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ABSTRACT
Over the last few years, a certain category of software has 
become more and more of a nuisance to AV labs and computer 
users alike: adware and potentially unwanted applications 
(PUAs). Walking the thin greyware line, these applications try 
(and sometimes succeed) to persuade even the AV labs that they 
are honest and trustworthy. Their motivation is monetary gain, so 
getting installed on as many computer systems as possible is a 
way to increase their earnings. This is often achieved by using 
dubious methods of distribution or using social engineering to 
trick the user into willingly accepting the software’s installation.

Analysing greyware applications and taking a defi nitive decision 
on whether or not to block them is more than often a tedious job, 
combining research and both dynamic and static analysis. This 
paper explores the possibility of streamlining the analysis of 
PUAs by using some of the resources the developers of these 
applications utilize to justify their behaviour. The End-User 
License Agreement (EULA) and privacy policy can provide 
meaningful information about what an application might do. 
Using natural language processing (NLP) and other techniques, 
one can begin to distinguish some new patterns. By analysing 
more than 15 known adware families and their EULAs, we found 
this to be an effective method to discover new PUAs, even when 
using automated systems.

1. INTRODUCTION
We defi ne Potentially Unwanted Applications (PUAs)1 as 
computer programs that in some circumstances employ 
techniques that circumvent security measures or have a negative 
effect on the user’s interaction with specifi c applications or 
actions. This is a rather broad defi nition, and includes different 
types of computer programs such as jokes, diallers, browser 
hijackers, spyware and adware. The latter has seen its ups and 
downs but the statistics for the last year are showing a disturbing 
trend, as shown in Figure 1. To better understand the recent 
evolution of adware, we considered the data from March 2013 as 
the baseline and determined the monthly growth. This baseline is 
shown as the 0 tick on the Y axis.

Advertising has been around for a long time, in different forms, 
always fi nding ways to interact with people and infl uence them. 
The Internet offers access to millions of potential ‘victims’ and 
this source of revenue is being exploited by legitimate companies 
and adware creators alike. Having as many users installing their 
software as possible is a way to increase their earnings.

This is often achieved by using dubious methods of distribution 
or social engineering to trick the users into willingly accepting 
the software’s installation. Since the early days of adware 

1 Sometimes also referred to as Potentially Unwanted Programs (PUPs).

infections, we have noticed that most of the companies that 
produce this kind of software have changed their approaches. 
They are trying to benefi t from the lack of a commonly accepted 
standard in the anti-virus industry regarding PUAs, sometimes 
caused by the risks imposed by legal actions. One way to achieve 
this is by enforcing the legal implications of the user accepting 
the End-User License Agreement (EULA) and privacy policy. 
This can also be used by adware companies to avoid judicial 
actions against them. Fortunately for us, this means that adware 
programs effectively come with a written testimony of how they 
are going to behave.

We investigate ways in which we can use the information 
willingly offered by means of the EULA and privacy policy in 
order to distinguish legitimate applications from adware or 
ad-supported software. In order to reach our target we took into 
consideration different technologies such as Natural Language 
Processing (NLP) and supervised learning.

1.1 Previous work

Our scope is to build a system that can automatically decide if a 
given executable fi le is adware or ad-supported, based on the 
EULA or privacy policy. The feasibility of this task has been 
proven in a pilot study [1] and a later paper [2]. We also found 
other applications that offer the possibility of classifying 
EULAs, using a different approach. One of them is EULAlyzer 
[3], a piece of commercial software available in both free and 
paid versions. The user must load the content of the EULA and 
start the analysis in order to receive the result, consisting of a list 
of words or sentences each given a score. The paid version also 
allows for dynamic recognizing and intercepting of EULAs from 
running installers.

The other application is similar to the free version of 
EULAlyzer, the main difference being that it’s an online web 
page and ‘uses only automated keyword recognition systems’ 
[4]. Both EULAlyzer and EULA Analyzer rely on the user’s 

Figure 1: Monthly procentual evolution with 2013-03 as a 
baseline. (Data provided courtesy of Bitdefender.)
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ultimate decision, making both of them unusable for large-scale 
automated analysis.

1.2 Outline

The remainder of this article is organized as follows. In Section 2, 
we describe our methods of collecting and interpreting data. The 
experimental results are presented in Section 3, followed by 
conclusions and future work in the last section.

2. EXPERIMENTS

Our goal is to create a system that can automatically classify a 
binary executable as being either clean or adware while 
providing more relevant information for the researcher. This 
means that it must fi rst obtain a EULA from the input fi le and 
then compute a score that will help classify it. Even at this level 
of analysis, two problems emerge: obtaining the EULA, and 
understanding it. Our trials to overcome the latter are further 
discussed in Section 2.1, while data collection and processing 
are detailed in Sections 2.2 and 2.3.

2.1 Interpreting the EULA and privacy policy

Reading and understanding the contents of the End-User 
License Agreement is one of the recommendations computer 
users generally tend to follow the least. From a study proposed 
by Jeff Sauro [5] and confi rmed by a later paper [6], we fi nd that 
‘more than 50% of the users take less than eight seconds, which 
is clearly too short, to read the entire notice’ [6]. So why is this 
happening, knowing that a ‘EULA is a legal contract between 
you and the software publisher’ [7]? For once, their presence in 
every piece of software or website, makes implicit approval an 
accepted part of installing an application. Furthermore, the legal 
terminology associated with them, combined with unnecessary 
and sometimes voluntary language obfuscation makes reading 
this contract a daunting task for the average user.

Most EULAs and privacy policies adhere to a common writing 
standard, and in our research, we found that the majority of the 
documents follow the same patterns. And patterns are great for 
creating algorithms that can tap into their predictability. So let 
us further investigate them from a human perspective. Starting 
from a macro-level, a EULA is nothing more than a document 
providing information about the relationship between a 
consumer and the software publisher, regarding a specifi c 
service or application. If we go deeper, we can distinguish a 
specifi c format in which the data is presented: sections and 
paragraphs related to a specifi c subject tend to be located in the 
same part of the document. This opens new possibilities for 
searching relevant data in a subset of the document to improve 
performance. Going even deeper, at the word-level, we can see 
that some adware-related behaviour is described similarly by 
using a relatively small subset of words. Making sense of all 
this might seem trivial for us, but constructing effi cient 
algorithms that can correctly understand and fl ag parts of the 
EULA is more diffi cult than one might anticipate.

This is a text classifi cation problem that we think is most suited 
for NLP processing and supervised learning. We will also 
research whether and how it is feasible to classify EULAs by 

using deterministic algorithms based on a database of features 
constantly maintained and improved by the researcher.

2.2 Data collection
Because the main target for adware producers is the Windows 
operating system, we will concentrate our efforts on processing 
binary executable fi les for this platform. The PUA collection 
was randomly chosen from a batch of fi les detected by at least 
three known anti-virus products or that were part of known 
adware families. The clean binaries were taken from different 
download websites known to have strict validation rules for the 
hosted products and tested by scanning with different AV 
products to ensure a 0% detection rate. All the fi les were 
processed using the same steps, as described in Figure 2, with 
the fi rst operation requiring the fi ltering of Nullsoft Scriptable 
Install System (NSIS) [8] installers. We chose to handle NSIS 
fi les in a different way as they offer a simple manner of 
extracting the EULA from its decompiled script, making it 
possible to correlate the document to the installer itself and not 
a bundled fi le. The next step is to send all the binary fi les, 
including the NSIS installer (if applicable), to a generic 
unpacker so that we can extract Internet addresses from any fi le 
contained within. This should cover the cases where an installer 
bundles adware components.

Figure 2: Data collection fl ow chart.

When analysing a possible piece of adware, the extraction of 
web links from the executable can give clues as to its behaviour 
and the source website. This usually allows the researcher to 
fi nd more information such as a download link for the parent 
installer and the EULA or privacy policy. In addition to using 
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different regular expressions for Internet address extraction, we 
also searched for words and word combinations that might be 
part of a website link or IP address. An example of the fl ow that 
our script would follow is shown in Figure 3. This represents a 
binary view of the .rdata section of a 32-bit Portable Executable 
(PE) binary [9] member of the ‘Gamevance’ adware family. The 
yellow box highlights a domain that is extracted by our script.

Figure 3: Sample slice of an adware binary view.

If the extracted link does not point to a valid EULA or privacy 
policy, we parse the domain main page and search for keywords 
in the links shown on the page that might give away the 
presence of a EULA.

Using this fl ow, we processed 1,028,146 PE binaries, obtaining 
52.49% clean and 47.51% adware EULAs. This distribution was 
obtained by correlation with the verdict of the document’s 
parent executable and by fi ltering manually. After obtaining this 
new collection of ASCII fi les we went further with processing 
them, as described in the next section.

2.3 Data processing
At this stage, our goal is to obtain interpretable data from the 
collected text fi les. In order to achieve this, we went with what 
NLP has to offer in the form of the Natural Language Toolkit 
(NLTK) [10] library for Python. This gives access to several 
functions that streamline interaction with some of the most 
commonly used tasks in NLP, like part-of-speech tagging and 
word sense disambiguation.

Every language has its own semantic and grammar rules, and 
most of the functions and algorithms backing NLTK have been 
trained on English documents. This makes it only natural that 
we should ignore any sample written in a different language. 
For this task we chose the langid Python library, which uses 
‘cross-domain feature selection for language identifi cation’ [11].

One challenge was representing the content of EULAs and 
privacy policies in a meaningful manner. The fi rst thing that 
comes to mind is getting all the words and using them as 
features for a supervised learning algorithm, but that wouldn’t 
be very effective because of language obfuscation. In order to 
overcome this we started by splitting the text into sentences and 
individually tokenizing them, as summarized in Figure 4. Using 
the extracted data, we obtain the part-of-speech tags in the form 
of two-element tuples that we have stored in order to use in a 
later step. Next, we want to strip any stop words because at this 
point they are nothing more than noise that will ultimately have 
a negative effect on our statistics. 

The last step in preparing our data is to reduce the remaining 
words to a simpler form. For this task, we have a variety of 
stemmers, such as Porter [12], Lancaster [13] and Snowball 

[14], or we can choose a lemmantizer. Stemming algorithms 
have been around for quite some time and are still being used, 
mainly because in some cases they offer the best option in terms 
of the performance-result ratio. They work by removing or 
replacing suffi xes in order to obtain a common base form of the 
word, as opposed to lemmatization algorithms. The latter try to 
get to a common root by fi rst acquiring the part of speech and 
then using it to choose different normalization rules, depending 
on the case. After rigorous testing, we ended up using the 
WordNet synonym ring (synset), which in turn uses the 
WordNet Database [15] and allows for accessing lemmas in 
order to get a canonical form of the word. For most of the 
relevant terms, the WordNet synset approach returns excellent 
results, such as in the case of the ‘ad’ word variations as seen in 
Table 1.

Original 
word 

WordNet Porter Lancaster Snowball

advertisement ad advertis advert advertis

advertizement ad advertiz advert advertiz

advertising ad advertis advert advertis

advertizing ad advert advert advert

advert ad advert advert advert

advertise advertise advertis advert advertis

advertiser advertiser advertis advert advertis

Table 1: WordNet compared to common stemmers.

In this case, the Lancaster stemmer manages to return an 
identical form for all the variants, and a comparison of these 
results with those from the WordNet approach might seem to 
come out in favour of the fi rst algorithm. But we do not believe 
that this is the best outcome, since we lose the meaning in a 
sentence. This is not the case when using synsets – here, all the 
nouns referring to advertisements reduce to a common ‘ad’ 
word, the action term is reduced to itself, and the word defi ning 
the entity keeps its form. This is ideal for us because of the 
approach we used to generate the initial form of the features that 
will later be fed to our supervised learning algorithm. To 
achieve this we looked at the rather standard method of 
computing the word frequencies for the entire EULA lot and 
selected 10,000 of the most commonly encountered terms. This 
is usually enough to give clues to the content of a text fi le, but 
doing so will also strip any sense markers. So we went a step 
further and manually constructed a list of keys that are specifi c 
to adware and advertising, such as ‘ad’, ‘offer’, ‘contextual’, 

Figure 4: Data representation fl ow chart.
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‘collect’, ‘relevant’ and others. Using the already tokenized 
data, we created all the combinations of two and three words 
from a sentence that contains one of the manually selected terms 
and computed the frequency of such groups. As in the case of 
the word frequencies, we selected the fi rst 10,000 most common 
groupings to enrich our feature list, now growing to a quite large 
20,000 element array. The reasoning behind creating these word 
combinations is to extract more contextual sense from a 
sentence, rather than the whole text, as most of the relevant 
information in some adware EULAs is contained in no more 
than a few sentences or phrases. This approach can also make a 
difference when trying to analyse a EULA that makes reference 
to advertising on the website, even if the software itself is clean, 
by associating keywords with, for example, the term ‘website’.

3. RESULTS
Having obtained our initial feature list, we continue by using the 
One Side perceptron [16]. The decision to use this algorithm in 
favour of others was made bearing in mind the consistent results 
in similar tasks and its optimizations for lowering the number of 
false positives. The tests were conducted using different subsets 
of features from the initial 20,000 element set. These 
subdivisions were constructed by using four different feature 
selection algorithms: F1 [17], F2 [17], AbsProcDiff and 
ProcDiff. For the fi rst three we chose 500 of the most relevant 
features and for the fourth we used a 200-100-200 split by 
selecting the fi rst 200 most applicable features for each of the 
clean and adware classifi cations and a 100 slice from the middle 
of this distribution.

This pick is advantageous for our purpose, knowing how 
ProcDiff works. It computes the difference between the 
percentage of clean and adware samples that share the same 
feature, creating an ordered list where we have representative 
features for clean samples at one end, and for PUAs at the other. 
In the middle of the list we should fi nd features that are 
common to both classifi cations, which are needed in order for 
the perceptron to better make feature connections.

AbsProcDiff works in the same way, representing only the 
absolute values obtained with ProcDiff. The results can be seen 
in Table 2.

Feature selector FP Se Acc

F1 10 92.86% 96.49%

F2 13 94.65% 97.32%

ProcDiff 12 96.60% 98.24%

AbsProcDiff 15 94.88% 97.44%

Table 2: One Side perceptron test results.

The ‘FP’ column represents the number of false positives, while 
‘Se’ is the sensitivity and ‘Acc’ the accuracy. It’s obvious that 
using the ProcDiff feature selector offers the best results in 
terms of both detection and FP number.

Using the information from the supervised learning experiment 
we tried to build a deterministic algorithm that could fl ag a 
EULA or privacy policy as being clean or adware, based on some 

simple rules. It’s the researcher that must improve the detection 
by maintaining a list of words and word groups and associate 
them with a score. As an initial rule set, we hand-picked some of 
the groupings from the ProcDiff feature selector that were found 
only in adware documents. The detection rate for this experiment 
was 82.5% with an FP rate of 0%, proving that this approach is a 
reliable way of detecting bad EULAs.

4. CONCLUSIONS AND FUTURE WORK
We started by researching new ways of improving the analysis 
process for adware fi les with the use of the data provided by the 
EULA and privacy policy and managed to produce viable and 
reliable detection algorithms.

Using the One Side perceptron we managed to obtain a 96.60% 
detection rate with few false positives, and the deterministic 
approach seems promising. Of course, there are some ideas still 
not implemented, like company name extraction from EULA 
and privacy policy documents. We managed to spot a pattern in 
the way some companies use their name or that of the software 
with a high frequency. This could be used to exclude legitimate 
business or increase the likelihood of adding a detection for 
known adware providers. Unfortunately, at this time, we don’t 
have enough data to prove this to be effective.

At this time, the described algorithms and procedures are being 
used as a pilot program tapping into the malware stream while 
trying to detect new adware families. This assures continuous 
development and the addition of new features to the platform 
while the EULA collection increases, providing a better training 
environment.
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