client. The
client is sending a message with a proprietary packet format.
Figure 30 shows the hex representation of the payload bytes for

SMART HOME APPLIANCE SECURITY AND MALWARE OH

305VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

Field Data Format Description

Unknown 00 Unknown Unknown

Length 14 00 Short Length of the following string

String 69 70 68 6F 6E 65 2E 2E 69 61 70 70 2E 73 61 6D 73 75 6E 67 String iphone..iapp.samsung

Payload
length

40 00 Short 0x40 bytes of payload

Unknown 64 00 Unknown Unknown

Length 10 00 Short Length of the following string

String 4D 54 6B 79 4C 6A 45 32 4F 43 34 78 4C 6A 45 35 Base64
string

Encoded: MTkyLjE2OC4xLjE5

Decoded: 192.168.1.19

Length 18 00 Short Length of the following string

String 4D 54 41 74 4D 45 49 74 51 54 6B 74 4E 54 63 74 4D 54 49 74
4E 44 67 3D

Base4
string

Encoded:
MTAtMEItQTktNTctMTItNDg=

Decoded: 10-0B-A9-57-12-48

Length 10 00 Short Length of the following string

String 51 31 4A 42 57 6C 6C 44 54 30 39 4C 53 55 55 3D Base64
string

Encoded: Q1JBWllDT09LSUU=

Decoded: CRAZYCOOKIE

Table 6: Remote controller authentication packet bytes.

Figure 32: Remote controller – all authentication packet bytes.

Figure 33: Authentication packet sending routine
(hijack_remote.py).

authentication. Even though the format is not documented, it is
fairly simple to reverse engineer.

Table 6 shows the parsed hex bytes from the original packet –
basically, the client sends the IP address, MAC address and
hostname to the server.

When the TV receives this packet, it displays a dialog box
similar to the one shown in Figure 31. If the user allows the
connection, then the client is able to send remote controller keys
over the network.

Figure 31: Dialog on the TV.

The design issue is very obvious here. The information that the
client uses for authentication is the client’s IP address, MAC
address and hostname. All of this information can easily be
retrieved on the local network. The IP address and MAC
address are constantly being broadcasted through ARP
packets, and hostnames are sent out through Windows name
service packets. You do need to fi gure out which machine is
allowed access to the TV remote controller service fi rst, or you
can try all the machines on the network to brute-force
authentication. At best, this authentication design is pretty
weak.

Vulnerability in implementation

In addition to a fundamental design fl aw for remote controller
authentication, there is also an implementation fl aw. According
to my tests, the hostname and IP address are not even used for
authentication. The attacker only needs to guess the MAC
address, which is constantly broadcast over the local network.

SMART HOME APPLIANCE SECURITY AND MALWARE OH

306 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

But there is one more issue: if you send an empty string as a
MAC address, the server always allows the connection if any
client was previously allowed for the service.

Figure 32 shows the hex bytes of the payload that was used for
authentication bypass. Table 7 shows the parsed hex bytes, and
you can see that the length fi elds for IP address, MAC address
and hostname are all 0 and the strings are empty.

Figure 33 shows the code that sends this authentication packet.
From line 18, if you pass an empty string for IP, hostname and
MAC address, the authentication is bypassed.

Sending keys

Now that you can authenticate as a valid SmartView client, you
need to fi gure out how to send remote controller keys. For
example, Figure 34 shows a packet that is sending a key. The
payload is ‘S0VZX1ZPTFVQ’, which is a base64-encoded
string of ‘KEY_VOLUP’. This key is used for the volume up
function.

Figure 35 shows the main code that sends remote controller
keys. The keys are in the form of strings, and various keys can
be retrieved from a packet dump of the SmartView sessions.

Exploiting

Now that we can send any remote controller keys, we want to
fi nd out if anyone has previously used the SmartView feature
and allowed at least one client.

For example, ‘HOME-PC’ is a legitimate user PC. If a user
wants to use the SmartView feature, they authenticate the PC
from the TV screen by allowing the device named ‘HOME-PC’
(see Figure 36).

When a SmartView client is allowed, an access control list is
added to the ‘Content Sharing’ menu (see Figure 37).

Now the attacker wants to take control and uses the SmartView
client from a machine that is connected to the local network.
Let’s assume that they have already gained control of one of the

Field Data Format Description

Unknown 00 Unknown Unknown

Length 14 00 Short Length of the following string

String 69 70 68 6F 6E 65 2E 2E 69 61 70 70 2E 73 61 6D 73 75 6E 67 String Ascii: iphone..iapp.samsung

Payload
length

08 00 String 0x08 bytes of payload

Unknown 64 00 Unknown Unknown

Length 00 00 Short Length of the following string

String Base64
string

Empty

Length 00 00 Short Length of the following string

String Base64
string

Empty

Length 00 00 Short Length of the following string

String Base64
string

Empty

Table 7: Remote controller – all authentication packet bytes.

Figure 34: Remote controller packets.

SMART HOME APPLIANCE SECURITY AND MALWARE OH

307VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

Figure 36: Legitimate user authentication.

Figure 37: Content sharing access control list.

Figure 38: Attacker tries to authenticate.

machines on the local network and are trying to get into the TV
to perform additional attacks. When they try to authenticate the
machine under their control, a pop-up dialog appears (Figure
38).

One click of the enter key is needed for this connection to be
allowed. The attacker can use the remote controller exploit here.
Figure 39 shows the code from the hijack_remote.py script that
bypasses authentication and sends KEY_ENTER to the TV.

The hijack_remote.py script is run as shown in Figure 40. The
fi rst argument is the TV’s IP address and the second is the MAC
address. If you know the MAC address of any device that has
already been authenticated, you can put that here. However, if
you put an empty string here, it tries to exploit the empty MAC
bypass issue.

Figure 40: Running hijack_remote.py.

When the exploit is successful, the attacker is registered as an
allowed ‘Content Sharing’ client (see Figure 41).

Figure 41: Content sharing access control list.

Figure 39: Enter key sending code (hijack_remote.py).

Figure 35: Key sending routine (hijack_remote.py).

SMART HOME APPLIANCE SECURITY AND MALWARE OH

308 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

INSTALLING A BACKDOOR

Now we have a way to send any remote controller key to the
TV. You might think that this glitch isn’t all that useful for
attackers – but imagination is the only limit here. One attack
scenario we can think of is to change DNS settings in the
network settings, or possibly to reroute all traffi c to the
attacker’s server. Another possibility might be to install malware
on the TV. From here, we will demonstrate a way in which
malware can be installed on the TV remotely using a remote
controller fl aw.

Clone view

The PC version of the SmartView application supports a

Figure 42: SmartView PC application with View.

Figure 43: Screen cloning request.

Figure 44: Screen cloning response.

remote view function in addition to the remote controller
function (Figure 42). This feature is really useful when
attacking because the attacker can see the TV screen remotely.
This could reveal the contents of any app being used, such as
social apps, or browser and messenger tools like Skype. This
means that the user’s privacy, while using the TV, will be
compromised.

This clone view feature is actually implemented through a
SOAP message and livestream application. The SmartView
client sends a SOAP message to the smp_4_ application using
the StartCloneView method (Figure 43). If the client has already
been authenticated through the remote controller service, the
server starts view cloning and replies with a message that
contains a URL for streaming (see Figure 44).

SMART HOME APPLIANCE SECURITY AND MALWARE OH

309VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

The client sends a request to the livestream server to retrieve
livestream data (Figure 45).

Figure 45: Livestream request.

Figure 46: Livestream response.

Figure 47: Log into Samsung account.

Figure 48: Input ‘develop’ account in email fi eld.

And the server sends out a constant stream of livestream data in
HDCP format (see Figure 46).

Developer account
There are apps for a Samsung TV that can be downloaded from
the Samsung app store. To get into the app store you need to log
in using a Samsung account (see Figure 47). There is a feature
called a developer account, which is a reserved login name
called ‘develop’, and if you login with that name, the TV is

SMART HOME APPLIANCE SECURITY AND MALWARE OH

310 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

Figure 49: From More Apps menu, select IP Setting.

Figure 50: Input attackers web server

Figure 51: Start application sync.

Figure 52: Sample widgetlist.xml.

SMART HOME APPLIANCE SECURITY AND MALWARE OH

311VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

automatically switched to a developer mode (Figure
48). Creation of the developer account differs for each
model, but for this F-series TV, the account is already
created and there is no password associated with it.

When you successfully switch the machine to
developer mode, you get special access to a hidden
menu. From More Apps, if you check options, it shows
the ‘IP Setting’ and ‘Start App Sync’ menu items which
were not shown before (see Figure 49).

By selecting ‘IP Setting’ here, an attacker can input the
address of a web server that they control (see
Figure 50).

After that, the attacker can use the ‘Start App Sync’
feature to install their malicious app on the machine
(see Figure 51).

App sync & application security issues

When you choose to start App Sync, the More Apps
program tries to connect to the web server on port 80
running on the machine specifi ed by the IP settings.
When it fi nds a web server on that address, it retrieves a
/widgetlist.xml fi le and parses it. A sample
widgetlist.xml is shown in Figure 52. The download tag
specifi es the ZIP fi le that contains the TV app.

Simply reusing the Samygo F-series rooting app and
installing it over App Sync might install a remote shell
and FTP server, which is enough to demonstrate remote
compromise through SmartView. But, if you try to
install the rooting app through the developer account,
the app will not be installed, and a security warning
will be displayed (see Figure 53).

Figure 53: Application security issue.

To investigate more, if you follow the URL given in the error
message, it describes many different reasons for the security
warning occurring. One notable fact is that if you embed a binary
fi le (ELF in this case), the app is not allowed to install. This is a
countermeasure to prevent the installation of any unwanted ELF
binaries on the system. The Samygo rooting app relies on
replacing a Skype shared library. Even when it is archived in a
ZIP fi le, it is still detected by the app installer and rejected. You
might think of encoding the fi le, but there is no easy way to
decode them on the fl y from the TV app. The Samygo rooting app
relies on an Unzip function from the fi le system plug-in object, so
there is no room for decoding the contents during the process.

Dropper hack
In order to copy an ELF binary you want to install on the
system, you need to fi nd a glitch in the app installer’s security.
As it happens, I found one. Even when the app is rejected, the
whole contents are left in an easily guessable location under /
mtd_rwcommon/common/TempDownLoad. For example, if you
installed an app called Test, the following folder on the TV
system would contain the entire contents:

/mtd_rwcommon/common/TempDownLoad/Test

Using this fact, we can drop an ELF binary on the system and
use it later from another app. Even though it triggers a security
violation error, we can still drop a fi le we want and use it from
an app we launch later.

Figure 54: Dropper contents.

Figure 55: Dropper widgetlist.xml.

Figure 56: RemoteRooting package contents.

Figure 57: Package path with installer.

Figure 58: RemoteRooting widgetlist.xml.

SMART HOME APPLIANCE SECURITY AND MALWARE OH

312 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

Figure 59: No security issues.

Figure 60: Run RemoteRooting app.

Figure 61: RemoteRooting result.

Figure 62: Access to the TV with root privilege.

For example, I packaged the ‘patch’ fi le inside a dropper app.
(Figure 54) This fi le is from the Samygo rooting app and it
contains multiple ELF binaries.

The widgetlist.xml fi le is shown in Figure 55.

The More Apps installer triggers a security warning but you can
just dismiss the message. The fi le we want is now dropped on
the system.

Installer
Now we need to make a new package without any ELF binaries
(Figure 56).

One thing we need to do is to change packagePath in Main.js to
the location where our dropper package is dropped (Figure 57).

The widgetlist.xml fi le is shown in Figure 58.

When you perform app sync, it succeeds without any warning
(Figure 59).

You can confi rm that the RemoteRooting app just installed on
the TV system (Figure 60).

When you launch the app, you see a screen similar to Figure 61.
Now the Samygo package, including a remote shell and FTP, is
installed. You can confi rm this by connecting to the TV via port
23. You will have root privilege on the system. (Figure 62) From
here, further attacks can be launched.

CONCLUSION
Smart devices are a new trend in the appliance industry, and
smart TVs provide a good example of what to expect from
them. The fact that they can be connected with other devices at
home, like PCs or smart phones, initially seems very
convenient. However, the way the overall architecture is
designed is a little questionable. I used the SmartView feature of
a Samsung Smart TV to showcase how weak the design of a
proprietary protocol can be. Also, the actual implementation is
so delicate that the whole authentication scheme fails when the
client supplies unexpected input. I also used a weakness in the
app installer to bypass a security error related to an embedded
ELF binary. As you have seen, it is possible to install malware
on the TV using the method I presented here.

It’s been a while now since the home appliance industry started
pushing these smart appliances. When these vendors are
creating new features and developing new technology to support
them, they might learn some valuable lessons from the past few
decades of the PC industry. Even when it doesn’t seem likely
that malware or actual attacks will happen for these smart
appliances in the foreseeable future, you never know. Better to
prepare early rather than late. If the new smart appliances don’t
gain the trust of their users, they won’t ever be used for any
critical purposes like confi dential Skype calls or private social
networking. The TV already comes with Skype, browser and
social apps: If the TV can’t give users assurance of its secure
operation, users will be too ‘smart’ to use it.

REFERENCES
[1] Epstein, Z. Smart TV sales soared in 2012, set to

dominate TV market by 2015. BGR. Feb 22, 2013.

SMART HOME APPLIANCE SECURITY AND MALWARE OH

313VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

http://bgr.com/2013/02/22/smart-tv-sales-2012-
340405/.

[2] http://wiki.samygo.tv/index.php5/Enable_Serial_
Console_on_non_CI%2B_Devices#The_Ex-Link_
.28serial.29_cable_for_A_and_B_series_only.

[3] SSDP. http://tools.ietf.org/html/draft-cai-ssdp-v1-03.

