
FEBRUARY 2014

CONTENTS IN THIS ISSUE

IS
S

N
 1

74
9-

70
27

Covering the global threat landscape

A LIFE OF GRIME
Cross-platform execution is one of the promises
of Java – but cross-platform infection is probably
not what the designers had in mind. Nevertheless,
that was clearly in the mind of the author of
W32/Java.Grimy, a virus for the Windows platform,
which infects Java class fi les. Peter Ferrie has the
details.
page 4

LAME DUCK
Sometimes what looks like a genuine MP3 encoder
library, and even works as a functional encoder,
actually hides malicious code deep amongst a
pile of clean code. Gabor Szappanos reveals the
lengths to which one piece of malware goes to hide
its tracks.
page 19

READING CORNER
Industry veteran, prolifi c writer and educator David
Harley reviews two recently published eBooks that
aim to provide security guidance for consumers:
‘Improve Your Security’ by Sorin Mustaca, and
‘One Parent to Another’ by Tony Anscombe.
page 27

2 COMMENT

 It is time for defenders to go on the offence

3 NEWS

 Law minister is former spammer

 Cash for hacks

 MALWARE ANALYSES

4 Getting one’s hands dirty

6 Salted algorithm – part 2

11 Inside W32.Xpaj.B’s infection – part 2

19 FEATURE

 Needle in a haystack

27 BOOK REVIEW

 Don’t forget to write

30 SPOTLIGHT

 Greetz from academe: Full frontal

31 END NOTES & NEWS

2 FEBRUARY 2014

COMMENT

Editor: Helen Martin

Technical Editor: Dr Morton Swimmer

Test Team Director: John Hawes

Anti-Spam Test Director: Martijn Grooten

Security Test Engineer: Scott James

Sales Executive: Allison Sketchley

Perl Developer: Tom Gracey

Consulting Editors:
Nick FitzGerald, AVG, NZ
Ian Whalley, Google, USA
Dr Richard Ford, Florida Institute of Technology, USA

IT IS TIME FOR DEFENDERS TO
GO ON THE OFFENCE
Defence is hard. From a defender’s point of view, it only
takes one slip-up, one misconfi guration or one unpatched
machine for an attacker to gain access and capitalize
with potentially disastrous consequences. Not only that,
but it is also very diffi cult to know if or how well your
defences are working. Sure, you can measure it to a
degree, but only for the events that you and your security
products can actually see. For an attacker, it is pretty
much the other way around; they usually know if what
they are doing is working or not.

One of the major problems for those tasked with
defending networks is a lack of knowledge about what
they are supposed to be protecting against, on a technical
level. A lot of defenders are former network or fi rewall
administrators who are great at TCP/IP and routing, but
seriously lacking when it comes to understanding how
exploits work or how security products can be bypassed.
This, coupled with the way some vendors are marketing
their products (basically as self-playing pianos) has
in many cases led to investments in and reliance on
automated security products instead of competence and
personnel development. I believe that this is a dangerous
road to travel as attackers will always be able to subvert
security products that are run in out-of-the-box mode.

There are few areas where such a lack of knowledge
becomes more painfully visible than in Security
Information and Event Management, or SIEM. While,

for example, an IPS or anti-virus product will still do
some level of good if you do no more than install it on
your network and make sure it gets updated occasionally,
a SIEM will not do anything except generate a (huge)
bill. Although most vendors will include a set of
default correlation rules, being welcomed by 12,000
so-called ‘security events’ the fi rst time you log into the
management interface is an overwhelming experience
for anyone. The point is, if you don’t know what you are
looking for, a SIEM is only likely to cause you pain.

So what can be done? Well, for a start, defenders
need to be allowed to develop their offensive skill set.
Instead of routinely sending security staff to some
vendor-supplied or defensive training, challenge them to
take a penetration testing or exploit development class.
By knowing and understanding offensive techniques,
defenders will be able to start thinking like attackers
and defend accordingly. If you don’t understand what
post-exploitation is or how it works, how are you
supposed to be able to spot it going on in your network?
And how are you going to be able to detect an SQL
injection attack on your web application if you don’t
know anything about attacking web applications?
The challenge here is to make sure that defenders
get offensive training that actually refl ects current,
real-world attacks, and not outdated techniques that are
only used by penetration testers.

Another area defenders need to be more profi cient in is
threat intelligence. Although most vendors have some
kind of offering in this area, they seldom offer anything
that does not relate directly to their own product(s).
While these offerings can certainly be of some use, a
more vendor-agnostic approach is needed. The point
of threat intelligence is to be able to make informed
decisions on defensive prioritizations by studying actual
attacks and trends. This is an area in which defenders
in general could get more involved by doing their own
research and contributing their own conclusions to the
security community as a whole. (It should be noted that
to be able to do this, a whole different skill set from
confi guring a fi rewall is needed.)

To conclude: it is time for defenders to go on the
offence. It is time to stop defending based on gut feeling
and outdated best practices. It is time to start making
informed decisions based on real attacking knowledge
and intelligence. After all, a defender who knows
nothing about offence is effectively no more than a
system administrator who happens to manage a security
product.

And there is no reason why defenders cannot be hackers
too. I know I am.

‘Challenge
[defenders] to
take a penetration
testing or exploit
development class.’

Andreas Lindh, ISecure

3FEBRUARY 2014

VIRUS BULLETIN www.virusbtn.com

NEWS
VB2014 SEATTLE
Virus Bulletin is seeking submissions
from those wishing to present papers
at VB2014, which will take place
24–26 September 2014 at the Westin
Seattle hotel, Seattle, WA, USA.

The conference will include a programme of 30-minute
presentations running in two concurrent streams. Unlike in
previous years, the two streams will not be distinguished
as ‘corporate’ and ‘technical’, but instead will be split into
themed sessions covering both traditional AV issues and
some slightly broader aspects of security:

• Malware & botnets

• Anti-malware tools & methods

• Mobile devices

• Spam & social networks

• Hacking & vulnerabilities

• Network security

Submissions are invited on topics that fall into any of the
subject areas listed above. A more detailed list of topics and
suggestions can be found at http://www.virusbtn.com/
conference/vb2014/call/.

SUBMITTING A PROPOSAL
The deadline for submission of proposals is Friday
7 March 2014. Abstracts should be submitted via our
online abstract submission system. You will need to include:

• An abstract of approximately 200 words outlining the
proposed paper and including fi ve key points that you
intend the paper to cover.

• Full contact details.

• An indication of which stream the paper is intended for.

The abstract submission form can be found at
http://www.virusbtn.com/conference/abstracts/.

One presenter per selected paper will be offered a
complimentary conference registration, while co-authors
will be offered registration at a 50% reduced rate (up to a
maximum of two co-authors). VB regrets that it is not able
to assist with speakers’ travel and accommodation costs.

Authors are advised that, should their paper be selected for the
conference programme, they will be expected to provide a full
paper for inclusion in the VB2014 Conference Proceedings
as well as a 30-minute presentation at VB2014. The deadline
for submission of the completed papers will be 10 June 2014,
and potential speakers must be available to present their
papers in Seattle between 24 and 26 September 2014.

Any queries should be addressed to editor@virusbtn.com.

CALL FOR PAPERS

SEATTLE
2014

LAW MINISTER IS FORMER SPAMMER
Delhi law minister Somnath Bharti has found himself in a
tight corner as revelations connecting him with a spamming
outfi t in the early 2000s have come to light. Security analyst
Conrad Longmore, who writes on Dynamoo’s Blog, says
he fi rst came across Bharti more than a decade ago when
investigating a spamming operation known as TopSites LLC.
Somnath Bharti and his company, Magden Solutions, was
a partner of TopSites, and Bharti even found his way onto
Spamhaus’s ROKSO list of known professional spammers.

It seems that at some point after Longmore’s original
investigations, Bharti took a change in career path and
became a lawyer – some time after which he developed an
interest in politics, eventually becoming Delhi’s law minister.

At the time of his involvement with the spamming
operations, the act of spamming was not illegal in India
(indeed the country still does not have effective anti-spam
legislation), but Bharti was named in a lawsuit fi led in
California in 2004 against a number of alleged spammers
(the suit was settled out of court).

Bharti strongly denies his involvement with the spamming
outfi t, claiming that the allegations are part of a conspiracy
to malign him – but there are several pieces of evidence
that indicate that he is evading the truth. Longmore points
to Bharti having been listed as CEO of TopSites, his name
having appeared in the WHOIS records for the original
domain used in the spam (topsites.us), and his name having
appeared in the internal databases of clone sites.

Unsurprisingly, the story has found its way into India’s
mainstream news and media – and it seems that Bharti
already has a rather shaky reputation, a Times Now reporter
describing the minister as ‘erring and blundering’ and saying
‘his cup of controversies brimmeth over’. While the lack of
effective anti-spam legislation in India means that Bharti is
unlikely to face legal action, the minister seems likely to be
in for a bumpy ride in his political career.

CASH FOR HACKS
Source code hosting website Github has become the latest
organization to launch a bug bounty programme, offering
between $100 and $5000 for each vulnerability reported.
Meanwhile, Facebook has awarded its biggest bounty to
date, with $33,500 being paid to a Brazilian researcher
who discovered a remote code execution fl aw affecting the
company’s servers. Next month, hackers have up to $150,000
to gain in the latest Pwn2Own contest. HP is offering
$150,000 to anyone who can gain root access to a Windows
8.1 PC running Microsoft’s Enhanced Mitigation Experience
Toolkit (EMET), while co-sponsor Google is offering prizes
of up to $150,000 for hacks against its Chrome OS. Pwn2Own
takes place at the CanSecWest conference in March.

http://www.virusbtn.com/conference/vb2014/call/
http://www.virusbtn.com/conference/abstracts/
mailto:editor@virusbtn.com

VIRUS BULLETIN www.virusbtn.com

4 FEBRUARY 2014

GETTING ONE’S HANDS DIRTY
Peter Ferrie
Microsoft, USA

Cross-platform execution is one of the promises of Java.
Cross-platform infection is probably not what the designers
had in mind. However, it was clearly in the mind of the
author of W32/Java.Grimy, a virus for the Windows
platform, which infects Java class fi les.

SECOND PLACE GOES TO...

The virus begins by retrieving the base address of
kernel32.dll. It does this by walking the
InLoadOrderModuleList from the PEB_LDR_DATA
structure in the Process Environment Block. The virus
assumes that kernel32.dll is the second entry in the list. This
is true for Windows XP and later, but it is not guaranteed
under Windows 2000 or earlier because, as the name
implies, it is the order of loaded modules that is looked at.
If kernel32.dll is not the fi rst DLL that is loaded explicitly,
then it won’t be the second entry in that list (ntdll.dll is
guaranteed to be the fi rst entry in all cases).

IMPORT/EXPORT BUSINESS

The virus resolves the addresses of the API functions that
it requires. The list is very small, since the virus is very
simple: set attributes, fi nd fi rst/next, alloc/free, open, seek,
read, write, close, exit. The virus uses hashes instead of
names, with the hashes sorted alphabetically according
to the strings that they represent. The virus uses a reverse
polynomial to calculate the hash. Since the hashes are sorted
alphabetically, the export table needs to be parsed only once
for all of the APIs. Each API address is placed on the stack
for easy access, but because stacks move downwards in
memory, the addresses end up in reverse order in memory.

The virus does not check that the exports exist, relying
instead on the fact that if an exception occurs then the virus
code will be terminated silently. This is acceptable because
the virus fi le is a standalone component so there is no host
code to run afterwards. Of course, the required APIs should
always be present in the kernel, so no errors should occur
anyway.

The hash table is not terminated explicitly. Instead, the virus
checks the low byte of each hash that has been calculated,
and exits when a particular value is seen. This is intended to
save three bytes of data, but introduces a risk. The assumption
is that each hash is unique and thus when a particular value
(which corresponds to the last entry in the list) is seen, the list
has ended. While this is true in the case of this virus, it might

result in unexpected behaviour if other APIs are added, for
which the low byte happens to match another entry in the list.

Once the virus has fi nished resolving the API addresses, it
searches the current directory (only) for all objects. Unlike
most other viruses written by this virus author, this one uses
Unicode APIs for the ‘fi nd’ and ‘open’ operations. This
allows the virus to examine fi les that cannot be opened using
ANSI APIs. The virus is really only interested in fi les, but
it examines everything that it fi nds. For each object that
is found, the virus will attempt to remove the read-only
attribute, open it, and allocate a memory block equal to the
size of the virus plus twice the size of the fi le. For directories,
the open will fail and the fi le size will be zero. The virus
intends to read the entire fi le into memory. It is not known
why the author did not use a buffer of just the size of the virus
plus the size of the fi le, and read the fi le into the buffer at the
offset equivalent to the size of the virus. As it is, the virus is at
risk of a heap overfl ow vulnerability for fi les of around 2GB
in size, since the fi le is read entirely before it is validated
– these days fi les of 2GB or more are not uncommon.

COFFEE, COFFEE, COFFEE
After reading the fi le into memory, the virus registers a
Structured Exception Handler, and then checks for the Java
signature (0xCAFEBABE) and the class version. The virus
excludes fi les that are not Java class fi les, as well as any
that are built with Java 6 or later. This seems to be a severe
restriction, given that Java 6 was released in 2006 – the
virus is left to target extremely old versions of Java.

When an acceptable fi le is found, the virus retrieves the
count of entries in the constant pool table, and exits if there
are not enough free entries left for the virus to insert its
own. The virus parses the entries in the constant pool table,
and watches for UTF-8 format strings that contain the text
‘hh86’ or ‘Code’. The ‘hh86’ string is used as an infection
marker, so the virus exits if this string is seen, regardless
of the context in which the reference appears. This means
that any reference to the infection marker string (via, for
example, ‘String foo=’ or ‘System.out.println()’) will
cause the fi le to appear to be infected. The ‘limitation’ is
acceptable to the virus. In the case of the ‘Code’ string, this
check is meaningful only during the infection phase.

While parsing the fi le, the virus also checks for three
tag types that were only added to Java 7 in April 2013:
MethodHandle, MethodType and InvokeDynamic. It is
not known why the virus checks for these tags, since they
cannot appear in class fi les built with Java 5 or earlier.

METHOD ACTING
The virus knows how to skip the interface and fi eld tables
in order to reach the methods table. For each of the methods

MALWARE ANALYSIS 1

VIRUS BULLETIN www.virusbtn.com

5FEBRUARY 2014

in the table, the virus retrieves the number of attributes.
For each of the attributes for a method, the virus retrieves
the name index, and then searches the constant pool for the
‘Code’ string with a matching index. If a match is found,
the virus retrieves the size of code attribute, and skips the
method if not enough free space is left for the virus to insert
its own code. If the method is small enough, the virus checks
whether it makes use of exceptions (the result of a ‘try/
catch’ sequence in the source code). The virus is interested
only in the fi rst method that implements exceptions.

When a suitable method is found, the virus duplicates the
contents of the fi le in memory, up to the point where the
constant pool ends. The virus increases the number of entries
in the constant pool by 31, and then appends the new entries
to it. It updates the class index for each of the virus-specifi c
entries in the constant pool by adding the index of the last
host constant pool entry to each of them. Next, it appends the
host data from the end of the host constant pool until the start
of the methods table, to the new copy of the fi le in memory.
The virus prepends its own method to the methods table, and
updates the two method indexes by adding the index of the
last host constant pool entry to each of them.

The virus carries a compressed MZ/PE header combination,
which will be used for the standalone virus fi le which holds
the replication code. The headers are very sparse – they
contain almost the minimum number of non-zero bytes that
must be set in order for the fi le to be acceptable. Specifi cally,
the headers contain the minimum number of non-zero bytes
for a fi le that contains a section. For a fi le that contains no
sections, several more bytes could be removed. The dropped
fi le has one section with no name, to reduce the number of
bytes that have to be written during the decompression phase.

The section has only the writable and executable fl ags set.
This is an interesting choice, since it does not affect the
number of bytes to decompress but it does introduce the
(infi nitely small) risk that a future version of Windows will
enforce the fl ag exactly as specifi ed, and thus break the
virus. Currently, the setting of the executable fl ag results
in the readable fl ag being set, even if that is not explicitly
the case. The reason for this is to support the mixing of
code and read-only data in the same segment, for example
in ROM code. However, the CPU does have the ability to
mark a segment as only executable, which would result in
read-access failures in the case of the virus.

The virus declares a 2KB array and decompresses the
header into the array, using an offset/value algorithm. The
implementation supports writing only to the fi rst 256 bytes
of a buffer, but this is suffi cient to describe the PE fi le that
the virus uses. This compression format is probably optimal
for the purpose – while a Run-Length Encoding format
could compress the data further, that gain is more than lost

by the size of the decompression code. The result is a series
of assignments to offsets within the array. The virus does
the same thing for each byte of the virus body. While this
technique works well enough, it results in a large amount
of repetitive code. It is not known why the author chose the
array method instead of, for example, a textual encoding
method which would have reduced the code size enormously.

GOING ON A FIELD TRIP
The virus appends the remainder of its method code, and
updates the constant pool references by adding the index
of the last host constant pool entry to each of them. Next,
it appends the host data from the start of the methods table
until the start of the method that makes use of exceptions,
which it identifi ed earlier. The virus updates the attribute
and code length fi elds in the method information structure,
before copying the rest of the method information to the
new copy of the fi le in memory. The virus appends its own
exception handler code to the host method, and then alters
the fi rst entry in the exception table to point to the virus
exception handler. The virus exception handler invokes the
virus method that the virus added, and then transfers control
to the original host exception handler. Thus, if an exception
occurs during the execution of the block defi ned by the
fi rst exception handler, then the virus exception handler
will gain control. If no exception occurs within that block,
then the virus will never execute. Finally, the virus appends
the remaining content from the host fi le to the new copy
of the fi le in memory. Once the copy is complete, the virus
replaces the fi le on disk with the copy in memory, and then
raises an exception using the ‘int 3’ technique. The ‘int 3’
technique appears a number of times in the virus code,
and is an elegant way to reduce the code size, as well as
functioning as an effective anti-debugging method. Since
the virus has protected itself against errors by installing a
Structured Exception Handler, the simulation of an error
condition results in the execution of a common block of
code to exit a routine. This avoids the need for separate
handlers for successful and unsuccessful code completion.

The exception handler frees the allocated memory, closes
the fi le, and then continues the search for more objects.
After all objects have been examined, the virus simply exits.

CONCLUSION
This virus demonstrates the simplicity of creating a Windows
fi le that turns Java class fi les into droppers. What’s next? It
would be equally simple to reverse that – to have a Java class
fi le that turns Windows fi les into droppers for the virus. From
there, it would only be slightly more work to combine the
two into a circular infection process. Cross-platform infection
is a promise that we’d be happy to see broken.

VIRUS BULLETIN www.virusbtn.com

6 FEBRUARY 2014

MALWARE ANALYSIS 2
SALTED ALGORITHM – PART 2
Raul Alvarez
Fortinet, Canada

Sality has been around for many years, yet it is still one of
today’s most prevalent pieces of malware. Last month, we
described Sality’s algorithm, showing the strengths of its
encryption, how it uses the stack as temporary memory for
code manipulation, and some of its system confi guration
manipulation [1].

In this follow-up article, we will continue to discuss some
of the threads spawned by Sality, including those for fi le
infection, code injection, and so on.

INFECTION THREAD
Sality was originally defi ned as a fi le infector. However,
recent variants have shown that Sality is capable of far more
than that.

Let’s look at the malware’s infection routine.

Sality searches for fi les to infect starting at the root
directory. It traverses all folders and fi les in alphabetical
order. When it fi nds a folder, it checks all subfolders and
fi les within it, leaving no stone unturned.

Whenever a new subfolder is found, Sality reinitializes all
the required variables and data to zero. It sleeps for 2,048
milliseconds before proceeding with the rest of the routine.

The malware checks whether the current pathname contains
‘c:\windows’. If the path doesn’t contain this string, it will
start looking for fi les to infect. It queries the given pathname
for all fi les using a regular call to the FindFirstFileA and
FindNextFileA APIs.

Sality looks for EXE and SCR fi les to infect. If the
extension name of the fi le is either ‘EXE’ or ‘SCR’, it will
continue to process the fi le. Otherwise, it will skip the rest
of the process and look for another fi le.

When it fi nds a fi le with an appropriate extension name,
Sality parses the fi lename to determine whether it contains
any strings from a list of names of anti-virus and security
applications. If the fi lename doesn’t contain any such
strings, Sality will proceed to infect the fi le. Otherwise, it
skips the fi le without infecting it.

INFECTION ROUTINE
The same check for strings containing names of anti-virus
and security applications is applied to the pathname of the
current host fi le. This is a redundant check to make sure that
everything is working according to plan.

Since Sality queries all fi les in the hard drive, it makes
sure that system fi les will not be infected by using the
SfcIsFileProtected API. This API is one of the functions
under Windows Resource Protection (WRP) that prevents
the modifi cation of important system fi les in Windows. If
a potential host fi le has WRP protection, the malware will
skip the fi le and search for another.

If a fi le is suitable for infection, Sality saves its attributes
after a call to the GetFileAttributesA API, and sets the
‘FILE_ATTRIBUTE_ARCHIVE’ attribute using the
SetFileAttributesA API, for easier processing of the host
fi le. Then it calls the CreateFileA API to open the host fi le
with GENERIC_READ and GENERIC_WRITE access,
and FILE_SHARE_READ and FILE_SHARE_WRITE
sharing modes.

Sality gets the fi le size of the host fi le and checks whether
it is within (0x200) 512 bytes and (0x2800000) 41,943,040
bytes. If the fi le size meets the criteria, the next step is to
call the GetFileTime API to save and preserve the fi le time
of the host fi le.

After confi guring the header of the host fi le in memory,
Sality appends (0x11000) 69,632 bytes of malware code
to the mapped fi le. The (0x11000) 69,632 bytes of code
is the whole encrypted version of Sality. Finally, the
UnmapViewOfFile API is called to fl ush all modifi cations
made to the mapped fi le to the fi le in the disk.

Since the memory allocated to the mapped fi le is bigger
than the actual infected fi le, the malware cuts the infected
fi le just enough for the original code plus the malware code
to fi t in, using the SetFilePointer and SetEndOfFile APIs.

The host fi le is now infected with Sality.

Further processing of the newly infected fi le is performed:
the original fi le time is restored by calling the SetFileTime
API using the fi le time that was saved prior to infection,
and control of the infected fi le is released by calling the
CloseHandle API. Sality is so meticulous that it also
replaces the original fi le attributes of the infected fi le using
the SetFileAttributes API.

The original fi le attributes and the original fi le time are
saved before the fi le infection routine. They are restored
to the infected fi le to avoid further suspicion. It is easy to
notice that there is something wrong with your machine if
all your executable fi les have the same time stamp. The fi le
size is an unavoidable risk, but of course, nobody memorizes
the fi le sizes of each and every fi le on their machine.

After the infection, Sality sleeps for (0x400) 1,024
milliseconds before checking out the next fi le to infect.

Earlier, we saw that Sality avoids infecting fi les within the
folder containing the string ‘c:\windows’. Further in the

VIRUS BULLETIN www.virusbtn.com

7FEBRUARY 2014

code, Sality also avoids fi les within a folder containing
the string ‘SYSTEM’. In this regard, the malware is
playing it safe by avoiding the infection of fi les that
are generally part of a standard Windows installation. It
also prevents performance degradation by skipping the
infection of critical executable fi les found in the Windows
system.

INFECTION MARKER
Once the infection routine has fi nished infecting all possible
executable fi les, Sality will jump back to the root folder
(c:\) to start the whole infection process again. It will look
for new executable fi les to infect, skipping any fi les that are
already infected within each folder.

To avoid reinfecting fi les, a standard fi le infector adds
an infection marker as part of the infection process.
This marker is checked every time the malware attempts
to infect a fi le. Some infection markers are easily
recognizable, and may even be used by anti-virus engines
to detect a particular variant. For Sality, the marker is not
easy to spot.

For a quick view of the infected fi les, Sality zeroes-out the
CRC checksum value of each infected fi le. It seems that
this is an infection marker and anti-virus software can use
this as part of a detection algorithm, since most regular
executables have a non-zero value in their CRC checksum.
The CRC checksum is located at offset 0x58 from the start
of the PE header. Unfortunately, however, this is not what is
checked by Sality to avoid reinfection.

Going back to the infection process: since Sality appends its
code at the end of the host fi le, it is normal to reconfi gure
the values of the last section header. Sality increases the
VirtualSize and SizeOfRawData values and makes sure
the characteristics of the last section are EXECUTABLE,
READABLE and WRITABLE. These are the normal values
modifi ed by most fi le infectors.

However, if you look more closely, each section header
has a property called ‘NumberOfLineNumbers’ located
at offset 0x22 from the start of the section header. This
property contains zero for most executable fi les. Sality
allocates a non-zero value to this property as part of the
infection process. Since it will look like part of a regular
infection algorithm, the malware assumes that it will be
overlooked.

To avoid reinfection, Sality checks this value within its
code. If the ‘NumberOfLineNumbers’ property is zero,
the fi le is not yet infected and Sality will perform the
infection routine. In the same respect, if an infected fi le
somehow contains zero in the ‘NumberOfLineNumbers’
property, the fi le will be reinfected – it will keep

reinfecting the fi le as long as the ‘NumberOfLineNumbers’
property is zero.

Meanwhile, if a clean executable fi le has a non-zero value
in the ‘NumberOfLineNumbers’ property, Sality will skip
the fi le, thinking that it is already infected.

CODE INJECTION THREAD
Spawned from the main thread, this thread is responsible
for injecting code into remote processes. Its main goal is to
search for processes to infect.

After allocating a section of global memory, Sality maps
the section named ‘purity_control_90833’, containing
(0x11000) 69,632 bytes of malware code, using the
MapViewOfFile API. It then copies the contents of the
section to the global memory space and unmaps it using the
UnmapViewOfFile API.

Then, Sality parses the list of processes that are
currently running in the system using a combination
of the CreateToolhelp32Snapshot, Process32First and
Process32Next APIs. The malware will skip processes that
have a PID (process ID) that is less than or equal to 0x0A
(basically, avoiding system processes).

Each process with a PID above 0x0A is subjected to the
following routine:

Sality opens the process and queries its token using calls to
the OpenProcess and OpenProcessToken APIs. The malware
gets the SID (security identifi er) of the process token using
the GetTokenInformation API. Sality will determine the
SID’s account name by calling the LookupAccountSidA
API. The resulting account name determines which user
account has access to the given process.

If the account name is either ‘SYSTEM’, ‘LOCAL
SERVICE’ or ‘NETWORK SERVICE’, Sality will create
a mutex with the name format ‘{processname}M_%d_’,
producing, for example, ‘smss.exeM_544_’. Afterwards, it
will close the handle to the current process and get the next
process in the list by using the Process32Next API. Then it
repeats the same procedure all over again.

If the account name is anything but the three names
mentioned above, Sality will allocate remote memory space
within the remote process by calling the VirtualAllocEx
API. This is followed by copying (0x2000) 8,192
bytes of code to the newly allocated memory using the
WriteProcessMemory API and activating the remote thread
using the CreateRemoteThread API.

The injected code is a decrypted version of Sality and
the initial execution is similar to that of the main thread,
discussed in [1], without the decryption.

VIRUS BULLETIN www.virusbtn.com

8 FEBRUARY 2014

After activating a new thread in the remote process, Sality
allocates another remote memory space, writes (0x1000)
4,096 bytes of code, and activates a new remote thread.

The second injected code creates a mutex with the same
name format as before (‘{processname}M_%d_’). For
example, if the notepad.exe process is being infected, the
second remote thread will create a mutex named ‘notepad.
exeM_194_’, where 194 is the PID. The mutex name serves
as the infection marker for the process to avoid reinfection
(see Figure 1).

After activating the two remote threads, Sality gets the next
process in the list by using the Process32Next API. Then it
repeats the same routine again.

After performing the routine on all processes, the thread
sleeps for (0x2800) 10,240 milliseconds. When it wakes up, it
will try to perform the routine on all processes all over again.

To avoid reinfecting processes, Sality checks each process
for a mutex with the format ‘{processname}M_%d_’ – if
the mutex is found, it will skip the process.

This thread ensures that all suitable processes can be infected,
including new processes that the user will soon use.

SAFE MODE DELETER THREAD

Normally, if we want to fi gure out why a machine is not
behaving in the way it is expected to be, we boot the system
in Safe Mode. The system restarts with minimal services.
There are three common options: Safe Mode, Safe Mode
with Networking, and Safe Mode with Command Prompt.

The information for these options can be found in the
registry entry HKLM\SYSTEM\CurrentControlSet\Control\
SafeBoot with the following subkeys: Minimal, Network,

and AlternateShell. The subkeys each have lists of
services depending on the selected options.

Sality deletes these subkeys in the following way:

Initially, the thread sleeps for (0x1D4C0) 120,000
milliseconds before it opens HKLM\SYSTEM\
CurrentControlSet\Control\SafeBoot using
the RegOpenKeyExA API. This is followed
by enumerating the subkeys using a call to the
RegEnumValueA API.

The AlternateShell subkey commonly contains
the value ‘cmd.exe’, which is the fi rst to be
deleted using a call to the RegDeleteValueA API.

The Minimal and Network subkeys contain their
own second-layer subkeys. The second-layer
subkeys are deleted fi rst, before the Minimal and
Network keys.

When all of the subkeys under HKLM\SYSTEM\
CurrentControlSet\Control\SafeBoot have been deleted, the
system will not be able to restart in Safe Mode.

After deleting the subkeys under SafeBoot, Sality gets the
addresses of service-related APIs from ADVAPI32.DLL
using the GetProcAddress API. Then the malware creates a
new thread, the Anti-Malware Services Killer Thread, which
will be discussed later.

Afterwards, Sality will check if ‘\\.\amsint32’ exists. If it
doesn’t, the malware will create a driver fi le,
jnhrks.sys, in the %system%\drivers folder. It will use this
driver fi le to create a service named ‘amsint32’ using the
CreateServiceA API with parameters dwServiceType with
(0x01) SERVICE_KERNEL_DRIVER, and dwStartType
with (0x03)SERVICE_DEMAND_START. After creating
the service, it closes the handle to it. This is followed
immediately by opening and starting the service using the
OpenServiceA and StartServiceA APIs, respectively. After
successfully running the ‘amsint32’ service, Sality deletes
the ‘jnhrks.sys’ %system%\drivers folder to hide any trace
of the driver fi le.

On the other hand, if ‘\\.\amsint32’ does exist, Sality will
create a copy of ‘ntkrnlpa.exe’ using a randomly generated
fi ve-character fi lename, e.g. ‘cdbpa.exe’ in the %temp%
folder. This is followed by loading the copied fi le,
‘cdbpa.exe’, into the memory by calling the
LoadLibraryExA API with the parameter DONT_
RESOLVE_DLL_REFERENCES.

ANTI-MALWARE SERVICES KILLER
THREAD
It is common for malware to parse a list of names of
running processes to spot processes that belong to anti-virus

Figure 1: Remote thread injected into Notepad creating the mutex as a
marker.

VIRUS BULLETIN www.virusbtn.com

9FEBRUARY 2014

applications or ones that are security-related. The malware
compares the substrings of the process name, and if they
match those of particular applications it terminates them.
However, Sality goes one step deeper. Rather than looking
at the running processes, it looks for services used by
security and anti-virus applications and disables any it fi nds,
effectively removing whatever protection the application
provides.

The procedure is as follows:

Initially, Sality connects to the service control manager
using the OpenSCManagerA API. It sleeps for (0x1000)
4,096 milliseconds before it starts searching for anti-virus
and security-related services.

It checks if certain services with given string names exist
by calling the OpenServiceA API with the SERVICE_
ALL_ACCESS (0xF01FF) parameter. The string names
come from a long list of names of services used by
anti-virus and security applications. We can tell that the
malware author has done extensive research to compile
this list.

If such a service exists, the malware will open it using
the OpenServiceA API and disable it by calling the
ChangeServiceConfi gA API with a dwStartType parameter
of SERVICE_DISABLED (0x04) (see Figure 2).

After closing the service handle, Sality will sleep for
(0x80) 128 milliseconds, after which it will get the next
string name from the list. Sality will go through the same
procedure of opening and disabling services, if they exist,
until all the names have been checked.

Once all names have been checked, Sality will sleep for
(0x2D000) 184,320 milliseconds, and will wake up to
perform this thread all over again. This is to make sure that

no new anti-malware services have started running, and no
disabled services have been restarted.

THREAD MONITOR THREAD
This thread checks the content of three memory locations
for certain values. This is some sort of anti-debugging trick
to determine if all threads are running simultaneously. Other
threads set the three memory locations with the intended
values.

Initially, this thread checks for a certain value in memory
location 1, if the value is zero the thread will sleep
infi nitely.

If memory location 1 contains a non-zero value, it will sleep
for 12 milliseconds, then check the memory location 2. If
the value at memory location 2 is not equal to 1, it will go
back to the start of the thread and start all over again.

However, if the value at memory location 2 is 1, then it
will check the value at memory location 3. If this is not
equal to 1, then it will try to run the malware from the very
beginning (at the entry point of the malware).

If all conditions are satisfi ed, Sality will get the
pathname of the current executable module using
the GetModuleFileNameA API. Then, strange as it
seems, Sality zeroes-out the fourth character of the
pathname and tries to run it using the ShellExecuteA
API with the parameter ‘open’. Since the result of the
GetModuleFileNameA API is the complete pathname,
the fi rst three characters will be the root folder, e.g. ‘c:\’,
thereby, the root folder will be displayed in a new window.

After displaying the root folder, Sality will create another
mutex named ‘Ap1mutx7’, then sleeps for (0x927C0)
600,000 milliseconds before terminating the current

process.

TEMP-EXECUTABLE KILLER
THREAD
This thread has only one goal: to delete executable
(.EXE) fi les found in the %Temp% folder.

After getting the %temp% folder pathname, it
will use the FindFirstFileA and FindNextFileA
APIs to fi nd any .EXE fi les. Once a fi le is found,
the malware will change its attributes and delete
it. There is no checking of whether the .EXE
fi le really is an executable fi le or not; the only
requirement is to have an extension name of
‘EXE’.

After deleting all .EXE fi les in the %temp%
folder, the thread will sleep for 10 minutes. Once Figure 2: Partial list of names of anti-malware services.

VIRUS BULLETIN www.virusbtn.com

10 FEBRUARY 2014

the thread wakes up, it will do the same thing all over
again.

AUTORUN.INF THREAD

Sality is a fi le infector and there are only a handful of fi le
infectors that drop an autorun.inf fi le.

Initially, the malware sleeps for (0x5D1D) 23,837
milliseconds, as it usually does. This is followed by
calling the GetLogicalDrives API to get the available disk
drives in the system. Knowing the drives available, Sality
checks the drive type by calling the GetDriveTypeA API.
It avoids the CD drive by checking if the result from the
GetDriveTypeA API is DRIVE_CDROM; otherwise, it will
check if ‘autorun.inf’ already exists in the drive by calling
the CreateFileA API with GENERIC_READ access.

If ‘autorun.inf’ does not exist in the drive, it will call the
CreateFileA API again, this time with GENERIC_WRITE
access.

This is followed by generating fi ve random characters for
a fi lename and randomly selecting from ‘pif’ and ‘exe’ as
the extension name. The randomly generated fi lename is
used as part of the autorun.inf content. Sality also generates
random characters and strings that will be placed within the
autorun.inf fi le. Figure 3 shows the possible content of the
autorun.inf fi le.

The generated content of autorun.inf is similar to
autorun.inf fi les dropped by common trojans, except that
Sality includes all possible start-up commands including:
open, shell\explore\command, shell\open\command and
shell\autoplay\command.

Finally, the generated content is written to
autorun.inf and its attributes are changed to FILE_
ATTRIBUTE_READONLY|FILE_ATTRIBUTE_
HIDDEN|FILE_ATTRIBUTE_SYSTEM.

Once the autorun.inf fi le has been created successfully,
Sality creates the actual executable fi le mentioned within
autorun.inf. First, it creates a fi le using the CreateFileA API
and copies (0x192E4) 103,140 bytes of code to it using the
WriteFile API. Then Sality changes the fi le attributes to
ones similar to those used by autorun.inf.

The executable fi le that is generated is the trojan component
of Sality.

This thread will create autorun.inf and the trojan component
on all available disk drives in the system. Then it will sleep
for (0x1B58) 7,000 milliseconds, after which it will check
again for uninfected disk drives.

MORE THREADS?

There are still more threads spawned by Sality. There is not
enough space in this article to describe each one, but one
thing is certain: Sality continues to evolve. It upgrades itself
with more features, more functionalities, and more tricks to
defeat the system.

Sality has a strong encryption algorithm as evidence of
years of existence. It is very careful in performing its
routines and hiding traces of its components. It minimizes
exposure by avoiding the infection of system fi les. And it
maintains a low-activity profi le by sleeping in each and
every routine.

Sality comes and goes, but its every appearance
demonstrates different strengths and capabilities.

REFERENCE

[1] Alvarez, R. Salted algorithm – part 1.
Virus Bulletin, January 2014, p.9.
http://www.virusbtn.com/pdf/
magazine/2014/201401.pdf.

Figure 3: The generated content of autorun.inf in memory.

http://www.virusbtn.com/pdf/magazine/2014/201401.pdf

VIRUS BULLETIN www.virusbtn.com

11FEBRUARY 2014

MALWARE ANALYSIS 3
INSIDE W32.XPAJ.B’S INFECTION
– PART 2
Liang Yuan
Symantec, China

Xpaj.B is one of the most complex and sophisticated fi le
infectors in the world. It is diffi cult to detect, disinfect and
analyse. This two-part article provides a deep analysis of
its infection. Part 1 dealt with the initial stages of infection
[1], while this part concentrates on the implementation of
the small polymorphic stack-based virtual machine that the
virus writes to the target subroutines.

POLYMORPHIC STACK-BASED VIRTUAL
MACHINE
Once the target subroutines have been found, the virus
writes a small polymorphic stack-based virtual machine to
them. The implementation of the virtual machine is highly
polymorphic, and it can be generated with the following
features:

• Random size of stack frame and stack offset

• Instructions with random registers and stack offset

• Junk instructions with random opcode, register, stack
offset and immediate value

• Random appearance of junk instructions (due to the
varied number of junk instructions)

• Random instruction pairs.

Because the overwritten areas of subroutines are mostly
separate from each other, when one overwritten area runs
out, the virus will write a jmp instruction at its end in order
to jump to the next overwritten area, and continue to write
the code.

When the infected fi le is executed, and once the instruction
that calls the overwritten subroutines or the redirected call
instruction is executed, the virtual machine starts to work.
First, it calls a subroutine named ‘get_base’ to get the
base address (as shown in Figure 1). The base address is
the return address of the ‘call get_base’ instruction. Then
it locates the encrypted array by using the base address;
the encrypted array is used to describe the sequence of
operations executed by the virtual machine. It then executes
the operations one by one until it reaches the end of the
sequence (as shown in Figure 1 – note that this is a clean
virtual machine without junk code and the stack offsets
may be different for other infections). The sequence of
operations encoded by the array forms a program that
locates the address of the ZwProtectVirtualMemory Figure 1: Execution of operations.

VIRUS BULLETIN www.virusbtn.com

12 FEBRUARY 2014

API, calls this API to modify memory protection of the
section containing the virus code or data, then constructs
and executes the decryptor to decrypt the virus body, and
constructs and executes the jumper to execute the payload.

The virus uses three DWORDs to describe one operation,
with the following structure:
Struct operation{

 DWORD Offset;//+0 operation address offset to the
 base address

 DWORD Argument1;//+4 Argument1 for the operation

 DWORD Argument2;//+8 Argument2 for the operation

} operation_info;

When executing an operation, it decrypts its offset and
arguments from the array, saves the arguments to the
specifi ed stack offsets, then computes the operation
address by using the base address, and calls it to execute
the operation. At the same time, it updates the position of
the array for the next operation. It continues to execute
operations until it reaches the end of the sequence. In most
cases, there are 0xd5 operations in the sequence.

For the version of Xpaj.B I analysed, there are seven basic
operations. To obtain a clean virtual machine and better
understand its operation, it was necessary to patch the code.
The following operators were derived from the clean virtual
machine:

• Call – call the address at the top of the stack and save
the result on the top of the stack (as shown in Figure 2).

• Get_PEB – push fs:[xxx] to the stack. xxx is the
value at the top of the stack, which is always 0x30
in order to get the PEB and locate the address of the
ZwProtectVirtualMemory API function (as shown in
Figure 3).

• Push_argument1 – push argument1 to the top of the
stack (as shown in Figure 4).

• Load – load one DWORD onto the top of the stack
from the memory location specifi ed by vm_esp,
argument1 and argument2 (as shown in Figure 5).

• Store – store the DWORD from the top of the stack
to the memory location which is specifi ed by vm_esp,
argument1 and argument2 (as shown in Figure 6).

• Add – add two numbers to the top of the stack and push
the result to the stack (as shown in Figure 7).

• Je – compare two values at the top of the stack. If they
are not equal, continue to execute the next operation; if
they are equal, add argument1 to the array to execute
the other operation (as shown in Figure 8).

I also let the virus build a polymorphic version of the virtual
machine with the same size of stack frame and stack offsets

Figure 2: Call operation (for the stack offsets see Figure 1).

Figure 3: Get_PEB operation (for the stack offsets see
Figure 1).

Figure 4: Push_ arg1 operation (for the stack offsets see
Figure 1).

Figure 5: Load operation (for the stack offsets see Figure 1).

Figure 6: Store operation (for the stack offsets see Figure 1).

Figure 7: Add operation (for the stack offsets see Figure 1).

Figure 8: Je operation (for the stack offsets see Figure 1).

VIRUS BULLETIN www.virusbtn.com

13FEBRUARY 2014

as for the virtual machine. Figure 9 shows the difference
between the call operations from the two virtual machines.

Xpaj.B builds its polymorphic virtual machine in a very
similar way to that in which the virtual machine works. The
code implements a number of operations and an interpreter
is controlled by encrypted binary data that is stored inside
the virus. The virus decrypts the binary data, and the
sequence of operations encoded by it forms a program
which builds the virtual machine. For the variant I analysed,
the size of the binary data was 0x288. Figure 10 shows how
Xpaj.B uses the binary data to build the main frame of the
virtual machine.

I wrote an IDA python decryption script that emulates the
function named ‘decrypt_dword’ (shown in Figure 10)
to get the called addresses, and added some comments
describing what the addresses do. (As shown in Figures 11a
and 11b, xxx, nn and reg in the comments are specifi ed by
the binary data; nn is derived from the stack offsets list for
the virtual machine.)

Now the key is to analyse the binary data. I created a python
script to do this, get the xxx operators and print the main
procedure of building the virtual machine. The output result
is as follows:

zero fl ag_constructing_junk_code

set using_random_junk_ins as true

generate the size of stack frame and stack offsets
for vm internal use

push ebp

mov ebp,esp

sub esp, xx

set fl ag_constructing_junk_code as true

push regs

zero fl ag_constructing_junk_code

save the following ins to ins_log

add the following ins to branch_ins_in_VM

Figure 10a: Construct main frame of VM.

Figure 10b: Construct main frame of VM.

Figure 9: Difference between call operations (for the stack
offsets see Figure 1).

VIRUS BULLETIN www.virusbtn.com

14 FEBRUARY 2014

call next_ins_va

set fl ag_constructing_junk_code as true

get one free reg for internal use

mov reg, dword ptr [ebp+nn]

zero fl ag_constructing_junk_code

save the following ins to ins_log

add reg, imm32

...

mov reg, dword ptr [ebp+nn]

add dword ptr [ebp+nn], reg

set specifi ed reg as free

ins that jmp to the dispatcher to execute the next
operation

save the following ins to ins_log

success

Note that the construction of junk instructions is not
included in the log result. There is one subroutine,
named ‘junk_code_construction’, that is responsible for
constructing the junk code. This is called in every iteration
if fl ag_constructing_junk_code is true (as shown in Figure
10a). There is one seed as argument to control the chance
of constructing a junk instruction. The smaller the seed, the
greater the chance of constructing a junk instruction. It tries
to create as many junk instructions as possible, but the size
of overwritten areas is limited, and if the space runs out,
it will enlarge the seed (thereby decreasing the number of
junk instructions) to rebuild the virtual machine until it is
successful. The subroutine can construct fi ve different types
of junk instructions (some of which can be seen in Figure 9):

Mov/add/or/adc/sbb/and/sub/xor reg, dword ptr [ebp+nn]

Mov/add/or/adc/sbb/and/sub/xor reg1, reg2

Mov/add/or/adc/sbb/and/sub/xor reg, imm32(random)

Mov/add/or/adc/sbb/and/sub/xor dword ptr [ebp+nn], reg

Mov/add/or/adc/sbb/and/sub/xor dword ptr [ebp+nn],
imm32(random)

If using_random_junk_ins is false, the virus either uses
the mov instruction directly, or else it chooses one from:
add, or, adc, sbb, and, sub and xor to construct the junk
instruction.

When constructing the instructions that are used to jump
to the dispatcher (instructions at the bottom of Figures
2–9), the virus tries to add junk instructions among them
from the fi ve types listed above. It randomly selects one
of the following instruction pairs in order to jump to the
dispatcher (nn is the stack offset that stores the dispatcher
address):

• Pair 1:
push dword ptr [ebp+nn]

retn

Figure 11a: Handles and encrypted binary data.

Figure 11b: Handles and encrypted binary data.

VIRUS BULLETIN www.virusbtn.com

15FEBRUARY 2014

• Pair 2:
jmp dword ptr [ebp+nn]

• Pair 3:
mov reg, ebp

jmp dword ptr [reg+nn]

• Pair 4:
mov reg, dword ptr [reg+nn]

jmp reg

• Pair 5:
mov reg, nn

add reg, ebp

jmp dword ptr [reg]

You might notice that the junk instructions are very similar
to some of the virtual machine’s instructions (as shown in
Figure 9). How does Xpaj.B construct the junk instructions?
As can be seen in the fi rst few lines of the output result,
it fi rst creates a stack frame with the specifi ed size (large
enough for the virtual machine) and the stack offsets list
for the virtual machine’s internal use; the stack offsets in
the stack frame are for storing the local variables of the
virtual machine. It also creates an array whose size is 8 for
showing which register is free or busy: array[0] represents
eax; array[1] represents ecx; and so on. The value of an
array item can be 0, 1 or 2. Value 2 means ebp and esp (they
can’t be used to construct a junk instruction); 0 indicates
that the register is free and can be used; 1 indicates that the
register is busy and can’t be used. The array is initialized
to [0,0,0,0,2,2,0,0] – this means that all registers except
for ebp and esp are free at the beginning. Xpaj.B will
update the array according to the context when building
the instructions of the virtual machine. If it wants to use a
register, it will choose one at random from the free registers
and set it as busy. If the register isn’t used in the following
instructions, it will set it as free. As a result, the virus can
construct the junk instructions by using registers which are
free and the stack offsets that the virtual machine doesn’t
use. Note that the busy registers, ebp and esp, can be used
as the source operand of any junk instruction.

From the output result log, we can see the main frame of
the virtual machine. But the virtual machine is not ready yet
– it needs to be fi xed. The virus records some instruction
information when building the virtual machine. The
information will be used to fi x the instructions. It uses the
following structures to log the information:

struct branch_ins_in_VM{

 DWORD item_num;//+0

 branch_ins_info_in_VM info[item_num];//+4

} branch_ins;

struct branch_ins_info_in_VM

{

 DWORD operand_va;//+0 start address of the operand
of branch instruction

 DWORD index;//+4 for indexing the destination
address of the branch ins

} branch_ins_info_in_VM;

/*

For example:
0012D4F4 00000002--> total items

0012D4F8 00C23D9A--> see Figure 12

0012D4FC 00000000--> see Table 1

0012D500 00C23E81--> see Figure 8 jnz dispatcher

0012D504 00000004--> see Table 1

*/

struct ins_log_info

{

 DWORD index;//+0

 DWORD va;//4 virtual address of the instruction

} ins_log_info;

struct ins_log

Figure 12: Tweaked places.

VIRUS BULLETIN www.virusbtn.com

16 FEBRUARY 2014

{

 DWORD item_num;//+0

 ins_log_info info[item_num];//+4

} ins_log;

Once the main frame of the virtual machine has been
built successfully, the virus will fi x the places as shown in
Figure 12 (this is clearer if you compare it with Figure 1).
This is necessary as the destination addresses for branch
instructions (including call, jmp, jcc etc.) are not always
known up front. The virus uses the address of the next
instruction as the operand, which makes sure it is easy to fi x
the branch instruction (as shown in Figure 13). When fi xing
other places, the virus needs to analyse the ins_log structure
to get the relevant instruction address by given index. There
is one subroutine named ‘get_va_from_ins_log_by_index’.
This iterates through the info fi eld of the ins_log structure
and gets the relevant virtual address by given index. If it
is not found, it will return the virtual address of the last

ins_log_info in the array (as shown in Figure 14). The
information about ins_log for the variant I analysed is
shown in Table 1.

The virus fi xes the following places with the exception of
the branch instruction:

• Place 2 in Figure 12: fi xes the instruction which is used
to locate the encrypted array (as shown in Figure 15).

• Place 3 in Figure 12: fi xes the instruction that is used to
get the address of the dispatcher (as shown in Figure 16).

Figure 13: Fixes the branch ins in VM.

Figure 14: get_va_from_ins_log_by_index.

Figure 15: Fixes place 2 (for the index, see Table 1).

VIRUS BULLETIN www.virusbtn.com

17FEBRUARY 2014

• Places 4, 5, 6 in Figure 12: fi xes the instructions for
initializing the key to decrypt the VM array (as shown
in Figure 17).

After the instruction has been fi xed, the virus will start to
fi x the operation structure array, including the offset and
argument fi elds. It fi rst decrypts the encrypted operation
structure array. After decryption, the offset fi eld of the
operation structure is the index (as shown in Figure 18),
which it can use to get the operation addresses. Next, it

fi xes the offsets of the operation structure array (as shown
in Figure 19). It fi lls the argument fi eld with random
DWORDs, then it fi xes the argument fi eld of the operation
structure array in order to ensure that the virtual machine
executes correctly. After that, it encrypts the array and
writes it to the inserted section (as shown in Figure 20),
which is to make sure the virtual machine decrypts the array
correctly (as shown in Figure 1). At this point, the virtual
machine is ready.

Finally, it updates the checksum in the PE header to
complete the infection process.

Index VA (from
mapped image)

Description

0 00C23E1D Destination address of call
get_base

1 00C23D99 VA of instruction ‘call get_base’

2 Not used

3 00C23DA1 see Figure 15

4 00C23DBF see Figure 15

5 00C23E45 address of push_arg1operation

6 00C23E51 address of load operation

7 00C23E3D address of get_peb operation

8 00C23E62 address of store operation

9 00C23E73 address of add operation

0xA 00C23E7B address of je operation

0xB 00C23E90 patched end address

0xC 00C23E24 address of call operation

0xD 00C23E19 part of jumper

0xE 00C23DB6 see Figure 15

0xF 00C23DC7 see Figure 15

0x10 00C23DE8 see Figure 15

0x11 00C23DFB see Figure 15

Table 1: Information about ins_log.

Figure 16: Fixes place 3 (for the index, see Table 1).

Figure 17: Fixes places 4, 5, 6 (for the index, see Table 1).

Figure 18: Decrypted operation array.

VIRUS BULLETIN www.virusbtn.com

18 FEBRUARY 2014

EXECUTION ROUTE

Let’s look at the main execution route of Xpaj.B. Usually
there are three routes (as shown in Figure 21). When
the infected fi le is executed, once either the instruction
that calls the fi rst overwritten subroutine (Route 3 in
Figure 21), the instruction that calls the other overwritten

subroutines (Route 2), or the redirected call instruction
(Route 1) is executed, the return address of the call is
saved into the stack (for Route 2, the address is the return
address of the instruction ‘call_start_address_of_fi rst_
overwritten_subroutine’) and the virtual machine starts
to work. The virtual machine locates the address of the
ZwProtectVirtualMemory API and calls this API to modify
memory protection of the area that contains the encrypted
virus body, then it constructs and executes the decryptor
to decrypt the virus body, and constructs and executes the
jumper to execute the virus code.

When the virus is started, it gets the return address from
the stack and converts it to RVA. Then it iterates through
the patch structure list and gets the proper patch structure
for the call instruction. If it fails to get the relevant patch
structure for the call instruction, this means the executed
call instruction is the call to the fi rst overwritten subroutine.
Thus it uses the patch structure of the fi rst overwritten
subroutine as the matched patch structure. It decrypts the
matched patch structure and executes the code from its
code fi eld. If the reloc_count fi eld of the matched patch
structure is not zero, it will fi x the relocations, storing them
in the reloc_offset fi eld of the matched patch structure. This
allows the infected executable to continue working.

CONCLUSION
Xpaj.B is not only one of most sophisticated fi le infectors
but also one of stealthiest. It uses several techniques
to prevent detection and remain under the radar. Those

Figure 19: Fixes the offsets.

Figure 20: Encrypts the array and writes it to inserted
section.

VIRUS BULLETIN www.virusbtn.com

19FEBRUARY 2014

techniques demonstrate that the authors favour discretion
over effi ciency and want the virus to persist for as long as
possible once the infection has occurred.

REFERENCE

[1] Yuan, L. Inside W32.Xpaj.B’s infection – part 1.
Virus Bulletin, January 2014, p.13.
http://www.virusbtn.com/pdf/
magazine/2014/201401.pdf.

The overwritten SUB except
the first is called

Iterates through
 the patch struct list and

 try to find the patch struct:
Patch.patched_rva_end >= RVA of RET

ADDR >= patch.patched_rva_start

Virtual Machine is
started, execute the

payload

The first overwritten
SUB is called

Push ebp
Mov ebp,esp

Push reg
Call START ADDR of
first overwritten SUB

Convert the RET ADDR of
the executed call to RVA

and get the patch struct list

Route 1

Route 2

Add esp,4
Nop

Mov esp,ebp
Pop ebp

nop

Succ

Route 2

Jmp to original DST
ADDR of the

redirected SUB

Route1
8 NOPs

Fail
Route3

Execute the original
bytes of the first
overwritten SUB,

Jmp to
patched_va_end

Route3

Execute the original
bytes of the

overwritten SUB,
Jmp to

patched_va_end

Route2

Route2

Route3

Infected file is
started

Does xpaj.b gain
control?

The redirected
CALL is executed

Y

RunningN

Continue running

YY

Figure 21: Execution routes.

NEEDLE IN A HAYSTACK
Gabor Szappanos
Sophos, Hungary

Malware authors engaged in Advanced Persistent Threat
(APT) operations put great effort into making sure their
creations live up to their name and achieve persistence over
the course of months or years; in order to do so, the threats
must remain undetected by security products.

The authors try both to conceal the presence of the threats
on infected systems and to hide their code from analysis
and detection. Most crimeware authors achieve the latter
by applying sophisticated execryptors and protectors to
their code.

Over the past year, however, we have spotted a different
approach: malicious code is compiled into an open source
library, hidden among a large pile of clean library code,
with only a single export pointing to the trojan functionality.
The deployment and progression of this malware spans
about two years now – however its versioning suggests that
its development started longer ago than that.

This malware doesn’t take anything for granted: even
common system tools like rundll32.exe and wscript.exe,
which are present on all Windows systems, are carried with
the installer and dropped when needed.

The malware goes to great lengths to cover its tracks. All
of the string constants that could reveal the nature of the
backdoor are protected with strong encryption. Additionally,
the backdoor itself is disguised as a legitimate MP3 encoder
library. In fact, it is a legitimate and functional MP3 library
– and a bit more besides.

EXPLOITED CARRIER WORKBOOK

In a handful of cases we have been able to identify the
original exploited document that leads to the system
infection. At the time of fi nalizing this paper, three exploited
workbooks have been found that install this threat.

All of them are protected Excel workbooks with the default
password (for more details see [1]). In short: the workbooks
are password protected (that is, checked before opening).
It is possible to leave the password fi eld blank – in which
case Excel encrypts the content using the default password:
‘VelvetSweatshop’. On the other hand, if a workbook is
protected with exactly this password, Excel assumes that
there is no password, and opens the document transparently.
As a result, the document content is encrypted and hidden
from normal analysis, but opening it will execute the
shellcode without further prompting.

FEATURE

http://www.virusbtn.com/pdf/magazine/2014/201401.pdf

VIRUS BULLETIN www.virusbtn.com

20 FEBRUARY 2014

The workbooks exploit the CVE-2012-0158 vulnerability,
which triggers the execution of shellcode within the
document.

After the workbooks are opened, the intended operation
is to open a decoy workbook – a clean fi le that grabs the
attention of the user while malicious activities proceed in
the background. The themes of the decoys give us some
idea as to the areas of interest of the target audience of this
malware distribution.

Workbook 1

Filename: 300 .xls (rough translation: ‘300
 petitioners cosigned.xls’)

File size: 839756 bytes

SHA1: 066998e20ad44bc5f1ca075a3fb33f1619dd6313

MD5: 5c370923119f66e64a5f9accdd3d5fb

This does not display any decoy document, just closes
the Excel window. Nevertheless, the shellcode execution
proceeds.

If the fi le was opened, it would display a workbook with a
list of names, gender, region and phone numbers of Chinese
individuals.

Figure 1: Decoy content for 066998e20ad44bc5f1ca075a3f
b33f1619dd6313.

Workbook 2
Filename: sample.xls

File size: 638912 bytes

SHA1: e5e183e074d26416d7e6adfb14a80fce6d9b15c2

MD5: 2066462274ed6f6a22d8275bd5b1da2b

Figure 2: Decoy content for e5e183e074d26416d7e6adfb14
a80fce6d9b15c2.

Workbook 3

Filename: LIST OF KEY OFFICIALS IN THE DND
 PROPER.xls

File size: 638912 bytes

SHA1: d80b527df018ff46d5d93c44a2a276c03cd43928

MD5: 80857a5541b5804895724c5d42abd48f

This decoy workbook contains information about key
offi cials in the Philippines Department of National Defense
(DND).

Figure 3: Decoy content for d80b527df018ff46d5d93c44a2a
276c03cd43928.

VIRUS BULLETIN www.virusbtn.com

21FEBRUARY 2014

In the rest of this article, unless specifi ed otherwise, we refer
to the operation resulting from infection via Workbook 1
– but the overall operations (dropped fi lenames, registry
keys, backdoor functions) are the same in each case.

When mining our sample collection for related samples
we were able to spot other examples – however, in these
instances the initial dropper was not available for our
analysis, only the temporary dropper executables or the
fi nal payloads could be located. In these cases we don’t
have complete information about the system infection, but
it is safe to assume that similar exploitation schemes were
utilized.

SHELLCODE
The shellcode features an interesting anti-debugging trick
that I have come across quite regularly in APT samples
lately. Most of the Windows API functions are resolved
and called normally, but some of the critical ones (such
as WinExec and CreateFile) are not entered at the entry
address (as stored in the kernel32.dll export table), but fi ve
bytes after it instead. These functions are responsible for the
most critical operations of the code (dropping the payload
executable and executing it), which would reveal unusual
activity in the scope of an ordinary Excel process.

As most tracers and debuggers would place the breakpoint
or hijack function right at the entry of the API function,
skipping the fi rst few bytes is a good way to avoid API
tracing and debugging.

The same happens with WriteFile and GlobalAlloc, but this
time, depending on whether or not there is a call right at the
entry of the function, the displacement will be either fi ve or
seven bytes.

Figure 5: Anti-tracing hook initialization.

As a result of the functions not being entered at their
usual entry points, the fi rst few instructions are missed.
As these are still essential for the stack management, the
code is compensated within the shellcode, where a standard
function prologue (stack frame creation push ebp, move
ebp,esp) is executed.

Figure 4: Anti-tracing trick.

VIRUS BULLETIN www.virusbtn.com

22 FEBRUARY 2014

For system functions compiled with standard compilers,
the fi rst few instructions are fi xed on the entry point, but
anything after that can’t be taken for granted. The shellcode
can’t enter further than fi ve or seven bytes into the API
function, otherwise it could end up in the middle of a
multi-byte instruction, easily crashing the application.

In order to extract the embedded executable, the shellcode
needs to fi nd the carrier workbook. It does this using the
fact that, at the time of the exploitation, the workbook must
remain open in Excel. The code enumerates all possible
handles and tries to call GetFileSize on each of them. If
the function fails, because the handle does not belong to
an open fi le (it could belong to many other objects such as
directory, thread, event or registry key), or the fi le size is
smaller than the expected size of the workbook (minus the
appended encrypted EXE), 1de10h bytes, it skips to the next
handle value.

Next, it reads four bytes from offset 0x1de00; the value
found there should be equal to the size of the carrier
workbook (this time including the appended EXE).

At this position, in the appended content following the OLE2
document structure, a short header is stored that contains the
full carrier workbook size, the embedded EXE size and the
embedded decoy workbook size. These values are used by
the shellcode. The encrypted EXE content follows.

Organizing the code and structure in this manner makes
the carrier/dropper workbook component and the dropped
payload executable completely independent – it is possible
to replace the payload with a new variant without changing
a bit in the carrier encrypted workbook.

Once the hosting workbook is found, the code proceeds
with decoding the embedded executable (using a one-byte
XOR algorithm with running key plus an additional
one-byte XOR with a fi xed key), saving it to a fi le named
‘Winword.exe’ in the %TEMP% directory, then executing it.
At this point, the decoy workbook content is dropped (using
the same algorithm: one-byte XOR with running key plus
one-byte XOR with fi xed key, only this key differs from the
one used in decoding the EXE).

TEMPORARY DROPPER

This fi le is the dropper and installer for the fi nal payload. It
has an initial anti-debug layer.

The address of the GetVersion function is patched in the
import table, to contain an internal function virtual address
instead of an imported function address, which is normally
expected at that position. The code around the entry point
uses the stored value to redirect execution:

mov large fs:0, esp

sub esp, 58h

push ebx

push esi

push edi

mov [ebp-18h], esp

call ds:dword_41A188

The execution actually goes to the address stored
at dword_41A188, which is the memory location
00402440.

The program has only one export, LoadLibrary,
thus when the operating system loads the
program and resolves the external dependencies,
this value, stored within the import table
region, remains intact. The trick completely
fools IDA Pro, which can’t be convinced that
the location is an internal position and not an
external import. This makes static analysis a
bit more complicated. The necessary imported
function addresses are later resolved dynamically
by the initialization code of the dropper.

The major procedures of the dropper program
are not called directly; instead, the trojan builds
a function pointer table, and calls to procedures
are performed via indexing into this table, as
shown in Figure 8.

Figure 6: Anti-tracing used in practice.

Figure 7: Appended header and payload.

VIRUS BULLETIN www.virusbtn.com

23FEBRUARY 2014

The key procedures are identifi ed by having the following
instruction sequence near the prologue:
push ebp

mov ebp, esp

push eax

mov eax, 12547908h

pop eax

The value stored in the EAX register is a combination of
two elements: 1254 is the marker; 7908 is the numeric ID
for the function.

The entry is located by searching backwards for the
standard prologue:
push ebp

mov ebp, esp

The procedures are later invoked by calling indexes from
the function pointer table (see Figure 9).

Winword.exe normally drops three major components into
the system:

• %PROGRAM FILES%\Common Files\ODBC\
AppMgmt.dll – the fi nal payload (Windows DLL fi le)

• %PROGRAM FILES%\Common Files\DBEngin.EXE
– a copy of rundll32.exe (a clean Windows system fi le,
used for executing the payload)

• %PROGRAM FILES%\Common Files\WUAUCTL.EXE
– another rundll32.exe (a clean Windows system fi le,
used for executing the payload).

Additionally, two registry export fi les named jus*.tmp
(with a random number added after jus) are dropped into
%TEMP%. These are the old and new hives of the HKLM\
SYSTEM\CurrentControlSet\Services\AppMgmt registry
location – a location at which the trojan registers itself in
order to execute automatically upon each system boot.
Saving the hives to a fi le makes it possible to modify the
registry in one shot using RegRestoreKey.

Also dropped is a 301,445-byte-long jus*.tmp fi le, which is
a CAB archive containing the payload DLL.

The execution fl ow takes a different route if the presence
of running security products is detected. The following
process names are checked: KVMonXP.exe,
RavMonD.exe, RsTray.exe, ccsvchst.exe, QQPCTray.exe,
zhudongfangyu.exe, 360sd.exe, 360Tray.exe, zatray.exe,
bdagent.exe, ksafetray.exe, kxetray.exe and avp.exe.
However, not all of the security processes are checked at
the same time – only a couple of selected ones are checked
before each major operation.

As an example, if zatray.exe, RsTray.exe or RavMonD.exe
is running, then AppMgmt.dll is not dropped and instead,
the 400MB vbstdcomm.nls is created (the large size is due
to an enormous amount of junk appended at the end of the
fi le). Finally, a VBScript fi le is created and executed with
the help of a dropped copy of wscript.exe (both fi les are
saved to the %TEMP% folder, as lgt*.tmp.vbs and
lgt*.tmp.exe, respectively). An encrypted copy of
Winword.exe is created in %CommonProgramFiles%\
ODBC\odbc.txt, using a one-byte XOR algorithm with key
0xCC. Vbstdcomm.nls, which serves as a backup installer,
takes the encrypted copy of Winword.exe, decodes it and
simply executes.

The dropper registers AppMgmt.dll as a service. This is not
achieved by creating a new service entry, rather by taking
over the role of an already installed service, AppMgmt,
redirecting the service DLL from the clean library to the
dropped malware payload:

HKLM\SYSTEM\CurrentControlSet\Services\AppMgmt\
Parameters: ServiceDll

%SystemRoot%\System32\appmgmts.dll -> C:\Program
Files\Common Files\ODBC\AppMgmt.dll

In addition, the start-up mode is changed from auto to
demand in the location:

Figure 8: Building the function pointer table.

Figure 9: Using the function pointer table.

VIRUS BULLETIN www.virusbtn.com

24 FEBRUARY 2014

HKLM\SYSTEM\CurrentControlSet\Services\AppMgmt:
Start

Then it changes the error control settings in the registry key
HKLM\SYSTEM\CurrentControlSet\Services\AppMgmt:
ErrorControl from normal (this would mean that if the
driver fails to load, the start-up process proceeds, but
a warning is displayed) to ignore (in this case if the
driver fails to load, start-up proceeds, and no warning
is displayed). The change is designed to avoid raising
suspicion, should start-up fail for any reason.

Finally, it executes the dropped DLL by executing net start
AppMgmt.

PAYLOAD
We have identifi ed fi ve different versions of the fi nal
payload. Two of them were replicated from the exploited
workbooks detailed earlier; the other three were found when
we were digging through our sample collection searching
for samples with similar characteristics.

The main characteristics of the fi ve variants are summarized
in Table 1 (detailed descriptions of the columns are
provided later in this section).

This DLL is built from the LAME MP3 encoder source
[2]. The full library has been compiled, and in addition, a
couple of malicious exports have been added to the code:
lame_set_out_sample and lame_get_out_sample.

Note that the names of the additional exports are strikingly
similar to the legitimate exports, lame_set_out_samplerate

and lame_get_out_samplerate, which are present in
the LAME source – thus it is not very obvious that the
additional exports belong to something completely different.

One of the extra exports, lame_get_out_sample, is missing
from newer versions of the malware. However, the function

Version PE time
stamp

Exports DES key
count

UDT
present

First seen C&C servers

2.2 19/10/2011 lame_set_out_sample
lame_get_out_sample

3 - 08/04/2013 202.146.217.229

2.22 17/02/2012 lame_set_out_sample 3 - 31/05/2013 103.246.247.194

2.3(TCP) 19/03/2012 lame_set_out_sample 3 - 26/04/2013 forwork.my03.com

2.3(UDP) 06/06/2012 lame_set_out_sample 3 + 07/12/2012 113.10.201.254
goodnewspaper.gicp.net
1115.126.3.214
goodnewspaper.3322.org

2.4(UDP) 19/01/2013 lame_set_out_sample 2 + 06/05/2013 113.10.201.254
113.10.201.250
125.141.149.23
125.141.149.46
125.141.149.49
58.64.129.149
goodnewspaper.3322.org
goodnewspaper.gicp.net

Table 1: Summary of the payload versions.

Figure 10: Additional malicious imports.

VIRUS BULLETIN www.virusbtn.com

25FEBRUARY 2014

that would invoke this export is still present in the code.
Clearly, the code was not cleaned up properly when the
export was removed.

The backdoor contains many encrypted strings, one of
which serves as an internal version number. In Table 1
we list the version numbers as they appear in the code.
Collected information suggests that the most widely
distributed was version 2.3(UDP), making its rounds in the
wild in early December 2012.

Table 1 also lists the date when we fi rst saw each particular
backdoor variant – either arriving in our collection, reported
in cloud look-ups or seen elsewhere on the Internet.
Additionally, the compilation date is listed, as taken from
the PE header.

An interesting quirk comes from the usage of the LAME
source: one of the original source functions, beVersion(),
inserts the compilation date into the data section of the
executable.

Figure 11: Compilation date in code.

This provides an independent method of determining the
creation date of the variant aside from the PE time stamp.
There was no trick, however – the two dates matched in all
cases.

It is notable that there is always a large gap between the
compilation date and the date of the fi rst observation of
each variant. There are several possible reasons for this:

• Small-scale targeted attacks don’t provide much
telemetry information; the smaller the number of
targets, the slimmer our chances of fi nding out about
their infection.

• The trojan looks very similar to a real LAME encoder
library; infected victims are reluctant to submit it for
analysis.

• There may be an intentional delay (some sort of testing
period) in the release process of the malware.

The backdoor uses different approaches for handling C&C
communication. Earlier versions used the standard Windows
socket communication functions (send, recv) to exchange
data with the C&C server. The newer versions linked the
UDT data transfer library (available from udt.sourceforge.net)
for communication. The versioning of the variants suggests
that some time around March 2012, the code forked into a
socket communication branch (TCP) and a UDT-powered
communication branch (UDP).

The backdoor features all the basic functionality that is
expected from a piece of malware of its class. It is able to:

• Create screenshots

• Get drive type (FAT, FAT32, NTFS, CDFS) and free
space

• Enumerate fi les and directories and send the list to the
server

• Rename fi les

• Create directories

• Delete fi les.

The last character of the ModuleFileName (without
extension) is checked on execution: if it is not of one of the
expected values – ‘T’, ‘t’ (executed via net.exe), ‘R’, ‘r’,
‘N’, ‘n’ (executed via DBEngin.EXE), ‘2’ (rundll32.exe),
‘L’ or ‘l’ – it builds and injects a simple piece of code to
load AppMgmt.dll properly.

For this purpose, it creates a new suspended process (with
command line: c:\windows\system32\svchost.exe), calls
GetThreadContext on it, and gets EAX from the CONTEXT
structure, using the fact that in the case of a suspended
process the EAX register always points to the entry point
of the process. Then it writes the starter code to this entry
point and resumes the thread. The suspended thread is not
visible in the process list at that point. This way, the trojan
can escape analysis, if not executed in a natural form, and
still execute.

Confi guration data is stored in a fi le named DbTrans.db,
XOR encrypted with key 0x58.

The string constants (API names, DLL names, process
names) are all stored in encrypted form using a strong
encryption algorithm. The strings are stored aligned
(Unicode strings to 0x90 bytes, ASCII strings to 0x38 bytes
boundary), decrypted in eight-byte chunks using the DES
ECB algorithm, and referenced by IDs that index into this
name pool. The encrypted strings contain padding bytes at
the end, where zeros are encoded.

The strings are decrypted on the fl y before being used
and fi lled with zeros after use. This way there are no
visible strings in the memory that would give away more
information about the internals of the backdoor.

VIRUS BULLETIN www.virusbtn.com

26 FEBRUARY 2014

There are three nearly identical encryption functions (and
accompanying encrypted string tables and encryption keys)
in all variants: one is for the Unicode strings, one for the
ordinary ASCII constants, and a third one for the Windows
API function names (also stored as ASCII strings) that are
used in the code. We found that only the encryption keys
were different for the three cases. The following key seeds
remain the same throughout the variants:

For ASCII strings: 82 C5 D3 59 2B 38 00 00

For Unicode strings: 5E 97 CC 42 8E CD 00 00

For API function names: 5B 5F CB 8D E5 F5 00 00

In the last version, the two ASCII functions are merged into
a single function.

The C&C addresses are hard-coded into the backdoor,
and protected with a simple byte-wise XOR (key:0x58)
encryption. This is an interesting choice, given that all
other string constants are protected with a string DES
algorithm – perhaps the server addresses are changed
more frequently (indeed, there is a minimal overlap
between the different versions’ C&C addresses) than the
authors are comfortable with re-encrypting the strings
– but no evidence was found for it in the few samples we
have found.

The string constants of the code are referenced by IDs and
decrypted on the fl y. However, there are strings that are
never used in the code. These could belong to an earlier or
internal version, and simply have not been cleaned up from
the string pool, as illustrated in this example:

push 9 ; ,lame_set_out_sample

call Get_String_A

push 0Ah ; ,

call Get_String_A

push 1Eh ; DBEngin.exe

call Get_String_A

push 8 ; EXPL.EXE

pop eax

call Get_String_W

push offset s_expl_exe

push [ebp+var_254]

call StrCpyW

push 8

pop eax

xor ecx, ecx

call set_mem

push ebx

push 2

call CreateToolhelp32Snapshot

Some of these strings could be internal confi guration
options for the development environment (I suspect these
are access details to an internal server):

kazafei

192.168.1.98

80

Other strings provide status information about the current
operation of the backdoor:

Client RecvData Complete

A File Search Task has start already !!!

File Search Task Success

File Search Task Failed, Please Check

Upload Client Failed

Upload Client Success

Delete File Success

Delete File Failed

Rename File Success

Rename File Failed

Create Folder Success

Create Folder Failed

A few constants indicate undocumented or debug
functionality:

X:\Windows\System32\rundll32.exe

X:\Windows\msacm32.drv

MagicMutex

D:\Resume.dll

D:\delete.dll

D:\delete2.dll

CONCLUSION

When looking into APT attack scenarios, one has to be extra
careful. Often we see that clean programs and libraries are
dropped onto systems to hide the operation of malicious
applications [3]. But sometimes, what looks to be a genuine
MP3 encoder library, and even works as a functional
encoder, actually hides malicious additions buried deep in a
large pile of clean code. One has to be very thorough when
it comes to targeted attacks, and one cannot afford to make
any assumptions.

REFERENCES

[1] Baccas, P. When is a password not a password?
When Excel sees “VelvetSweatshop”.
http://nakedsecurity.sophos.com/2013/04/11/
password-excel-velvet-sweatshop/.

[2] LAME (Lame Aint an MP3 Encoder).
http://sourceforge.net/projects/lame/.

[3] Szappanos, G. Targeted malware attack
piggybacks on Nvidia digital signature.
http://nakedsecurity.sophos.com/2013/02/27/
targeted-attack-nvidia-digital-signature/.

http://nakedsecurity.sophos.com/2013/04/11/password-excel-velvet-sweatshop/
http://sourceforge.net/projects/lame/
http://nakedsecurity.sophos.com/2013/02/27/targeted-attack-nvidia-digital-signature/

VIRUS BULLETIN www.virusbtn.com

27FEBRUARY 2014

DON’T FORGET TO WRITE
David Harley
ESET, UK

Industry veteran, prolifi c writer and educator David Harley
reviews two recently published eBooks that aim to provide
security guidance for consumers: Improve Your Security
by Sorin Mustaca, and One Parent to Another by Tony
Anscombe.

It sometimes seems that the security industry is still divided
into the ‘user education is vital’ camp and the ‘if education
was going to work, it would have happened by now’ camp
[1]. Still, I doubt if even the most diehard proponent of the
latter viewpoint really believes that matters would be no
worse if we didn’t make any attempt to teach the end-user
anything about security.

There is, of course, no shortage of excellent user-oriented
security blogs, white papers and conference papers relating
to malware management (which I assume to be a major
concern for readers of this publication). Good books are
rather scarcer, and those of us in the industry who have
attempted to write one have tended to fi nd an audience
either within the security industry itself, or among security
administrators and managers. Books that have found a
signifi cant audience among end-users and home-users
and that devote signifi cant wordage to malware issues
are less common. In fact, despite having either written
or contributed to around a dozen security-oriented books
myself, I’ve never managed to interest a mainstream
publisher in a malware-oriented book that specifi cally
targets consumers. Perhaps it’s true, as it has been
suggested, that Joe Average isn’t interested enough in his
own security to buy a book about it – though there are
enough rather bad, consumer-facing books with a small
amount of malware discussion to indicate that some
publishers see a market there.

Nevertheless, from time to time, someone with real security
knowledge does attempt to share that knowledge with the
people who generally know the least. Regrettably, Eddy
Willems’ recent book Cybergevaar [2] (in Dutch) is beyond
my linguistic skills (though hopefully there will be an
English translation eventually). However, Sorin Mustaca’s
eBook Improve Your Security: Everything you wanted to
know about IT security and didn’t know who to ask [3] and
Tony Anscombe’s eBook One Parent to Another: Managing
technology and your teen [4] are within my linguistic
and technical competence, or so I’d like to believe. Both
authors are well known in the security industry. Indeed,
Anscombe’s book is published under the aegis of his
employer, AVG, as a free PDF download. Mustaca’s book

is published by Leanpub, though his employer, Avira, gets
a mention on the Acknowledgements page and some of
the advice given is Avira-centric. Improve Your Security
is available in PDF, EPUB and MOBI formats with a
recommended price of $4.99, but the actual sum is left to
the buyer.

IMPROVE YOUR SECURITY
Mustaca’s book, as its subtitle
suggests, is wider in scope
than Anscombe’s, and in some
areas has a more technical
bias. It is divided into fi ve
main sections:

I. Accounts and Passwords

II. Online Security

III. Device Security

IV. Tips that you can print
to improving [sic] your
security

V. Protect yourself against advertisements and
tracking.

The fi rst section, which deals with accounts and passwords,
explains what a cryptographic hash function is and what
salting is. It describes a few simple strategies for making a
password harder to guess, and provides some useful advice
on what not to do. There’s some good advice here, but I
suspect that some readers will fi nd it a little scary and even
confusing, visually. Mustaca also includes some thoughts
on the defi ciencies of password storage, advocating
memorization as a better course of action. There is also
some consideration of the high-level implications of
password and account management, and the very sound
recommendation to change default passwords. (Think that
you don’t need to worry about account management on
a home computer? You might think differently when you
read the story of the child who nearly bought a Harrier
jump-jet.) Password strategies are a contentious subject,
but this should at least start readers thinking beyond
‘qwerty’ and ‘123456’. This is a topic that could usefully
be expanded in a future version of the book. It’s true that
there are many resources out there offering advice for
password selection, but their quality is extraordinarily
variable. I’d like to see a section on PIN selection strategies
added at some point, too.

Networks and safety nets

The next section, ‘Online Security’, provides a simplifi ed
model of network security, then goes on to explain

BOOK REVIEW

VIRUS BULLETIN www.virusbtn.com

28 FEBRUARY 2014

how to ‘harden your Facebook account’ with account
settings. Next is a description of how to enable two-factor
authentication for Google, Facebook, Dropbox, Twitter
and LinkedIn, complete with screenshots. My guess is that
the network security model will be slightly over the heads
of much of the target audience, but many will appreciate
the advice on improving their security on social network
sites, and understanding just why it is that so many
sites are now pressing them to go the two-factor route.
Finally, there’s a consideration of ‘How to combat the
brute force attacks on WordPress blogs’. This is aimed at
self-hosted WordPress installations rather than bloggers
using accounts on wordpress.com, and seems a little
out of place in a collection of articles mostly aimed at
consumers.

Our house (is a very, very, very safe house)

Section III, on device security, looks at setting up a laptop
securely using ‘active’ authentication measures (BIOS,
Power On, HDD and OS authentication), and ‘passive’
measures (data encryption with TrueCrypt, working as
a non-privileged user, restricting booting from external
devices and media, and deactivating ‘Autorun’). Next,
there’s a discussion of software updates and an illustration
of the process of securing a computer which draws an
analogy with making your house secure. A section on
password protection for smartphones is followed by a
section on backups, then there’s a longer look at data
encryption with TrueCrypt. The fi nal parts of this section
consist of a terse description of ‘What to do if your
computer has a virus’ (unsurprisingly, including a brief and
rather Avira-focused ‘How-To’), and notes on removing
junk and freeing space. Some good advice, but I’d have
liked to have seen a bit more guidance on avoiding the
many all-but-useless registry cleaners and the like that are
lurking out there.

Tip of the iceberg

The ‘Tips’ section includes ‘20 Tips to improve your
security’; ‘5 signs you’ll notice if your social media
account has been hacked’; ‘How to secure a new computer
in 10 steps’; ‘How to protect your social media account’;
‘10 tips to improve your mobile devices [sic] security’;
‘Security tips for safe online shopping’ and ‘5 tips to keep
your mobile devices safe while using 3/4G and LTE’.
This kind of content is very useful to (and popular with)
consumers.

Section V is a How-To: ‘Protect yourself from
advertisements and tracking’. I’m sure we’d all like to
know how to do this, but there is an awful lot more to
say about telephone scams, and I’m not convinced that

the softly-softly approach to requesting removal from
contact lists is always effective. (And a four-letter word is
sometimes more satisfying…)

Nevertheless, I like this book. It could, perhaps, benefi t
from some editing and expansion of some of its topics, but
there are plenty of naïve and confused consumers around
who would undoubtedly benefi t from Mustaca’s advice, and
I hope he gets enough response to encourage him to develop
it further.

Improve Your Security is updated frequently: the version
reviewed is from 20 December 2013.

ONE PARENT TO ANOTHER
Tony Anscombe’s book
is more polished, and
takes more of a ‘Guide for
Dummies’ approach, going
to some lengths to play
down the use of technical
terms and acronyms. It is
divided into a number of
chapters:

1. Who should read this
book?

2. What are connected
devices?

3. Connectivity and communications

4. The smartphone

5. Everyone on their best behavior

6. Parental controls

7. Cyberbullying.

Finally, a concluding section reminds us of ‘the big things
to keep in mind’.

While Anscombe summarizes: ‘everyone who is a parent
or in loco parentis should read this book’, Chapter 1 is
actually a well-argued high-level justifi cation of the need
for the book. I can’t help thinking, though, that the people
who have gone to the trouble of downloading the book were
probably already aware that they needed to be prepared
to help young people to meet the challenges of somewhat
scary new(-ish) technology.

Chapter 2 makes the point that a wide range of objects
we don’t necessarily think of as computers have become
capable of being connected to the Internet, but focuses
mostly on the fairly current examples of smartphones
and (other) photographic devices with geo-tagging
capabilities.

VIRUS BULLETIN www.virusbtn.com

29FEBRUARY 2014

Chapter 3 is a little more overtly technical, expounding
on and explaining some acronyms that someone new
to the technology and concerned about how it works
needs to know. It also touches on some basic password
strategies and gives a non-technical explanation of
two-factor authentication. A look at the fundamentals of
using email includes a brief consideration of spam and
a fuller consideration of phishing that should go a fair
way to educating both child and parent as regards the
recognition of scam messages delivered by various media.
That’s followed by a look at the dangers of public Wi-Fi,
especially when it comes to sensitive transactions.

The section that follows looks at the security implications of
Internet transactions away from home, using public access
points and hotel Wi-Fi networks. Considerations of privacy
lead into a brief description of the risks of geo-tagging and
a longer summary of the issues around social networking, in
particular Facebook and YouTube.

Terms of engagement

Chapter 4 is entitled ‘The Smartphone Chapter’: it starts
by detailing some problems that can arise with incautious
use of a smartphone and considers the particular parenting
issues that arise when setting the terms of engagement
for the use of phones by children and teenagers. While
the adoption of many of the guidelines that Anscombe
provides will be considered highly subjective, the suggested
discussions on the consequences of illegal or pirated
downloads and budgeting for apps and music is one that
most responsible adults will probably have with their
children at some point.

Chapter 5, ‘Everyone On Their Best Behavior’, goes
further into parent guidance territory, focusing on the
perils of ‘sharenting’ [5], and makes an interesting but
not altogether convincing suggestion for establishing
your child’s identity on the web by buying them a domain
long before they become famous. Not an awful idea, but
it doesn’t seem to take into account all the long-term
variables and uncertainties. It’s hard to argue with the
need to stay informed about what a child is doing on the
Internet, though, or the need to take precautions against
in-app marketplaces that may exploit the naïvety of younger
people.

Parent-to-parent

Chapter 6 goes further along the same track, going into
some detail in a discussion of parental controls, offering
generic advice not only on selecting products and
services, but also on augmenting technical solutions by
interacting with the child. This very much exemplifi es the
‘parent-to-parent’ approach: it may suggest a subjective

‘one-size-fi ts-all’ viewpoint, but the reader is, after all, able
to make his or her own decision as to which suggestions to
adopt, and which to reject. Chapter 7 covers the complex
and sensitive topic of cyberbullying, and includes a handful
of well-selected, useful resources.

Following a brief concluding section, there are two
glossaries: one listing and defi ning the terms (emoticons,
acronyms etc.) used in ‘SMS and texts’ (I guess the
distinction here is between the SMS protocol and the use
of ‘texting’ to describe other types of content covered by
MMS), and one consisting of very simplifi ed defi nitions of
various moderately technical terms.

IN SUMMARY
While in some instances these two books cover similar
ground, they approach it from different directions.
Mustaca’s book is wider in scope and sometimes reads
a little more technically than was probably intended.
Anscombe’s parent-to-parent approach is sometimes more
about parenting than security (not that there’s anything
wrong with that) and makes virtually no assumptions
about the technical knowledge of the reader, sometimes
being almost too simplistic. Nonetheless, both are way
ahead of most of the ‘lowest common denominator’ guides
I’ve seen, and I’d be happy to recommend either or both
of them to their target audiences. It seems to me that
there is still a need for a reliable but more comprehensive
resource, in terms of scope, level of (non-technical) detail,
and pointers to other reliable and independent resources.
These books, however, are several steps in the right
direction.

REFERENCES
[1] Abrams, R.; Harley, D. People Patching: Is User

Education Of Any Use At All? AVAR Conference
Proceedings, 2008. http://www.welivesecurity.com/
media_fi les/white-papers/People_Patching.pdf.

[2] Willems, E. Cybergevaar. Lannoo, 2013.
http://www.cybergevaar.be/.

[3] Mustaca, S. Improve your security: Everything you
wanted to know about IT security and didn’t know
who to ask. https://leanpub.com/Improve_your_
security.

[4] Anscombe, T. One parent to another: Managing
technology and your teen. http://www.avg.com/
ebooks/one-parent-to-another#.UqYiJ_RdUYN.

[5] Sharenting. Urban Dictionary.
http://www.urbandictionary.com/defi ne.
php?term=Sharenting.

http://www.welivesecurity.com/media_files/white-papers/People_Patching.pdf
http://www.cybergevaar.be/
https://leanpub.com/Improve_your_security
http://www.avg.com/ebooks/one-parent-to-another#.UqYiJ_RdUYN
http://www.urbandictionary.com/define.php?term=Sharenting

VIRUS BULLETIN www.virusbtn.com

30 FEBRUARY 2014

GREETZ FROM ACADEME:
FULL FRONTAL
John Aycock
University of Calgary, Canada

A funny thing happened on the way to last month’s ‘Greetz
from Academe’. My offi ce can best be described as an
extreme fi re hazard: it is adorned with an over-generous
number of printed research papers stacked precariously
around the room. Early in my career, a much more senior
colleague told me that he hoped he died before he retired
so that he wouldn’t have to clean out his own disaster of an
offi ce. I fully understand his point of view now.

When, in putting together last month’s article, I wanted
to refer to Lhee and Chapin’s buffer overfl ow paper [1], I
knew that a dead tree version of it resided somewhere in my
offi ce, but it seemed far faster just to search for it online.
I found it, of course, but in the process I stumbled across
another paper that looked like it might be highly relevant to
the anti-virus community: Min et al.’s ‘Antivirus security:
naked during updates’ [2].

Some journals – Software: Practice and Experience among
them – try to work around their publication latency by
making articles available online prior to their actually
appearing in a printed journal issue. That is the case here,
and ‘naked’ was revealed online in April 2013 (at the time
of writing this article, the paper has yet to appear in a
journal issue). However, other journal publication delays
remain – the paper was initially received in November
2012. Hopefully, the problems the researchers describe will
all have been safely addressed by now, making the paper but
a historical footnote. Hopefully.

DESIGN VULNERABILITY

We have long been accustomed to ever more frequent
anti-virus updates to ensure the latest and greatest protection,
of course, but what Min et al. found is that protection is not
only a matter of how often, but also how. In other words,
the way in which anti-virus products perform updates can
potentially leave them open to attack. This is no theoretical
attack, either. Quoting from the paper [2, p.1]: ‘We have
investigated this design vulnerability with several of the
major anti-virus software products such as Avira, AVG,
McAfee, Microsoft, and Symantec and found that they are
vulnerable to this new attack vector.’ The paper used Avira as
an example to illustrate the attacks because the researchers
found that, of the anti-virus products that fell prey to their
attacks (not all did), it was the hardest to compromise.
That seems like a bit of a back-handed compliment, but it’s

probably a preferable characterization to ‘AVG, McAfee and
Microsoft are relatively easy targets’ [2, p.14].

The premise is that a dropper already exists on a target
system – the dropper is unknown to the installed anti-virus,
and does not exhibit any malicious behaviour. This is a
plausible targeted attack scenario. The dropper monitors
the target system’s anti-virus until it updates, or triggers an
anti-virus update itself if possible, and waits. Vulnerable
anti-virus products will disable protection for the update, in
whole or in part, thus allowing the waiting dropper a small
window of opportunity in which there is no active anti-virus
protection on the system.

One solution the researchers suggest is for the non-updated
anti-virus to remain running temporarily to cover the
potential window of vulnerability while the updated version
is started. The researchers also discovered that some anti-virus
self-protection worked less well than intended. For example,
checking the digital signatures on DLLs seems like a good
idea, but the researchers noted that in practice, third-party
DLLs used by anti-virus software weren’t always checked,
and a changed signature acted as a crude but effective
mechanism for a denial of service attack against the software.

It is fairly normal in cases like this, where research has
uncovered a fl aw in widely deployed software, to see a
statement in the paper saying ‘Company X was notifi ed
about the problem and it has been fi xed in the latest release.’
This is possible even when the fl aw is something of Internet
scale, like the Herculean efforts to patch the DNS fl aw that
Dan Kaminsky found back in 2008 [3, 4]. I was looking for
such a statement in the paper, and I’m afraid to say that I
didn’t fi nd one. That doesn’t mean that anti-virus vendors
weren’t notifi ed, of course (or maybe I missed it somehow
when I read the paper). But if not, well… surprise! Let’s
hope that 2014 isn’t the year of anti-virus nudism.

REFERENCES
[1] Lhee K.-S.; Chapin, S. J. Buffer overfl ow and

format string overfl ow vulnerabilities. Software:
Practice and Experience 33(5), 2003, pp.423–460.

[2] Min, B.; Varadharajan, V.; Tupakula, U.; Hitchens,
M. Antivirus security: naked during updates.
Software: Practice and Experience, 2013.
http://dx.doi.org/10.1002/spe.2197.

[3] Zetter, K. Kaminsky on how he discovered DNS
fl aw and more. Wired, 22 July 2008.
http://www.wired.com/threatlevel/2008/07/
kaminsky-on-how/.

[4] CERT. Multiple DNS implementations vulnerable
to cache poisoning. Vulnerability note VU#800113,
2008. http://www.kb.cert.org/vuls/id/800113.

SPOTLIGHT

http://dx.doi.org/10.1002/spe.2197
http://www.wired.com/threatlevel/2008/07/kaminsky-on-how/
http://www.kb.cert.org/vuls/id/800113

VIRUS BULLETIN www.virusbtn.com

31FEBRUARY 2014

END NOTES & NEWS
ADVISORY BOARD
Pavel Baudis, Alwil Software, Czech Republic

Dr John Graham-Cumming, CloudFlare, UK

Shimon Gruper, NovaSpark, Israel

Dmitry Gryaznov, McAfee, USA

Joe Hartmann, Microsoft, USA

Dr Jan Hruska, Sophos, UK

Jeannette Jarvis, McAfee, USA

Jakub Kaminski, Microsoft, Australia

Jimmy Kuo, Independent researcher, USA

Chris Lewis, Spamhaus Technology, Canada

Costin Raiu, Kaspersky Lab, Romania

Roel Schouwenberg, Kaspersky Lab, USA

Roger Thompson, Independent researcher, USA

Joseph Wells, Independent research scientist, USA

SUBSCRIPTION RATES
Subscription price for Virus Bulletin magazine (including

comparative reviews) for one year (12 issues):

• Single user: $175

• Corporate (turnover < $10 million): $500

• Corporate (turnover < $100 million): $1,000

• Corporate (turnover > $100 million): $2,000

• Bona fi de charities and educational institutions: $175

• Public libraries and government organizations: $500

Corporate rates include a licence for intranet publication.

Subscription price for Virus Bulletin comparative reviews

only for one year (6 VBSpam and 6 VB100 reviews):

• Comparative subscription: $100

See http://www.virusbtn.com/virusbulletin/subscriptions/ for
subscription terms and conditions.

Editorial enquiries, subscription enquiries, orders and payments:

Virus Bulletin Ltd, The Pentagon, Abingdon Science Park, Abingdon,
Oxfordshire OX14 3YP, England

Tel: +44 (0)1235 555139 Fax: +44 (0)1865 543153

Email: editorial@virusbtn.com Web: http://www.virusbtn.com/

No responsibility is assumed by the Publisher for any injury and/or
damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods,
products, instructions or ideas contained in the material herein.

This publication has been registered with the Copyright Clearance
Centre Ltd. Consent is given for copying of articles for personal or
internal use, or for personal use of specifi c clients. The consent is
given on the condition that the copier pays through the Centre the
per-copy fee stated below.

VIRUS BULLETIN © 2014 Virus Bulletin Ltd, The Pentagon,
Abingdon Science Park, Abingdon, Oxfordshire OX14 3YP, England.
Tel: +44 (0)1235 555139. /2014/$0.00+2.50. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted in any
form without the prior written permission of the publishers.

RSA Conference 2014 will take place 24–28 February 2014 in
San Francisco, CA, USA. For more information see
http://www.rsaconference.com/events/us14/.

The ZebraCON International InfoRisk 360 Professional Workshop
takes place 4–6 March 2014 in Kuala Lumpur, Malaysia. For details
see http://zebra-con.com/main/risk-management-workshop/.

The Commonwealth Telecommunications Organisation’s 5th
Cybersecurity Forum takes place 5–7 March 2014 in London, UK.
For more information see http://www.cto.int/events/upcoming-events/
cybersecurity-2014/.

European Smart Grid Cyber and SCADA Security will take
place 10–11 March in London, UK. For more information see
http://www.smi-online.co.uk/2014cybergrids31.asp.

Cyber Intelligence Asia 2014 takes place 11–14 March 2014 in
Singapore. For full details see http://www.intelligence-sec.com/events/
cyber-intelligence-asia-2014.

ComSec 2014 takes place 18–20 March 2014 in Kuala Lumpur,
Malaysia. For details see http://sdiwc.net/conferences/2014/
comsec2014/.

The Future of Cyber Security 2014 takes place 20 March 2014 in
London, UK. For booking and programme details see
http://www.cyber2014.psbeevents.co.uk/.

Black Hat Asia takes place 25–28 March 2014 in Singapore. For
details see http://www.blackhat.com/.

Information Security by ISNR takes place 1–3 April 2014 in Abu
Dhabi, UAE. For details see http://www.isnrabudhabi.com/.

SOURCE Boston will be held 9–10 April 2014 in Boston, MA, USA.
For more details see http://www.sourceconference.com/boston/.

Counter Terror Expo takes place 29–30 April 2014 in London, UK.
The programme includes a cyber terrorism conference on 30 April. For
details see http://www.counterterrorexpo.com/.

The Infosecurity Europe 2014 exhibition and conference will be
held 29 April to 1 May 2014 in London, UK. For details see
http://www.infosec.co.uk/.

AusCERT2014 takes place 12–16 May 2014 in Gold Coast,
Australia. For details see http://conference.auscert.org.au/.

The 15th annual National Information Security Conference
(NISC) will take place 14–16 May 2014 in Glasgow, Scotland. For
information see http://www.sapphire.net/nisc-2014/.

CARO 2014 will take place 15–16 May 2014 in Melbourne, FL,
USA. A call for papers has been issued with a submission deadline of
17 February. For more information see http://2014.caro.org/.

Cyber Security and Digital Forensics takes place 20–22 May 2014
in Kuala Lumpur, Malaysia. For details see
http://www.ib-consultancy.com/events/event/44-cyber.html.

SOURCE Dublin will be held 22–23 May 2014 in Dublin, Ireland.
For more details see http://www.sourceconference.com/dublin/.

The 26th Annual FIRST Conference on Computer Security
Incident Handling will be held 22–27 June 2014 in Boston, MA,
USA. For details see http://www.first.org/conference/2014.

VB2014 will take place 24–26 September 2014 in Seattle, WA,
USA. For more information see http://www.virusbtn.com/conference/
vb2014/. For details of sponsorship opportunities and any other queries
please contact conference@virusbtn.com.

http://www.virusbtn.com/virusbulletin/subscriptions/
mailto:editorial@virusbtn.com
http://www.virusbtn.com/
http://www.first.org/conference/2014
http://www.virusbtn.com/conference/vb2014
mailto:conference@virusbtn.com
http://www.rsaconference.com/events/us14/
http://zebra-con.com/main/risk-management-workshop/
http://www.cto.int/events/upcoming-events/cybersecurity-2014/
http://www.smi-online.co.uk/2014cybergrids31.asp
http://www.intelligence-sec.com/events/cyber-intelligence-asia-2014
http://sdiwc.net/conferences/2014/comsec2014/
http://www.cyber2014.psbeevents.co.uk/
http://www.blackhat.com/
http://www.isnrabudhabi.com/
http://www.sourceconference.com/boston/
http://www.counterterrorexpo.com/
http://www.infosec.co.uk/
http://conference.auscert.org.au/
http://www.sapphire.net/nisc-2014/
http://2014.caro.org/
http://www.ib-consultancy.com/events/event/44-cyber.html
http://www.sourceconference.com/dublin/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

