
BUILDING A TEST ENVIRONMENT FOR ANDROID ANTI-MALWARE TESTS PILZ

25VIRUS BULLETIN CONFERENCE SEPTEMBER 2012

BUILDING A TEST ENVIRONMENT
FOR ANDROID ANTI-MALWARE

TESTS
Hendrik Pilz

AV-TEST GmbH, Klewitzstr. 7, 39112 Magdeburg,
Germany

Email hpilz@av-test.de

ABSTRACT

The growth of the Smartphone market over the past fi ve years
has attracted malware authors as well as security companies. Due
to its open architecture and market share the Android system is
very interesting for both sides. There are more than 40
commercial anti-malware products from different vendors and
plenty of malware. From a consumer’s viewpoint the situation is
as follows: the user requires a security solution against the
growing threat but in order to make a decision about which one
to install he has to rely mainly on user comments and ratings.
Hence professional comparative anti-malware tests are very
important for consumers. However, vendors also benefi t from
these tests. This paper will show the different test scenarios,
including on-demand and on-access detection as well as
performance and battery impact. We will also cover the set-up of
a sample test environment regarding the following key aspects:

• What hardware and software is required to perform tests?

• Since the number of test devices in a lab is limited, how can
the load be managed?

• What must be considered when building a malware
collection for tests?

• Testing is time consuming; is there a way to automate tests?

INTRODUCTION

Since cybercrime is a billion dollar business, these criminals are
always looking for new opportunities to earn easy money.
Because of the rapid market growth, Smartphones are an
attractive target and allow effi cient business models like
premium SMS fraud. Just like in the world of personal
computers, different mobile operating systems have different
popularity among the malware authors. Targeting Android has
several advantages over the other Smartphone systems besides its
high market share. The open platform is available for all kinds of
hardware and not limited to phones. The prices for Android
devices vary from cheap to very expensive, which ensures a
broad target group. The most important factor for Android in
making it an appealing target for cybercrime is the possibility to
install apps from unknown sources, which makes it easy to trick
users into installing malicious apps.

Since January 2011 our Android malware collection has been
rapidly growing to more than 20,000 unique samples. With the
number of malware samples, the number of security products
increased as well. Up to now, AV-TEST is the only testing lab that

has performed a comparative malware detection test for more
than 40 mobile security apps. Android as a new test platform
requires the development of new testing methodologies.
Regarding their anti-malware functionality, many mobile
security apps are derived from traditional desktop products, e.g.
most of them provide an on-demand scan and real-time
protection. Looking at desktop products we know that the
detection rates of the two functions are usually similar. We have
often seen that this doesn’t have to be the case on Android. That
is why we can’t simply use the same testing methodologies as
we use for desktop PCs.

HARDWARE AND SOFTWARE
REQUIREMENTS
Before the start of our fi rst test we had to decide whether to run
the tests in an Android emulator or on real devices. Regarding
software tests in general, emulators have several advantages over
real devices. Besides the possibility to easily switch between API
versions and screen sizes or to reset the system to a clean state
automatically, an emulator also provides root-access, which might
be required to analyse scan reports without the need to exploit the
system. There are also some disadvantages. While the testing tools
that we have developed in-house work in an emulated
environment, many anti-malware products don’t. Depending on
the set of tested applications it might be required to activate an app
via SMS, which isn’t possible without a real phone number. We’ve
also experienced issues with cloud technologies in the emulator.
The emulated 3G connection might have too high a latency for
querying the cloud of some vendors. While the advantages of the
emulator make testing more comfortable, the disadvantages limit
the number of apps which can be properly tested.

Regardless of which test environment we choose, a host PC
which is capable of running the Android SDK is required. As the
Android SDK is available for Windows, Mac OS X and Linux,
this requirement isn’t hard to fulfi l. If we want to run the tests in
the emulator, the system requirements depend on the number of
emulator instances.

We recommend the use of real Android devices for the tests,
because no vendor can object to the use of a real device. In such
a set-up the PC is primarily used to control one or more test
devices via the Android Debug Bridge (adb). This may require
an additional driver for specifi c devices. In order to be able to
send and receive SMSs with the test device the phone is

Figure 1: Android malware collection growth.

BUILDING A TEST ENVIRONMENT FOR ANDROID ANTI-MALWARE TESTS PILZ

26 VIRUS BULLETIN CONFERENCE SEPTEMBER 2012

equipped with a prepaid SIM card. For Internet access we use a
Wi-Fi connection. For performance testing we use a
self-developed app on the device to monitor processes. The
implementation of such a monitoring app will be described later
in the paper. The software-based approach to measure
performance is easiest to realize. For real measurements of the
impact on the battery lifetime there are too many environmental
factors, e.g. the room temperature or the age of the battery.

PRODUCT MANAGEMENT

Because there are more than 40 security products to be found in
the Google Play Store, a comparative test may contain more
products than the number of devices you have access to.
Anti-malware tests require similar conditions among all
programs tested for comparability. This includes a common
baseline for malware signatures. Because many vendors use
cloud technologies, it’s also necessary to run all tests
simultaneously to some extent. Due to the nature of the cloud,
test results may vary if you retest at a later point in time. Thus
it’s very important to precisely document all test results to
ensure the verifi ability of the test.

For the reproducibility it’s ideal to create a device image after
an app has been installed and updated. The device can be
restored and you can set up the next app. Currently most mobile
security apps are updated once per day, so you ideally complete
this procedure for all apps tested within one day. If you use just
one device for 20 apps under test you have 24 minutes to install
a single app on an eight-hour day for example. This is more than
enough time. Usually the installation of an app takes just a
matter of seconds. The problem is: you can’t easily create
device images before Android 4.0. The emulator provides a
snapshot feature, so in an emulated environment you could
easily create such images by saving the complete directory of
your virtual device. Creating an image on a real device would
require root privileges, but we want the tests to be run on stock
devices. If a product doesn’t score well, vendors could object to
using rooted devices. And testers also can’t rely on rooted
devices as rooting may be prohibited by future Android updates.

Tests in the emulator

+ Cost effi cient, scalable

+ Root privileges for scan report analysis

+ Easily switch between API versions and hardware
confi gurations

+ Automatically reset the system to a clean state with
snapshots

Tests on real devices

+ Real user experience

+ App activation via SMS possible

+ Vendors can’t object to testing their software in a real
environment

Table 1: Advantages of the emulator and real devices.

Since Ice Cream Sandwich (Android 4.0), adb supports backup
and restore of apps and data.

$: adb backup -f <fi le> -apk -shared -all -system

$: adb restore <fi le>

The backup includes all apps as APK fi les and the SD card
content. When you run the backup command, the device asks
you to enter an encryption password. If you don’t want your
backup to be encrypted, just leave the fi eld blank.

Figure 2: adb backup and restore requires user interaction on
the device.

BUILDING A TEST ENVIRONMENT FOR ANDROID ANTI-MALWARE TESTS PILZ

27VIRUS BULLETIN CONFERENCE SEPTEMBER 2012

TEST SCENARIOS

Due to our experience with tests of Windows anti-malware
products we are familiar with many test scenarios for detection,
repair and usability. Not all of these test scenarios can be
performed in such a way on a mobile device. The possibilities
of anti-malware products are rather limited, e.g. when it comes
to removal of malware or behaviour-based detection. The main
problems for such a test are the restricted permissions of the
security app. Each app on a device has its own user id and apps
are usually not allowed to access directories or fi les of other
apps and the system. So a security app has a very limited view
of the fi le system. Most apps detect and remove malware by
scanning the installed APK fi les (which are world readable) and
using the system’s internal uninstall activity for each detected
malicious APK fi le. Therefore, testing the clean and repair
abilities isn’t necessary as the cleaning is performed by the
system. If the malware gains root privileges even the system
might fail to completely remove it. This case won’t be discussed
here as most products aren’t yet able to deal with these kinds of
attacks.

Other security features like safe browsing, anti-spam and
phishing protection aren’t very common among mobile security
apps (Figure 3). Tests of these functionalities will be performed
as soon as these features are more widely spread among apps
and allow a comparative review.

Figure 3: Features of 41 mobile security apps.

A current Android anti-malware test primarily contains
detection rates, including false positive testing, and performance
measurements. As described earlier, the on-demand and on-
access detection rates may differ signifi cantly. The on-access
detection is what matters, so the on-demand detection test
should only be used to reduce the test set for the on-access tests.

ON-DEMAND DETECTION
Testing the on-demand detection means that the tester explicitly
starts a scan. Usually a scan can be confi gured to scan installed
apps only or the complete system, which may include the SD
card. A set of malware samples can be copied to the device,
usually somewhere on the SD card to simplify testing. Then a
full system scan is started. All detected fi les must be deleted and
all remaining fi les will be saved as ‘scan report’. Most apps we
have encountered don’t provide a function to save a scan report.
Some apps create SQLite databases to store their scan results,
but these fi les usually can’t be accessed without root privileges.
There are also apps which can’t be confi gured to automatically
delete all detected malware samples or to properly report them.
In those cases we would have to deal with each and every
detection one by one. For those apps we decided to skip the
on-demand scan, because we wouldn’t be faster than with the
on-access test.

To copy samples to and from the emulator or device, use the
following adb commands:

$: adb push <source> /sdcard/samples

$: adb pull /sdcard/samples <dest>

For many products the on-demand detection test doesn’t cover
the full detection capabilities, either because they don’t scan the
SD card or because they offer no on-demand scan at all. We use
the on-demand test primarily to reduce the test set for the on-
access test, which is obligatory to determine the real detection
rates. Samples which have been detected by the on-demand scan
don’t have to be tested on access again, thus saving a lot of time.

ON-ACCESS DETECTION
An on-access test on Android is similar to a real-world test on a
PC. It simulates the installation of a malicious app and
determines whether the mobile security protects the user during
the installation process. It requires the tester to choose an action
when a malicious app has been detected. If a sample wasn’t
detected, it should be removed by the tester manually.
Otherwise the device has to be restored, which is very time
consuming. The samples are installed via adb. This approach
doesn’t refl ect real user behaviour because real users wouldn’t
use adb, they would open the Google Play Store app to install
new apps. As we can’t guarantee to fi nd malicious apps in the
Google Play Store during the time of the test due to their limited
lifetime in the store, the installation via adb is preferred to
perform comparative reviews. One might argue that there is a
problem with this installation process: anti-malware apps may
use the installation source information as a hint for a malicious
app or alternatively for false positive prevention. Such apps
might get fewer detections or trigger more false positives.
However, the installation source information isn’t available
through the Android API, thus it shouldn’t matter whether a
sample was installed with adb or via the Google Play Store. An
anti-malware app might query the Google Play Store itself to
gain information about the installed app, but that works
independently of our installation method.

To install and remove samples with the emulator or device, the
following commands can be used:

BUILDING A TEST ENVIRONMENT FOR ANDROID ANTI-MALWARE TESTS PILZ

28 VIRUS BULLETIN CONFERENCE SEPTEMBER 2012

$: adb install <apk-fi le>

$: adb uninstall <package-name>

The package name can be obtained using this command:

$: aapt dump badging <apk-fi le>

Those three commands allow us to write a shell script which
automatically iterates over all samples in a directory, installing
and removing each sample one by one. The tester has to enter
the detection result after each sample. An advanced way to
automate such a test is given in the automation chapter.

FALSE POSITIVE TESTING
Whenever a detection rate test is performed, a false positive test
is also important. The importance of such tests isn’t that high
yet on the Android platform. Due to the relatively small number
of Android malware and their rather simple composition it’s
easy for security apps to detect them reliably once they know
them. This limits the dangers of false positives. Nevertheless,
it’s possible to implement a false positive test.

The most important questions are the size of the test set and
which apps to use for the false positive testing. In fact, the
number of samples is just limited to the number of apps which
can be installed on a device. The latest devices have enough
internal memory to install hundreds of apps. The samples can be
chosen from the top free apps in Google Play.

The tester can use the Google Play website to
easily install all chosen apps on the device with the
tested anti-malware product. This procedure covers
the on-access detection. After all apps have been
installed, a full system scan can be started to cover
the on-demand detection.

Using only free apps is of course a limitation, as a
normal user will most likely have free as well as
paid apps. Covering this isn’t really feasible for
testers, especially when testing several dozen
security apps vs. hundreds of clean apps for false
positive testing purposes.

PERFORMANCE
App developers have to use the available resources
economically on mobile devices. High CPU load
may lead to a bad user experience as well as faster
discharge of the battery. That means that an
anti-malware app should avoid a long scan time
and it should reduce background operations to a
minimum.

Measuring the scan time isn’t comparable because
not all anti-malware apps allow the scope of a scan
to be defi ned. Many scanners just scan the installed
apps while others scan the SD card contents, too.
The latter would require more time to perform the
scan independent of their performance.

A direct approach would be to determine the power
consumption during a scan or during idle times.
This would require a comparable test set-up among
all products, which is impossible to achieve. The

battery would have to be in exactly the same state for all
products, the background operations would have to be the same
and there should be no infl uences from mobile networks etc. So
you can never measure the impact of the security app only, you
will always measure side effects as well. Therefore we opted for
the following approach. We determined the resources used by
the scan engine, which is an indicator of the impact on the
battery life. A scan engine mainly uses the CPU to scan fi les and
a network connection to query the cloud. An effi cient scan
engine requires fewer CPU cycles and generates less traffi c than
a heavier scan engine.

You should also consider that the malware scanner isn’t the only
feature which consumes battery power. If you talk about
performance and impact on the battery life, you should always
mention the supported features of the product and important
confi guration settings, e.g. how often are signature updates and
full system scans scheduled?

The actual measurement of the CPU time consumption and
traffi c works as follows:

• Install a set of N regular apps

• Measure the traffi c and consumed CPU time through the
/proc fi le system on the device after each installation

• Repeat the procedure several times to build an average.

Figure 4: CPU usage analysis chart.

Figure 5: Traffi c in bytes.

BUILDING A TEST ENVIRONMENT FOR ANDROID ANTI-MALWARE TESTS PILZ

29VIRUS BULLETIN CONFERENCE SEPTEMBER 2012

A sample analysis of the obtained data could look like Figure 4.

Figure 4 shows the CPU usage of four anti-malware products
during the installation of 20 regular apps. As we can see,
product C has a constant scan time. This might be the result of
its cloud-only scan engine. The cost for a cloud query can be
considered as constant. As our monitoring tool also measures
the traffi c per process, we can verify our assumption (Figure 5).

The traffi c chart confi rms our guess: product C is the only
product which queries the cloud during its on-access scan.

So which product consumes the most battery power? The
answer isn’t that easy. Regarding the CPU usage, we could say
that product A consumes most battery power as it requires most
CPU time. But if we also consider the traffi c, then product C
would be a good candidate for consumption of the most battery
power. As this also depends on the built-in Wi-Fi chipset, we’re
not able to clearly identify a ‘winner’ in this test.

BUILDING A MALWARE COLLECTION
There are some conditions which should be fulfi lled by a
malware collection in general. These conditions have been
defi ned and discussed by AMTSO and apply for Android
malware as well as for Windows malware:

• The samples must be validated.

• The age of samples and/or the age of their sources (in case
of URL, domains as test objects) need to be taken into
consideration.

• The samples in a test set are diverse and comprise a
suffi ciently large variety of fi les.

• Prevalence is important.

List 1: Collection qualities according to AMTSO [1].

A malware collection has to cover a broad range of prevalent
malware families. A family-based analysis of detection results
showed that even a product with very good detection rates can
miss one or another malware family entirely. Therefore the
malware set should cover all current prevalent malware families.
The maximum size of the set should be limited by a maximum
number of similar samples, e.g. samples with the same Android
package name. Please consider that only an on-access test can
provide meaningful detection results, so the bigger the sample
set the more time is required to complete the test (Figure 6).

Now we have a conception of the size of our collection. The
next question is which fi le types must be included? As
mentioned before, we have to perform an on-access test to gain
a neat conclusion of the malware detection rates. So the fi le type
of our malware set is limited to APK fi les. For pure on-demand
tests you could also consider scanning Dalvik binaries (DEX) or
native code, but that isn’t recommended because Dalvik binaries
can’t be installed and executed by a user. The APK fi les need to
be validated to be executable and verifi ed to be malicious. A
convenient way to validate APK fi les is to try to install the APK
fi les on a test device or emulator. If the installation fails, the
sample isn’t suitable for the test, because it’s not working and
won’t be scanned by the on-access scanner. The on-access
scanner usually uses a broadcast receiver to listen for the

‘PACKAGE_ADDED’ action. When an installation fails, the
broadcast for this fi le will not be sent. Corrupted signatures are
the simplest case for an unsuitable APK fi le. The Android
Package Manager requires valid signatures to proceed with the
installation. You can use the adb install and adb uninstall
commands to write a validation script for your sample set. adb
install outputs whether the installation was successful or not.

To verify whether the samples are malicious or not, you can use
static and dynamic analysis methods. Static analysis methods
may include code review and analysis of the AndroidManifest
fi le. Because Android apps are written in Java, they can be
easily disassembled and decompiled. Tools to be mentioned
here are dex2jar [2], which converts Dalvik binaries to Java
archives, and Androguard [3], a powerful reverse engineering
toolkit. Dynamic analysis can be done with DroidBox [4], which
allows apps to be monitored in the emulator.

AUTOMATION OF TESTS

On-demand detection

Many mobile security apps use their own activity for the
on-demand scan. Such activities can be directly started from the
command line:

$: adb shell am start <intent>

The intent value can be obtained through the debug log:

$: adb logcat

With the information given in the debug log we can now
compose our command line to start the activity:

$: adb shell am start -n com.avast.android.
mobilesecurity/.app.scanner.ScannerScanActivity

In this case, the scan starts automatically with the activity. No
further user interaction is required. Starting a specifi c activity
directly from the command line may require special permissions
on a real device, so this approach may work only in an emulator
where we have root privileges.

With this method it’s not possible to automate a complete
on-demand detection test, but it may help in a lab environment.

Figure 6: Dependency of number of samples and total test time.

BUILDING A TEST ENVIRONMENT FOR ANDROID ANTI-MALWARE TESTS PILZ

30 VIRUS BULLETIN CONFERENCE SEPTEMBER 2012

On-access detection
A simple approach for semi-automation was given in the
description of the test scenario. A more advanced version would
include automated screenshots of the notifi cations and
management of multiple devices which are tested
simultaneously.

Figure 8 shows how such an application could look, depicting
the AV-TEST Android testing environment. The program installs
all samples of the test set one by one. If multiple devices are

Figure 7: A manual scan was started with its own activity.

used for the test, each sample will be tested on all devices before
the next sample is tested. The user just has to decide whether the
sample was detected or not. After the user has made his decision,
a screenshot is automatically taken and the sample is uninstalled.

The user interface allows for the selection of one or more
devices which are connected to the PC. The table shows the
samples to be tested and the respective results per device (1 =
detected, 0 = not detected). The total number of samples in the
test and the total number of detected samples per device are
shown in the fi rst row. Log messages are shown at the bottom.

Automated decisions, whether a sample was detected or not,
could be obtained through observation of the debug log.

You can try to implement such automation in a shell script
with the command line tools provided by the SDK or you can
have a look at the ddmlib.jar Java library, which is also supplied
by the SDK. This library includes a high-level API to control
the ADB.

Other automation approaches

If you need more complex automation techniques you should
have a look at Robotium [5]. With Robotium you have full

Figure 8: A self-developed application to perform on-access tests.

BUILDING A TEST ENVIRONMENT FOR ANDROID ANTI-MALWARE TESTS PILZ

31VIRUS BULLETIN CONFERENCE SEPTEMBER 2012

control over the GUI of an app, but it requires that the
automated app is signed with the same key as the ‘controller
app’. If you have the source code of the app you want to
automate, signing is no problem. Otherwise you have to re-sign
the app under test, e.g. with the debug key [6].

Automation conclusion
There are several ways to perform simple and advanced
automation. The Robotium framework is perfect for your
development team, but you shouldn’t use it for public tests,
because the APK fi les have to be re-signed. The automation of
the time-consuming on-access tests is very useful, but you should
never run such automation unattended, as with an unattended test
run you have to verify each result in your report afterwards.

SUMMARY
Anti-malware tests on Android don’t seem to be too diffi cult at
fi rst sight. Due to the small threat landscape and limitations of
the devices and OS there aren’t that many test scenarios. The
Android system itself was designed with security in mind. Each
app runs in its own sandbox; even the mobile security apps have
only limited access to the system. This also reduces the number
of malware-related features that are included, e.g. a safe
browsing feature is included in fewer than 25% of the available
mobile security apps. With a rising number of malware targeted
at mobile devices the support of such features may increase.
New testing methodologies will be introduced accordingly. The
tricky parts are the things that are done differently from the way
they are on the desktop and the big differences among the
products, which require a strict testing methodology that will
cover all apps equally. There are still some open questions
regarding testing methodologies and best practices. We will
have to see how the threats evolve and which security features
will remain in the products.

ACKNOWLEDGEMENTS
I’d like to thank our CTO Maik Morgenstern and our CEO
Andreas Marx for their feedback and comments.

REFERENCES
[1] AMTSO: Sample Selection for Testing.

http://www.amtso.org/amtso--download--sample-
selection-for-testing.html.

[2] dex2jar: Tools to work with android .dex and java .class
fi les. http://code.google.com/p/dex2jar/.

[3] Androguard: Reverse engineering, Malware and
goodware analysis for Android applications.
http://code.google.com/p/androguard/.

[4] DroidBox: Android Application Sandbox.
http://code.google.com/p/droidbox/.

[5] Robotium: It’s like Selenium, but for Android.
http://code.google.com/p/robotium/.

[6] Robotium: Test Android apk fi le with Robotium.
http://robotium.googlecode.com/fi les/
TestAndroidapkfi leUsingRobotium.pdf.

