
IT HAS A EULA, IT MUST BE LEGIT HANU ET AL.

219VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

IT HAS A EULA, IT MUST BE LEGIT
Stefan Catalin Hanu, Stefan Mosoi & Marius Lucaci

Bitdefender, Romania

Email {shanu, smosoi, mlucaci}@bitdefender.com

ABSTRACT
Over the last few years, a certain category of software has
become more and more of a nuisance to AV labs and computer
users alike: adware and potentially unwanted applications
(PUAs). Walking the thin greyware line, these applications try
(and sometimes succeed) to persuade even the AV labs that they
are honest and trustworthy. Their motivation is monetary gain, so
getting installed on as many computer systems as possible is a
way to increase their earnings. This is often achieved by using
dubious methods of distribution or using social engineering to
trick the user into willingly accepting the software’s installation.

Analysing greyware applications and taking a defi nitive decision
on whether or not to block them is more than often a tedious job,
combining research and both dynamic and static analysis. This
paper explores the possibility of streamlining the analysis of
PUAs by using some of the resources the developers of these
applications utilize to justify their behaviour. The End-User
License Agreement (EULA) and privacy policy can provide
meaningful information about what an application might do.
Using natural language processing (NLP) and other techniques,
one can begin to distinguish some new patterns. By analysing
more than 15 known adware families and their EULAs, we found
this to be an effective method to discover new PUAs, even when
using automated systems.

1. INTRODUCTION
We defi ne Potentially Unwanted Applications (PUAs)1 as
computer programs that in some circumstances employ
techniques that circumvent security measures or have a negative
effect on the user’s interaction with specifi c applications or
actions. This is a rather broad defi nition, and includes different
types of computer programs such as jokes, diallers, browser
hijackers, spyware and adware. The latter has seen its ups and
downs but the statistics for the last year are showing a disturbing
trend, as shown in Figure 1. To better understand the recent
evolution of adware, we considered the data from March 2013 as
the baseline and determined the monthly growth. This baseline is
shown as the 0 tick on the Y axis.

Advertising has been around for a long time, in different forms,
always fi nding ways to interact with people and infl uence them.
The Internet offers access to millions of potential ‘victims’ and
this source of revenue is being exploited by legitimate companies
and adware creators alike. Having as many users installing their
software as possible is a way to increase their earnings.

This is often achieved by using dubious methods of distribution
or social engineering to trick the users into willingly accepting
the software’s installation. Since the early days of adware

1 Sometimes also referred to as Potentially Unwanted Programs (PUPs).

infections, we have noticed that most of the companies that
produce this kind of software have changed their approaches.
They are trying to benefi t from the lack of a commonly accepted
standard in the anti-virus industry regarding PUAs, sometimes
caused by the risks imposed by legal actions. One way to achieve
this is by enforcing the legal implications of the user accepting
the End-User License Agreement (EULA) and privacy policy.
This can also be used by adware companies to avoid judicial
actions against them. Fortunately for us, this means that adware
programs effectively come with a written testimony of how they
are going to behave.

We investigate ways in which we can use the information
willingly offered by means of the EULA and privacy policy in
order to distinguish legitimate applications from adware or
ad-supported software. In order to reach our target we took into
consideration different technologies such as Natural Language
Processing (NLP) and supervised learning.

1.1 Previous work

Our scope is to build a system that can automatically decide if a
given executable fi le is adware or ad-supported, based on the
EULA or privacy policy. The feasibility of this task has been
proven in a pilot study [1] and a later paper [2]. We also found
other applications that offer the possibility of classifying
EULAs, using a different approach. One of them is EULAlyzer
[3], a piece of commercial software available in both free and
paid versions. The user must load the content of the EULA and
start the analysis in order to receive the result, consisting of a list
of words or sentences each given a score. The paid version also
allows for dynamic recognizing and intercepting of EULAs from
running installers.

The other application is similar to the free version of
EULAlyzer, the main difference being that it’s an online web
page and ‘uses only automated keyword recognition systems’
[4]. Both EULAlyzer and EULA Analyzer rely on the user’s

Figure 1: Monthly procentual evolution with 2013-03 as a
baseline. (Data provided courtesy of Bitdefender.)

IT HAS A EULA, IT MUST BE LEGIT HANU ET AL.

220 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

ultimate decision, making both of them unusable for large-scale
automated analysis.

1.2 Outline

The remainder of this article is organized as follows. In Section 2,
we describe our methods of collecting and interpreting data. The
experimental results are presented in Section 3, followed by
conclusions and future work in the last section.

2. EXPERIMENTS

Our goal is to create a system that can automatically classify a
binary executable as being either clean or adware while
providing more relevant information for the researcher. This
means that it must fi rst obtain a EULA from the input fi le and
then compute a score that will help classify it. Even at this level
of analysis, two problems emerge: obtaining the EULA, and
understanding it. Our trials to overcome the latter are further
discussed in Section 2.1, while data collection and processing
are detailed in Sections 2.2 and 2.3.

2.1 Interpreting the EULA and privacy policy

Reading and understanding the contents of the End-User
License Agreement is one of the recommendations computer
users generally tend to follow the least. From a study proposed
by Jeff Sauro [5] and confi rmed by a later paper [6], we fi nd that
‘more than 50% of the users take less than eight seconds, which
is clearly too short, to read the entire notice’ [6]. So why is this
happening, knowing that a ‘EULA is a legal contract between
you and the software publisher’ [7]? For once, their presence in
every piece of software or website, makes implicit approval an
accepted part of installing an application. Furthermore, the legal
terminology associated with them, combined with unnecessary
and sometimes voluntary language obfuscation makes reading
this contract a daunting task for the average user.

Most EULAs and privacy policies adhere to a common writing
standard, and in our research, we found that the majority of the
documents follow the same patterns. And patterns are great for
creating algorithms that can tap into their predictability. So let
us further investigate them from a human perspective. Starting
from a macro-level, a EULA is nothing more than a document
providing information about the relationship between a
consumer and the software publisher, regarding a specifi c
service or application. If we go deeper, we can distinguish a
specifi c format in which the data is presented: sections and
paragraphs related to a specifi c subject tend to be located in the
same part of the document. This opens new possibilities for
searching relevant data in a subset of the document to improve
performance. Going even deeper, at the word-level, we can see
that some adware-related behaviour is described similarly by
using a relatively small subset of words. Making sense of all
this might seem trivial for us, but constructing effi cient
algorithms that can correctly understand and fl ag parts of the
EULA is more diffi cult than one might anticipate.

This is a text classifi cation problem that we think is most suited
for NLP processing and supervised learning. We will also
research whether and how it is feasible to classify EULAs by

using deterministic algorithms based on a database of features
constantly maintained and improved by the researcher.

2.2 Data collection
Because the main target for adware producers is the Windows
operating system, we will concentrate our efforts on processing
binary executable fi les for this platform. The PUA collection
was randomly chosen from a batch of fi les detected by at least
three known anti-virus products or that were part of known
adware families. The clean binaries were taken from different
download websites known to have strict validation rules for the
hosted products and tested by scanning with different AV
products to ensure a 0% detection rate. All the fi les were
processed using the same steps, as described in Figure 2, with
the fi rst operation requiring the fi ltering of Nullsoft Scriptable
Install System (NSIS) [8] installers. We chose to handle NSIS
fi les in a different way as they offer a simple manner of
extracting the EULA from its decompiled script, making it
possible to correlate the document to the installer itself and not
a bundled fi le. The next step is to send all the binary fi les,
including the NSIS installer (if applicable), to a generic
unpacker so that we can extract Internet addresses from any fi le
contained within. This should cover the cases where an installer
bundles adware components.

Figure 2: Data collection fl ow chart.

When analysing a possible piece of adware, the extraction of
web links from the executable can give clues as to its behaviour
and the source website. This usually allows the researcher to
fi nd more information such as a download link for the parent
installer and the EULA or privacy policy. In addition to using

IT HAS A EULA, IT MUST BE LEGIT HANU ET AL.

221VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

different regular expressions for Internet address extraction, we
also searched for words and word combinations that might be
part of a website link or IP address. An example of the fl ow that
our script would follow is shown in Figure 3. This represents a
binary view of the .rdata section of a 32-bit Portable Executable
(PE) binary [9] member of the ‘Gamevance’ adware family. The
yellow box highlights a domain that is extracted by our script.

Figure 3: Sample slice of an adware binary view.

If the extracted link does not point to a valid EULA or privacy
policy, we parse the domain main page and search for keywords
in the links shown on the page that might give away the
presence of a EULA.

Using this fl ow, we processed 1,028,146 PE binaries, obtaining
52.49% clean and 47.51% adware EULAs. This distribution was
obtained by correlation with the verdict of the document’s
parent executable and by fi ltering manually. After obtaining this
new collection of ASCII fi les we went further with processing
them, as described in the next section.

2.3 Data processing
At this stage, our goal is to obtain interpretable data from the
collected text fi les. In order to achieve this, we went with what
NLP has to offer in the form of the Natural Language Toolkit
(NLTK) [10] library for Python. This gives access to several
functions that streamline interaction with some of the most
commonly used tasks in NLP, like part-of-speech tagging and
word sense disambiguation.

Every language has its own semantic and grammar rules, and
most of the functions and algorithms backing NLTK have been
trained on English documents. This makes it only natural that
we should ignore any sample written in a different language.
For this task we chose the langid Python library, which uses
‘cross-domain feature selection for language identifi cation’ [11].

One challenge was representing the content of EULAs and
privacy policies in a meaningful manner. The fi rst thing that
comes to mind is getting all the words and using them as
features for a supervised learning algorithm, but that wouldn’t
be very effective because of language obfuscation. In order to
overcome this we started by splitting the text into sentences and
individually tokenizing them, as summarized in Figure 4. Using
the extracted data, we obtain the part-of-speech tags in the form
of two-element tuples that we have stored in order to use in a
later step. Next, we want to strip any stop words because at this
point they are nothing more than noise that will ultimately have
a negative effect on our statistics.

The last step in preparing our data is to reduce the remaining
words to a simpler form. For this task, we have a variety of
stemmers, such as Porter [12], Lancaster [13] and Snowball

[14], or we can choose a lemmantizer. Stemming algorithms
have been around for quite some time and are still being used,
mainly because in some cases they offer the best option in terms
of the performance-result ratio. They work by removing or
replacing suffi xes in order to obtain a common base form of the
word, as opposed to lemmatization algorithms. The latter try to
get to a common root by fi rst acquiring the part of speech and
then using it to choose different normalization rules, depending
on the case. After rigorous testing, we ended up using the
WordNet synonym ring (synset), which in turn uses the
WordNet Database [15] and allows for accessing lemmas in
order to get a canonical form of the word. For most of the
relevant terms, the WordNet synset approach returns excellent
results, such as in the case of the ‘ad’ word variations as seen in
Table 1.

Original
word

WordNet Porter Lancaster Snowball

advertisement ad advertis advert advertis

advertizement ad advertiz advert advertiz

advertising ad advertis advert advertis

advertizing ad advert advert advert

advert ad advert advert advert

advertise advertise advertis advert advertis

advertiser advertiser advertis advert advertis

Table 1: WordNet compared to common stemmers.

In this case, the Lancaster stemmer manages to return an
identical form for all the variants, and a comparison of these
results with those from the WordNet approach might seem to
come out in favour of the fi rst algorithm. But we do not believe
that this is the best outcome, since we lose the meaning in a
sentence. This is not the case when using synsets – here, all the
nouns referring to advertisements reduce to a common ‘ad’
word, the action term is reduced to itself, and the word defi ning
the entity keeps its form. This is ideal for us because of the
approach we used to generate the initial form of the features that
will later be fed to our supervised learning algorithm. To
achieve this we looked at the rather standard method of
computing the word frequencies for the entire EULA lot and
selected 10,000 of the most commonly encountered terms. This
is usually enough to give clues to the content of a text fi le, but
doing so will also strip any sense markers. So we went a step
further and manually constructed a list of keys that are specifi c
to adware and advertising, such as ‘ad’, ‘offer’, ‘contextual’,

Figure 4: Data representation fl ow chart.

IT HAS A EULA, IT MUST BE LEGIT HANU ET AL.

222 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

‘collect’, ‘relevant’ and others. Using the already tokenized
data, we created all the combinations of two and three words
from a sentence that contains one of the manually selected terms
and computed the frequency of such groups. As in the case of
the word frequencies, we selected the fi rst 10,000 most common
groupings to enrich our feature list, now growing to a quite large
20,000 element array. The reasoning behind creating these word
combinations is to extract more contextual sense from a
sentence, rather than the whole text, as most of the relevant
information in some adware EULAs is contained in no more
than a few sentences or phrases. This approach can also make a
difference when trying to analyse a EULA that makes reference
to advertising on the website, even if the software itself is clean,
by associating keywords with, for example, the term ‘website’.

3. RESULTS
Having obtained our initial feature list, we continue by using the
One Side perceptron [16]. The decision to use this algorithm in
favour of others was made bearing in mind the consistent results
in similar tasks and its optimizations for lowering the number of
false positives. The tests were conducted using different subsets
of features from the initial 20,000 element set. These
subdivisions were constructed by using four different feature
selection algorithms: F1 [17], F2 [17], AbsProcDiff and
ProcDiff. For the fi rst three we chose 500 of the most relevant
features and for the fourth we used a 200-100-200 split by
selecting the fi rst 200 most applicable features for each of the
clean and adware classifi cations and a 100 slice from the middle
of this distribution.

This pick is advantageous for our purpose, knowing how
ProcDiff works. It computes the difference between the
percentage of clean and adware samples that share the same
feature, creating an ordered list where we have representative
features for clean samples at one end, and for PUAs at the other.
In the middle of the list we should fi nd features that are
common to both classifi cations, which are needed in order for
the perceptron to better make feature connections.

AbsProcDiff works in the same way, representing only the
absolute values obtained with ProcDiff. The results can be seen
in Table 2.

Feature selector FP Se Acc

F1 10 92.86% 96.49%

F2 13 94.65% 97.32%

ProcDiff 12 96.60% 98.24%

AbsProcDiff 15 94.88% 97.44%

Table 2: One Side perceptron test results.

The ‘FP’ column represents the number of false positives, while
‘Se’ is the sensitivity and ‘Acc’ the accuracy. It’s obvious that
using the ProcDiff feature selector offers the best results in
terms of both detection and FP number.

Using the information from the supervised learning experiment
we tried to build a deterministic algorithm that could fl ag a
EULA or privacy policy as being clean or adware, based on some

simple rules. It’s the researcher that must improve the detection
by maintaining a list of words and word groups and associate
them with a score. As an initial rule set, we hand-picked some of
the groupings from the ProcDiff feature selector that were found
only in adware documents. The detection rate for this experiment
was 82.5% with an FP rate of 0%, proving that this approach is a
reliable way of detecting bad EULAs.

4. CONCLUSIONS AND FUTURE WORK
We started by researching new ways of improving the analysis
process for adware fi les with the use of the data provided by the
EULA and privacy policy and managed to produce viable and
reliable detection algorithms.

Using the One Side perceptron we managed to obtain a 96.60%
detection rate with few false positives, and the deterministic
approach seems promising. Of course, there are some ideas still
not implemented, like company name extraction from EULA
and privacy policy documents. We managed to spot a pattern in
the way some companies use their name or that of the software
with a high frequency. This could be used to exclude legitimate
business or increase the likelihood of adding a detection for
known adware providers. Unfortunately, at this time, we don’t
have enough data to prove this to be effective.

At this time, the described algorithms and procedures are being
used as a pilot program tapping into the malware stream while
trying to detect new adware families. This assures continuous
development and the addition of new features to the platform
while the EULA collection increases, providing a better training
environment.

REFERENCES
[1] Lavesson, N.; Davidsson, P.; Boldt, M.; Jacobsson, A.

Spyware prevention by classifying end-user license
agreements. In New Challenges in Applied Intelligence
Technologies, pp.373–382. 2008.

[2] Lavesson, N.; Boldt, M.; Davidsson, P.; Jacobsson, A.
Learning to detect spyware using end user license
agreements. Knowl. Inf. Syst., 26(2):285–307. 2011.

[3] BrightFort. EULAlyzer. http://www.brightfort.com/
eulalyzer.html.

[4] A. S. Labs. EULA Analyzer. http://www.spywareguide.
com/analyze.

[5] J. Sauro. Do Users Read License Agreements?
http://www.measuringusability.com/blog/eula.php.
2011.

[6] Böhme, R.; Köpsell, S. Trained to accept? A fi eld
experiment on consent dialogs. In CHI, pp.2403–2406.
2010.

[7] Desautels, E. Software License Agreements: Ignore at
Your Own Risk. 2005.

[8] NSIS. http://nsis.sourceforge.net/Main_Page.

[9] https://www.virustotal.com/en/fi le/
7d6d5437d1111b6e882934fa0f48552b/
analysis/1402225161/.

IT HAS A EULA, IT MUST BE LEGIT HANU ET AL.

223VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

[10] Natural Language Toolkit. http://www.nltk.org/.

[11] Lui. M.; Baldwin, T. Cross-domain feature selection for
language identifi cation. In IJCNLP, pp.553–561. 2011.

[12] Porter. http://tartarus.org/~martin/PorterStemmer/.

[13] Lancaster. http://www.comp.lancs.ac.uk/computing/
research/stemming/Links/paice.htm.

[14] Snowball. http://snowball.tartarus.org/.

[15] WordNet Database. http://wordnet.princeton.edu/.

[16] Gavrilut, D.; Benchea, R.; Vatamanu, C. Optimized
zero false positives perceptron training for malware
detection. In SYNASC, pp.247–253. 2012.

[17] Loong, S. N. K.; Mishra, S. K. De novo svm
classifi cation of precursor micrornas from genomic
pseudo hairpins using global and intrinsic folding
measures. Bioinformatics, 23(11):1321–1330. 2007.

