
SEPTEMBER 2011

CONTENTS IN THIS ISSUE

IS
S

N
 1

74
9-

70
27

Fighting malware and spam

2 COMMENT

 Should there be an AV industry code of
 ethics?

3 NEWS

 Facebook bounty hunters paid

 Drop in cyber attacks

3 VIRUS PREVALENCE TABLE

4 MALWARE ANALYSIS

 ‘Holey’ virus, Batman!

 FEATURES

6 Qakbot: a disaster waiting to happen

12 Hearing a PIN drop

14 OPINION

 Stux in a rut: why Stuxnet is boring

18 END NOTES & NEWS

CODE OF ETHICS
Having encountered a certain lack of cooperation
among AV researchers on some major issues
(perhaps due to issues of sharing data with
competitors and non-disclosure agreements) Alex
Eckelberry ponders whether it’s time for an industry
code of ethics.
page 2

PINS AND NEEDLES
While there is plenty of
research on password use
and re-use, there is virtually
no equivalent research
concerning purely numerical
passcodes such as PINs.
David Harley takes a look at some of the most
common four-digit combinations used and the
security issues raised.
page 12

OUT ON A LIMB
John Aycock takes the controversial view that
Stuxnet is really not that interesting at all.
He outlines what makes a piece of malware a
game-changer and explains why last year’s headline
hitter is not worth writing home about.
page 14

2 SEPTEMBER 2011

COMMENT

Editor: Helen Martin

Technical Editor: Morton Swimmer

Test Team Director: John Hawes

Anti-Spam Test Director: Martijn Grooten

Security Test Engineer: Simon Bates

Sales Executive: Allison Sketchley

Web Developer: Paul Hettler

Consulting Editors:
Nick FitzGerald, Independent consultant, NZ
Ian Whalley, IBM Research, USA
Richard Ford, Florida Institute of Technology, USA

SHOULD THERE BE AN AV
INDUSTRY CODE OF ETHICS?
We see it all the time: a major magazine publishes a
sensational story about a new nasty which threatens
our existence; a researcher presents data at a major
conference about a new threat; a company presents
the inner workings of a group of black hats. The news
machine grinds on it, while at the same time, a fl urry of
emails passes between researchers who are trying to gain
more information on this ‘threat’.

This is how the game is played. But recently, a number
of security researchers have been questioning ‘business
as usual’, and considering the industry’s responsibility
to share threat information with others. In other words,
if we see something bad happening, what is our
responsibility to do something about it?

It’s worth noting that it is not uncommon for members
of various security communities to share data, so at least
other companies can protect their own customers, as well
as collaborate on garnering further intelligence and even
coordinate takedown efforts.

However, it appears that we may still be dealing with
a lack of cooperation by a few on some major issues
– perhaps due to issues of sharing data with competitors,
non-disclosure agreements, or even defeatist ideas such
as ‘it doesn’t really matter what we do anyway’.

Perhaps it’s time that the security industry as a whole
– not just the AV community – had a frank and open
discussion about what our responsibilities are in protecting

the community at large, in addition to promoting our own
commercial interests. It’s not an argument for ‘malware
welfare’ – big, well capitalized companies sharing data
with lesser capitalized companies. The fundamental issue
is one that revolves around the need to make the Internet
safer, rather than just pulling chips off the table.

The issue transcends a moral one that ‘we have some
duty to give back to the market if we’re making money
from it’. That’s certainly a laudable imperative for many
of us in the industry. However, I would argue toward a
concept of enlightened self-interest, which could crudely
be distilled as ‘doing good for all is good for business’
– helping others protect their users makes all of us
stronger.

For example, spreading fear, uncertainty and doubt
(FUD) among users, and then not doing what we can to
make the Internet safer creates unintended consequences
– we strike terror into the minds of users, and they
demand solutions. This inevitably leads to politicians
frantically trying to ‘solve the problem’. More political
action to ‘regulate the dangers’ is certainly not
something about which many of us are sanguine.

My concern is that if we don’t do what we reasonably
can to keep the Internet clean, we will have regulatory
agencies deciding to do it for us. Furthermore, users
already distrust the security industry, and not working
together to make the Internet safer will only lead to more
scepticism. Finally, we know that having even a relatively
small number of end-users that are unprotected against a
threat can cause plenty of trouble for the rest of us. ‘Every
man for himself’ is a losing strategy in the long term.

If we see something really bad, I would venture that it is in
our commercial best interests to work with others to ensure
their customers are protected, and to work as a community
for intelligence sharing and takedown. If one company
fi nds something bad, and wants a ‘scoopable’ news story,
they can have it. Just share the data with others, so we
can all make sure our customers are protected. We don’t
have to get frantic about every possible threat, but we can
certainly focus on the major ones.

Is an industry code of ethics warranted? Perhaps, but
in my view, we could simply start with promulgating
industry best practices (codes of ethics, unless tied
to some type of certifi cation, are voluntary in nature
anyway). I have found most security researchers to be
honest, diligent folks who genuinely care about making
the world safer. However, some may not be able to share
data with competitors due to corporate policies, and they
should not be in that position. Let’s start with an honest,
frank discussion about what what’s good for all, and then
perhaps what’s good for us will come naturally.

‘“Doing good for all is
good for business” –
helping others protect
their users makes all of
us stronger.’
Alex Eckelberry, GFI Software

3SEPTEMBER 2011

VIRUS BULLETIN www.virusbtn.com

NEWS
FACEBOOK BOUNTY HUNTERS PAID
Facebook has paid out a total of $40,000 in the fi rst three
weeks of its ‘bug bounty program’, in which researchers
are given a fi nancial reward for reporting new bugs found in
the company’s software code. The scheme was announced
at the start of August, with a minimum payment of $500 for
the disclosure of previously undiscovered security bugs.

In the fi rst three weeks of the programme one individual
was awarded more than $7,000 for having given the
company a heads up on six different issues, while another
received $5,000 for ‘a really good report’.

In offering a reward for bug disclosure Facebook follows
in the footsteps of other companies including Google and
Mozilla. Last year Mozilla – whose bounty programme
has been running for six years – increased the reward it
pays for reports of security fl aws in its software to $3,000
(plus a Mozilla T-shirt). Meanwhile Google, whose
bounty programme was announced 20 months ago, pays a
maximum of $3,133.7 for a single bug (but no T-shirt), with
the base reward for less serious bugs remaining at $500.

Facebook has attracted criticism from within the security
industry for its lack of monitoring of the third-party
applications and websites that are built via the Facebook
Platform, and has been asked whether it plans to extend the
bounty programme to cover these. However, the company
says that it would not be practical to do so because of the
sheer number of third-party services implicated.

DROP IN CYBER ATTACKS

Symantec’s 2011 State of Security survey has revealed a
small drop in the number of businesses reporting cyber
attacks. In this year’s survey 71% of respondents said they
had experienced attacks in the past 12 months, compared
with 75% in 2010. Meanwhile, the number of respondents
reporting an increase in frequency of attacks dropped from
29% to 21%.

Despite this, cyber attacks remain the top concern for the
businesses surveyed for the second year running – ahead
of traditional crime, natural disasters and terrorism – and
41% of respondents said they felt that cybersecurity is more
important now than it was a year ago.

The survey also revealed a drop in the losses experienced as
a result of cybercrime, with 92% of organizations reporting
losses from attacks, compared with 100% last year. The top
three losses reported were downtime, theft of employees’
personal information and theft of intellectual property.
Among SMBs, 20% incurred fi nancial losses of at least
$100,000 from attacks within the last year, while 20% of
larger enterprises incurred at least $271,000 in damages.

Prevalence Table – July 2011 [1]

Malware Type %

Autorun Worm 9.60%

FakeAlert/Renos Rogue 6.65%

VB Worm 5.68%

Heuristic/generic Misc 5.50%

Adware-misc Adware 5.10%

Confi cker/Downadup Worm 4.13%

OnlineGames Trojan 4.07%

Sality Virus 4.03%

StartPage Trojan 3.62%

Agent Trojan 3.58%

Iframe Exploit 2.84%

Downloader-misc Trojan 2.68%

LNK Exploit 2.30%

Injector Trojan 2.22%

Delf Trojan 2.14%

AutoIt Trojan 1.82%

Heuristic/generic Trojan 1.81%

Zbot Trojan 1.71%

Virtumonde/Vundo Trojan 1.69%

Crack/Keygen PU 1.51%

Dropper-misc Trojan 1.43%

Virut Virus 1.37%

Alureon Trojan 1.24%

Kryptik Trojan 1.19%

Hotbar Adware 1.06%

Crypt Trojan 1.05%

Bifrose/Pakes Trojan 1.01%

Small Trojan 0.90%

MyWebSearch Adware 0.87%

Themida Packer 0.87%

BHO/Toolbar-misc Adware 0.85%

Dorkbot Worm 0.83%

Others [2] 14.62%

Total 100.00%

[1] Figures compiled from desktop-level detections.

[2] Readers are reminded that a complete listing is posted at
http://www.virusbtn.com/Prevalence/.

http://www.virusbtn.com/resources/malwareDirectory/prevalence/index

VIRUS BULLETIN www.virusbtn.com

4 SEPTEMBER 2011

‘HOLEY’ VIRUS, BATMAN!
Peter Ferrie
Microsoft, USA

Some might think that all of the entrypoints in Portable
Executable (PE) fi les are known – but they would be wrong.
As we saw with the W32/Deelae family [1], a table that has
been overlooked for more than a decade can be redirected
to run code in an unexpected manner. Now, a table that was
used in Windows on the Itanium platform also exists on the
x64 platform, and (surprise!) it can be misused too. The
W64/Holey virus shows us how.

HAPI HAPI, JOY JOY

The virus begins by retrieving the address of ntdll.dll by
walking the InMemoryOrderModuleList list from the
PEB_LDR_DATA structure in the Process
Environment Block. This is an unusual choice – the
InLoadOrderModuleList list is more common – but it is not
incorrect, and it is compatible with the changes that were
made in Windows 7. The virus also saves the pointer to the
current position in the list so that it can resume the parsing
later to fi nd the address of kernel32.dll.

If the virus fi nds the PE header for ntdll.dll, it resolves
the required APIs. It uses hashes instead of names, but the
hashes are sorted alphabetically according to the strings
they represent. This means that the export table needs to
be parsed only once for all of the APIs, rather than parsed
once for each API (as is common in some other viruses).
Each API address is placed on the stack for easy access,
but because stacks move downwards in memory, the API
addresses end up in reverse order in memory. Interestingly,
the virus checks that the exports really exist by limiting
the parsing to the number of exports in the table. This is
probably a great situation for emulators that don’t export
all of the right functions – the sample will run the host
code instead of crashing – but it doesn’t benefi t the virus in
any way.

The table is terminated with a single byte whose value is
0x2a (the ‘*’ character). This is used to allow the fi le mask
to follow immediately in the form of ‘*.exe’. We do not
know whether the character was chosen because of the
mask, or whether the mask was placed there simply because
of the chosen character.

The virus retrieves the address of kernel32.dll by fetching
the next entry in the list, using the pointer that was saved
earlier. The same routine is used to retrieve the addresses
of the API functions that it requires. Despite the strong
similarities with some other viruses that support Unicode,

this virus only uses ANSI APIs. The result is that some fi les
cannot be opened because of the characters in their names,
and thus cannot be infected.

The virus searches in the current directory (only), for fi les
whose names end in ‘.exe’. For each such fi le that is found,
the virus attempts to open it and map a view of the contents.
There is no attempt to remove the read-only attribute, so
fi les that have that attribute set cannot be infected. The virus
registers an exception handler at this point, and then checks
if the fi le can be infected.

RELOCATION ALLOWANCE

The virus is interested in Portable Executable fi les for the
x64 platform. Renamed DLL fi les are not excluded, nor
are fi les that are digitally signed. The subsystem value is
checked, but incorrectly. The check is supposed to limit
the types to GUI or CUI but only the low byte is checked.
Thus, if a fi le uses a (currently non-existent) subsystem
with a value in the high byte, then it could potentially be
infected too. In fact, there are many common checks that
are missing from this virus. Perhaps it was written in a
hurry to meet some kind of deadline. The code also lacks
some obvious optimizations, again suggesting that it was
written hastily.

The virus checks the Base Relocation Table data directory
to see if the relocation table is the last section. The check
is very specifi c – it is not enough that the relocation
table exists within the last section, but it must be the last
section. That is, it starts at the start of the section, and
the assumption is that the entire section is devoted to
relocation information – which can cause a problem. The
virus checks that the value in the SizeOfRawData fi eld
is at least 687 bytes long. Of course, the relocation table
could be much smaller than this, and other data might
follow it. This data will be overwritten when the virus
infects the fi le.

We do not know why the SizeOfRawData fi eld was used
instead of the value in the Size fi eld in the data directory,
because the value in the Size fi eld cannot be less than the
size of the relocation information, and it cannot be larger
than the size of the section. This is because the value in
the Size fi eld is used as the input to a loop that applies the
relocation information. It must be at least as large as the
sum of the sizes of the relocation data structures. However,
if the value were larger than the size of the relocation
information, then the loop would access data after the
relocation table, and that data would be interpreted as
relocation data. If the relocation type was not a valid value,
then the fi le would not load. If the value in the Size fi eld
were less than the size of the relocation information, then

MALWARE ANALYSIS

VIRUS BULLETIN www.virusbtn.com

5SEPTEMBER 2011

it would eventually become negative and the loop would
parse data until it hit the end of the image and caused an
exception.

EXCEPTIONAL BEHAVIOUR

The virus also requires that the fi le has no Exception Table.
If this is the case, then the virus creates a RUNTIME_
FUNCTION structure and places it at the start of the last
section. The RUNTIME_FUNCTION structure contains
the begin and end addresses of the code which will be
described by the UNWIND_INFO structure, and a pointer
to that structure. The virus sets the begin address to equal
the host entrypoint value, and the end address to one byte
later than that. The UNWIND_INFO structure pointer is
set to the address immediately after the pointer, and the
UNWIND_INFO structure is placed directly after the
RUNTIME_FUNCTION structure. The UNWIND_INFO
structure exists to allow Windows to unwind the stack
if an exception occurs. However, the virus does not
need to worry about such a thing. All it has to do is set
the appropriate fl ags and store a callback pointer in the
structure. Then, when an exception occurs, the virus code
will be called.

The virus makes the last section both writable and
executable. It sets the Exception Table data directory entry
to point to the start of the last section, and sets the Size
fi eld appropriately. The virus copies itself to the fi le, and
zeroes some fl ags in the header. Of particular interest are
the fl ags that correspond to ASLR (Address Space Layout
Randomization), NX (No eXecute) and NO_SEH (No
Structured Exception Handling). Zeroing the ASLR fl ag
ensures that the image will not move in memory. This is
irrelevant for the virus, though, because the virus code is
entirely position-independent. It might be a bit of left-over
code from a previous virus by the same author. Zeroing
the NX fl ag enables the virus to run from a section that
is not marked as executable. Again, this is irrelevant
for the virus because the virus marks its code section
as executable. However, by zeroing the NO_SEH fl ag,
the virus enables exception handling to be called by the
fi le. If the fl ag were not cleared, then Windows would
terminate the application at the moment that an exception
occurred.

The virus zeroes the Base Relocation Table data directory.
This is the only way to ensure that Windows does not
attempt to read the relocation data. Even though there
exists a fl ag that can be set in the PE header which is
supposed to tell Windows that the relocation data has
been removed, Windows ignores this fl ag in certain
circumstances.

YOU HAVE BEEN INTERRUPTED
At this point the virus attempts to fi nd the section that
contains the entrypoint by searching for the fi rst section
which ends after the entrypoint. There are two bugs here,
one is relatively minor, however the other is fatal for the
host. The minor bug is that the virus assumes that the
entrypoint is located within a section. It is quite possible
to place the entrypoint in the fi le header. It is possible to
place the entrypoint outside of the image, and through a
bit of trickery, cause it to ‘move’ back inside the image
(the details about how this is done are not relevant here).
It is possible for the fi le to contain no sections, but still
have the appropriate values in the appropriate places. Of
course, these are edge cases that are not very interesting
to consider.

However, the fatal bug relates to the section scanning.
When the virus fi nds a section which ends after the
entrypoint, it marks that section as writable and
attempts to fetch the byte at the relative virtual address
that corresponds to the value of the entrypoint. The
byte is saved in the virus body, and replaced with an
interrupt 3 instruction. The idea here is that when the
host is executed, the interrupt 3 instruction will cause
an exception that will be handled by the callback whose
pointer is in the Exception Table. The bug is that even
after the fi rst such section is found (the entrypoint
section), the loop is not exited. Instead, every section after
the entrypoint section will also be treated as though it
were the entrypoint section. What happens next depends
on several conditions. The entrypoint value is converted
to a physical address by adding the difference between the
PointerToRawData and the VirtualAddress. The addition
will occur for each section after the entrypoint section,
usually resulting in a continually decreasing value that still
points within the entrypoint section. If the value becomes
negative (for example, if the initial entrypoint value is
small, and the difference is large), then an exception will
occur when attempting to fetch the byte from the section.
The exception will cause the loop to exit, and everything
will appear to be fi ne – this is probably what happened
when the virus was tested, and is probably the reason
the bug was not found. However, if the entrypoint value
is large enough and if the difference is small enough
(it can even be zero, if the fi le alignment value matches
the section alignment value), then the value can survive
several, and possibly all of the iterations of the loop,
resulting in multiple bytes being replaced in the host
entrypoint section.

The bug leads to two other problems, one of which is
benign, and the other one causes the host to be damaged.
The fi rst problem is that when the last section is examined,

VIRUS BULLETIN www.virusbtn.com

6 SEPTEMBER 2011

if the entrypoint RVA is larger than the size of that section,
then an exception will occur and the infection routine will
exit. This is fi ne because when the loop completes, an
exception is raised anyway. The second problem is that,
as noted above, the virus might alter one byte in multiple
places within the entrypoint section. If those bytes are
not all the same (or if they are, but the fi le alignment and
section alignment match, such that the same byte is fetched
more than once), then when the exception occurs during
execution, the original byte cannot be restored. Further,
if those bytes are data, then the host might not behave
correctly even if the bytes are all the same because the virus
will never have a chance to restore them.

TOUCH AND GO
The virus code ends with an instruction to force an
exception to occur. This is used as a common exit condition.
However, the virus does not recalculate the fi le checksum,
even though it might have changed as a result of infection,
and it does not restore the fi le’s date and timestamps,
making it very easy to see which fi les have been infected,
even though the fi le size does not change.

ANCIENT HISTORY
It’s funny, in a way, that I described a variation of this
technique at a time when Windows NT was still current.
The idea was that by changing the fi le format in a
particular way, an exception would be raised during
the fi le load. At that point, nothing in the host had been
executed. Given an Exception Table with the right layout,
it should have been possible to cause the handler to be
executed. (Try emulating that...) However, as noted above,
the Exception Table was not used by Windows until the
introduction of the Itanium platform, so fortunately the
technique was not viable.

CONCLUSION
The Exception Table hook is an interesting technique. It
allows for light entrypoint obscuring, in much the same
way as the Thread Local Storage technique did a decade
ago, and it becomes yet another place in the fi le that needs
to be scanned. Only time will tell if it will become as
popular.

REFERENCES
[1] Ferrie, P. Deelaed learning. Virus Bulletin,

November 2010, p.8. http://www.virusbtn.com/pdf/
magazine/2010/201011.pdf.

QAKBOT: A DISASTER WAITING
TO HAPPEN
Jessa Dela Torre
Trend Micro, Philippines

The recent security breaches at the Massachusetts
Departments of Unemployment Assistance and Career
Services [1] revived public interest in Qakbot (aka Qbot or
Pinkslipbot), the malware family that has been responsible
for infi ltrating thousands of systems worldwide during its
four-year stint [2].

Figure 1: Qakbot infection count, July 2010 – June 2011 (as
of 5 June 2011).

At Trend Micro we have received several escalations
with regard to this particular malware family from
various enterprise customers in the healthcare, fi nancial,
government, and other sectors.

Figure 2: Qakbot infection count breakdown by industry,
July 2010 – June 2011 (as of 21 June 2011).

We came across a new Qakbot variant in the latter part of
February this year [3]. Like its predecessors, this variant

FEATURE 1

http://www.virusbtn.com/pdf/magazine/2010/201011.pdf

VIRUS BULLETIN www.virusbtn.com

7SEPTEMBER 2011

introduced another new breed of variants with a few
signifi cant changes.

First, they no longer made use of an archive fi le, instead
packaging every component in a single .EXE fi le. Next,
they added a new propagation vector: USB drives.

KNOWN QAKBOT INFECTION VECTORS
Early Qakbot variants exploited software vulnerabilities in
order to infect systems. They particularly took advantage
of the Collab.collectEmailInfo and Collab.getIcon
vulnerabilities in certain versions of Adobe Acrobat and
Adobe Reader via malicious PDF fi les. More recent variants
have been found to arrive via three infection vectors:
removable drives, default network shares and as drive-by
downloads from compromised sites.

Removable drives
The USB port is perhaps any system’s weakest point in
terms of network security since no fi rewall or network
policies can be enforced to maintain the integrity of a
removable drive. Typically, offi ce employees use USB
drives when performing their daily tasks. This is probably
the reason why cybercriminals continue to use malware
that spreads via removable drives. In fact, so-called USB
malware such as the Palevo [4], Qakbot [5] and Vobfus [6]
worms continues to reign on Trend Micro’s list of most
notorious malware types.

Earlier Qakbot variants did not have the ability to spread via
removable drives. The malware’s authors probably realized
how successful other USB malware had been and decided

propagates primarily via network shares. The malware
has also undergone a structural revamp and added a new
infection vector, so it came as no surprise when news of
massive Qakbot network infections broke. Armed with
more effective means of infection, the malware quickly
spread worldwide, leaving an indelible mark on the threat
landscape.

Qakbot’s ability to propagate via network shares is enough
to cripple an entire network. Add to that the ability to
compromise websites and you seemingly have a recipe for a
highly successful malware attack.

This paper will discuss the different ways in which Qakbot
variants arrive on and infect systems, how these affect users,
and how the security industry can help mitigate Qakbot
system infections.

QAKBOT MALWARE EVOLUTION

First-generation Qakbot variants can be distinguished
based on their fi le and folder names, which usually
include the string ‘_qbot’. These store their components in
password-protected .ZIP fi les that their main components
download from certain sites.

To make system infections less obvious, next-generation
Qakbot variants started using random fi le and folder names.
Their package fi les also ditched password protection and
started taking the social engineering route, using fi le names
such as ‘resume.doc’.

As the security industry caught on and started being able
to detect Qakbot successfully, the malware’s creators

Figure 3: Typical Qakbot infection diagram.

VIRUS BULLETIN www.virusbtn.com

8 SEPTEMBER 2011

to include the ability to spread via removable drives in more
recent versions of Qakbot.

Unlike other USB malware, however, Qakbot variants do
not use an autorun.inf fi le. Instead they rely on crafty social
engineering techniques and on the tendency for users to
unwittingly execute fi les.

Whenever a USB drive is plugged into an infected system,
the Qakbot variant will select a fi le from the drive’s contents
and drop a copy of itself onto the system using the chosen
fi le’s name in the following format (Figure 4):

{malware’s fi le name}_{selected fi le’s name}.exe

If the USB drive is empty, the malware will just append
‘_Documents’ to its own fi le name (Figure 5):

{malware’s fi le name}_Documents.exe

Once clicked, the copy of the Qakbot variant will then
perform its malicious routines. If this happens to a system
that is connected to a network, the Qakbot infection will
spread to all of the systems on the network.

Default network shares
The default administrative network shares on Windows
are created by each system. As such, deleted shares will
reappear whenever a system reboots. Qakbot variants make
use of these default shares to propagate across a network. To
do so, they initially enumerate all of the available resources.
They then attempt to establish connections based on the
affected user’s rights.

Before dropping a copy of itself onto a system, the Qakbot
variant will fi rst check the following:

• Whether the resource belongs to its current host

Figure 6: Wireshark capture of the protocol used by Qakbot.

Figure 4: Malware fi le in an infected USB drive.

Figure 5: Copy of the malware that will be dropped from the
infected USB drive onto the user’s system.

VIRUS BULLETIN www.virusbtn.com

9SEPTEMBER 2011

• Whether the target host is already infected (by checking
the nbl section of its confi guration fi le).

If both are untrue, the malware will drop a copy of itself
onto C$ or Admin$ – both of which are default shares – and
start a remote service in order to execute the fi le it dropped.
It uses SMB over TCP to access the target resource and to
send a copy of itself to connected systems.

The Qakbot variant then binds the SVCCTL interface to
start a remote service using the following command:

%path%\{fi le name}.exe /s

Drive-by downloads via compromised sites

Since fi rst-generation Qakbot variants reared their ugly
heads, part of their distribution routine has been the ability to
inject malicious scripts into fi les stored on web servers. To do
this, they initially attempt to contact a command-and-control
(C&C) server in order to get a command fi le that is saved as
%User Temp%\~{random name}.tmp. This fi le contains the
FTP credentials the malware needs in order to perform its
script injection routine. Once connected, it downloads fi les
with the following extension names:

• .php

• .htm

• .asp

• .pl

• .cfm

The malware then inserts a malicious script before the
</body> tag, which serves as a link to one of its download
sites. It then re-uploads the infected fi les to the web servers.
These then effectively infect the systems of users who
visit compromised sites. The download link can lead to a
copy of the main Qakbot executable fi le or to its JavaScript
component.

QAKBOT INFECTION IMPLICATIONS
Once inside a system, Qakbot monitors substrings related to
fi nancial institutions such as Bank of America, Fifth Third,
Wells Fargo and Citibank, among others. The malware also
gathers the following information:

• System information

• IP address

Figure 7: Code of a web page that has been injected with a malicious script.

VIRUS BULLETIN www.virusbtn.com

10 SEPTEMBER 2011

• Domain Name System (DNS) name

• Host name

• User name

• Domain

• User privilege

• OS version

• Network interfaces (i.e. address, netmask and status)

• Installed software

• Protected storage

• Account name

• Connection type

• POP3 (i.e. username, server and password)

• SMTP (i.e. server and email addresses)

• Internet Explorer (IE) and Flash Player cookies

• Certifi cates

• Web server credentials (i.e. usernames and passwords)

• Keystrokes

All of the aforementioned information is sent to
Qakbot-controlled FTP sites. Sometimes the data in these
FTP sites remains for a few days and builds up to quite a
sizeable amount.

Given the type of data Qakbot collects, an organization
stands to lose a lot of business-critical information related
both to the organization itself and its clients. Data exposure
not only leads to bad publicity but can also plant a sense of
distrust in an organization’s ability to protect its resources.

The bulk of responsibility falls into the hands of system
administrators. Securing a network and enforcing strong
policies are just some of the things they have to worry
about. Cleaning up after system or network infections is
another story. A Qakbot-infested network will require a lot
of work and specialized tools to remove the malware.

The extent of Qakbot infections does not rely on state-of-the-
art propagation routines. Security researchers may even
argue that Qakbot’s method of spreading is not new and
is certainly not that complex. The variants do not exploit
zero-day or even run-of-the-mill vulnerabilities. Instead they
bank on social engineering tactics and poor network security
– both of which can be prevented if system administrators
are more aware and better prepared for malicious attacks.

Qakbot variants were originally designed to infi ltrate systems
for the sole purpose of gathering as much information as
possible. They currently utilize three of the most widely
used infection vectors. Improved strains also ensure greater
revenue for malware authors, which may eventually lead to a
new batch of variants with even better functionality.

The most recently discovered Qakbot confi guration fi les
have an entry dubbed peer-to-peer (P2P) node list, which
points to a URL. The URL is not currently accessible, but
we can expect the link to be activated as soon as a new
batch of Qakbot variants is rolled out.

SAFE COMPUTING PRACTICES TO AVOID
QAKBOT INFECTIONS
The following safe computing practices can help system
administrators protect their organizations’ networks against
Qakbot-related attacks.

Limit users’ administrative rights

Qakbot’s ability to spread via default network shares
allows it to instigate mass network infections. System
administrators should keep in mind that the malware’s
access to network resources is dependent on the affected
users’ system privileges. As such, they should limit users’
administrative rights and should issue write permissions
conservatively. Users should only be assigned the lowest
level of privilege required to complete their tasks. Password
protecting network shares is also a good idea to combat the
threats Qakbot poses.

Educate users

It is important to educate users about securing and utilizing
company resources properly, particularly removable drives
and Internet access.

We have seen several instances in which Qakbot variants
have infected systems via removable drives. Security
awareness is a critical element of safe computing.

Encourage users to practise safe web
browsing habits

Since Qakbot has the ability to easily compromise sites,
the fact that a site is visited frequently or well known is
no guarantee of its safety. In fact, popular sites may even
present greater risk.

Users must be extra careful when clicking links. Some
security solutions feature a web reputation service
functionality which will block access to malicious sites and
mitigate web-based attacks. Figure 8 shows Trend Micro’s
web reputation service blocking the web browser from
visiting a known malicious site.

Google’s Safe Browsing service [7] is another useful tool
for safer web browsing. This and similar services provide
information on a site’s integrity, including its involvement,
if any, with malicious activities (Figure 9).

VIRUS BULLETIN www.virusbtn.com

11SEPTEMBER 2011

Update anti-virus signatures and install OS
and software patches
As malware authors continually improve their malicious
wares to evade even the best scanners, so must security
fi rms constantly update their anti-virus signatures to
mitigate Qakbot infections.

System administrators are advised to download and install
security patches as soon as they are made available. This
will help defend systems and networks against vulnerability
exploit attacks.

Install a network monitoring device
System administrators are strongly advised to install security
appliances that will help them monitor network activities.

Several kinds of intrusion detection systems (IDS) and
intrusion prevention systems (IPS) are available on the
market. System administrators should ensure that the
devices they install on their company networks are capable
of identifying, blocking and reporting any and all kinds of
suspicious activities.

Even though these practices may not make a system or
a network Qakbot-proof, they will defi nitely lower the
chances of infection. Given that Qakbot is after almost
every kind of data in a system or in a network, following the
aforementioned tips certainly would not hurt.

CONCLUSION

Qakbot variants are primarily known
for two things – their huge appetite for
confi dential data and their ability to rapidly
spread across networks – the combination
of which can spell disaster for affected
users.

Qakbot infections not only put the affected
user’s personal information at risk, they
also put corporate data on the affected
user’s system or on the network in grave
danger of being compromised. The recent
enhancements to Qakbot’s distribution
routines have immensely increased the
malware’s notoriety.

Network security plays a pivotal role
in containing Qakbot infections. Good
heuristic or generic signatures can prevent
the malware from running on systems
and from spreading across networks.
Note, however, that since Qakbot variants
are known for changing their structure,
fi le-based detection alone may prove
ineffective. Using a combination of fi le-
and behaviour-based detection ‘in the

cloud’ [8] may, in the end, be the best solution to counter
the ever-persistent Qakbot threat.

REFERENCES

[1] http://www.theregister.co.uk/2011/05/20/
massachusetts_worm_infection/.

[2] http://about-threats.trendmicro.com/
RelatedThreats.aspx?language=us&name=Qakbot%
3a+A+Prevalent+Infostealing+Malware.

[3] http://blog.trendmicro.com/third-generation-qakbot-
repackaged-with-improved-propagation/.

[4] http://blog.trendmicro.com/mariposapalevo-on-the-
rise-again/.

[5] http://about-threats.trendmicro.com/
RelatedThreats.aspx?language=us&name=Qakbot%
3a+A+Prevalent+Infostealing+Malware.

[6] http://about-threats.trendmicro.com/
search.aspx?language=us&p=WORM_VOBFUS.

[7] http://code.google.com/apis/safebrowsing/.

[8] http://us.trendmicro.com/us/trendwatch/
core-technologies/smart-protection-network/.

Figure 8: Trend Micro’s web reputation service feature at work.

Figure 9: Qakbot-infected site assessed by Google’s Safe Browsing service.

http://www.theregister.co.uk/2011/05/20/massachusetts_worm_infection/
http://about-threats.trendmicro.com/RelatedThreats.aspx?language=us&name=Qakbot%3a+A+Prevalent+Infostealing+Malware
http://blog.trendmicro.com/third-generation-qakbot-repackaged-with-improved-propagation/
http://blog.trendmicro.com/mariposapalevo-on-the-rise-again/
http://about-threats.trendmicro.com/RelatedThreats.aspx?language=us&name=Qakbot%3a+A+Prevalent+Infostealing+Malware
http://about-threats.trendmicro.com/search.aspx?language=us&p=WORM_VOBFUS
http://code.google.com/apis/safebrowsing/
http://us.trendmicro.com/us/trendwatch/core-technologies/smart-protection-network/

VIRUS BULLETIN www.virusbtn.com

12 SEPTEMBER 2011

HEARING A PIN DROP
David Harley
Small Blue-Green World/Mac Virus, UK

One thing has become painfully obvious in the light of the
recent spate of attacks and data leakages, not to mention
various LulzSec nautical naughtiness. Clearly, people are
continuing to use highly stereotyped password strategies:
in other words, many, many people are using a very, very
small selection of passwords. But while there’s plenty of
research on password use and re-use – mostly derived from
the analysis of known collections of exposed passwords
[1] to see which are the most commonly used – there
is virtually no equivalent research concerning purely
numerical passcodes such as PINs (Personal Identifi cation
Numbers). While there are no high-profi le and publicly
available repositories of leaked PIN data allowing empirical
analysis (scraping underground forums presents both
practical and ethical problems), there is one recent instance
[2] of research based on analysis of smartphone passcodes,
though it’s not the result of a LulzSec-type breach.

Daniel Amitay has been marketing an app [3] called Big
Brother (social networking meets reality TV?) – intended
to take photos of anyone using an iPhone or iPod Touch 4
without permission (i.e. without entering a passcode). A
recent update to the app added code that captures (completely
unidentifi ably, he promises) the passcodes entered during
set-up of the app. This enabled Amitay to run some analysis
on a sample set of 204,508 gadgets. These particular
iGadgets offer a choice of passcode modes for screenlocking:
off, simple four-digit passcode, or a more complex passcode.
While we cannot assume that a choice of passcode for Big
Brother would refl ect either screenlocking passcode selection
or PIN selection practice, it seems reasonable to assume
that, given the size of the sample, there is likely to be some
correlation. (Apple clearly thought so, since it has removed
the app from the App Store and insisted that the passcode-
recording code be removed before it is reinstated.)

Here are some preliminary thoughts based mostly, like
Amitay’s analysis, on the ten highest scoring passcodes.
(Since he has kindly shared his data with me, I plan to do
a lot more work in the near future on the strategies people
employ and on how they might be improved.)

It turns out that 15% of the collected passcodes could be
found in the top ten, which consists of the following:

1. 1234

2. 0000

3. 2580

4. 1111

5. 5555

6. 5683

7. 0852

8. 2222

9. 1212

10. 1998

The iPhone gives you ten chances to try an activated
four-digit screenlock passcode before locking you out. As
Amitay et al. have suggested [4, 5], this gives an intruder
a disconcertingly good chance of getting in using only the
top ten. Other security applications are less forgiving, but
selection strategies still bear closer examination.

MNEMONIC LOGIC
The mnemonic logic behind the top ten numbers is more
obvious in some cases than in others.

It’s hard to think of a more memorable (or obvious)
passcode than 1234, for the same reason that 12345 and
123456 regularly appear in password top ten lists – the
latter is usually right at the top.

However, any sequence of four identical digits is likely to be
almost as popular: in this instance, we have 0000, 1111 and
2222 all in the top ten. My guess is that while 3333, 4444 etc.
don’t feature in the top ten, they’re probably not far behind.
While 0000 is particularly easy to remember (and therefore
to guess), it seems likely that people might choose a different
single number according to some rule that makes it more
memorable for them, then repeat it as necessary – just as some
people use aaaaaaaaa, ggggggggg or zzzzzzzzz or a similar
alphabetical sequence for passwords. (However, positioning
and accessibility on the keypad may also have a bearing.)
Of course, the length of a same-character string may vary
according to the requirements of the service demanding the
password/passcode: however, that makes very little difference
to the ease with which it can be guessed. In the course of a
‘dictionary attack’ where passwords, passcodes or passphrases
are tried according to an ordered list of possibilities, these are
likely to be tried very early in the attack.

But why are the other sequences apparently so popular?
Figure 1 shows a fairly standard keyboard layout for a basic
cellphone/feature phone. Virtual numeric keypads for making
phone calls from a smartphone generally follow the same
pattern, but have a virtual QWERTY keypad for other kinds
of data input, while some feature phones and smartphones
have a miniature (hardware) QWERTY keyboard.

Some sequences can be explained by pattern. The middle
column of the keypad in descending order gives you 2580,
the third most popular choice according to the top ten list.

FEATURE 2

VIRUS BULLETIN www.virusbtn.com

13SEPTEMBER 2011

Going up the other way – which is just as easy but perhaps
a little less intuitive – gives you 0852, the seventh most
popular choice.

The middle column is the only one that gives you four digits
– the most common length for a PIN – so that probably
explains the popularity of these two pattern/code pairs.
Other vertical choices in combination with the 0 character
are possible, but apparently less popular: 1470 is the 51st
most popular choice, while 3690 is the 68th most popular
choice. Curiously, given that keyboard patterns are an
acknowledged mnemonic aid [6], the reverse patterns did
not occur within the sample.

What about 5683? Amitay suggests, convincingly enough,
that this is less random than it seems. On the basic phone
keypad in Figure 1, you’ll see that the letters associated
with the number 5683 provide a simple mnemonic using the
word LOVE:

(5) JKL (6) MNO (8) TUV (3) DEF

However, that particular association wouldn’t work on
devices with a QWERTY keyboard like that found on a
BlackBerry (Figure 2).

Thanks to the single letter-to-number pairing on most
BlackBerry keypads, there are relatively few four-letter words
that conveniently match the nine available letters (as shown in
Figure 2: w, e, r, s, d, f, z, x, c). So the single letter-to-number
pairing on this type of keypad militates against this particular
memorization strategy. The more traditional layout in Figure
1, meanwhile, allows the use of the full alphabet and thus the
use of real words and other alphabetical strings as a memory
aid, even where passcodes and PINs are limited to four digits.

Figure 1: Standard keyboard layout for a basic cellphone/
feature phone.

What about 1212? That would be easy for me to remember,
because I’m old enough to remember when New Scotland
Yard was the headquarters of London’s Metropolitan Police
and its very famous telephone number was Whitehall 1212.
Later generations might simply use it because a simple
[n; n+1; n; n+1] sequence is almost as easy to remember as
[n; n; n; n;].

And 1998? Amitay suggests that people use four-digit
sequences relating to years that have special signifi cance for
them, such as their date of birth or date of graduation. One
of the nice things about being my age is that you have a lot
of memorable dates behind you – if you can remember them,
of course, and are confi dent they aren’t too public to be safe.

What does this tell us about other digital passcodes?
Telephone keypads are not always the same as ATM
keypads, most signifi cantly in that while even antique
rotary telephone dials have letters as well as numbers [7]
(though the matching of letters to numbers hasn’t always
been consistent), not all ATM keypads do. While many
modern keypads have the same layout as the telephone
keypad shown in Figure 1, some use the common calculator
confi guration shown in Figure 3:

Figure 3: Common calculator confi guration.

Many (perhaps even most) ATM keypads and many of the
digital safes you fi nd in hotel rooms also use this layout,
so the stratagems relating to memorable dates or number
sequences are probably also commonly used for ATM PINs.

Some keypads (including numeric keypads for computers
and many models of calculator) use almost the same layout
but in reverse.

This is a layout that has been used for fast data entry
for many years in business. It may not be so frequently
encountered in contexts commonly associated with
numerical passcodes but nonetheless, it’s still worth noting
that in contexts where a keypad like this is in use, a similar
strategy would probably result in the use of 7410 and 0147
rather than 0852 and 2580, and the off-centre positioning
of the 0 may further lessen the likelihood of its use in
combination with the other columns. Figure 2: BlackBerry with QWERTY keyboard.

VIRUS BULLETIN www.virusbtn.com

14 SEPTEMBER 2011

Rasmussen and Rudmin [6] offer a list of mnemonic
strategies:

1. Learning by rote

2. Remembering by keypad patterning

3. Code re-use

4. Code with personal meaning

5. Code written down and kept separately

6. Code stored in mobile phone

7. Code concealed in a phone number

8. Numbers paired with letters

9. Written down and kept in proximity

10. Written down but rearranged

11. Notated as a transform of the code.

This data gives an opportunity to confi rm to some extent the
degree to which these strategies are used. More importantly,
perhaps, while articles on the best and worst strategies for
choosing passcodes are not in short supply, the data gives us
a better starting point for evaluating the entropic effi cacy of
these strategies as the basis for better recommendations to
end-users. And that’s a topic I certainly plan to return to.

REFERENCES
[1] Harley, D. Good passwords are no joke. SC

Magazine, 2011. http://www.scmagazineus.com/
good-passwords-are-no-joke/article/204675/.

[2] Amitay, D. Most Common iPhone Passcodes. 2011.
http://amitay.us/blog/fi les/most_common_iphone_
passcodes.php.

[3] Amitay, D. Big Brother Camera Security. 2011.
http://amitay.us/projects/big%20brother.php.

[4] Harley, D. Passcodes and Good Practice. Mac Virus,
2011. http://macviruscom.wordpress.com/
2011/06/15/passcodes-and-good-practice/.

[5] Cluley, G. The top 10 passcodes you should never
use on your iPhone. Naked Security, 2011.
http://nakedsecurity.sophos.com/2011/06/14/the-
top-10-passcodes-you-should-never-use-on-your-
iphone/.

[6] Rasmussen, M.; Rudmin, F. W. The coming PIN
code epidemic: A survey study of memory of
numeric security codes. Electronic Journal of
Applied Psychology. 6(2):5-9 (2010).
http://ojs.lib.swin.edu.au/index.php/ejap/article/
viewPDFInterstitial/182/220.

[7] http://www.zyra.info/phonedial.htm.

STUX IN A RUT: WHY STUXNET IS
BORING
John Aycock
University of Calgary, Canada

The much-storied Stuxnet
worm is unworthy of the hype
surrounding it. The biggest
surprise is that Stuxnet contains
no surprises, and as such it
suggests a general failure of
security to respond to threats that
are well known. The erroneous
characterization of Stuxnet as
‘game-changing’ does raise other
questions, however: what are the
hallmarks of real game-changing

security events, and why don’t we see more of them?

INTRODUCTION
In case you’ve somehow managed to avoid hearing about
Stuxnet, here are the essentials: Stuxnet is a computer
worm that has spread and infected machines primarily
in Iran. It seems to have targeted uranium enrichment
facilities, the output of which can be used in nuclear
reactors as well as nuclear weapons; the latter is naturally
of some concern to the governments of countries that don’t
see eye-to-eye with Mahmoud Ahmadinejad. The source
of Stuxnet, meanwhile, has been conclusively narrowed
down to Planet Earth.

We are accustomed to media reports about malware
containing hyperbole and gushing superlatives, but perhaps
the biggest thing to note about Stuxnet is that security
professionals – not the media – have been describing it
using terms usually reserved for reviewing Broadway
productions: ‘a game-changer’, ‘a watershed moment’, ‘I’ve
never seen anything like it’. Stuxnet must be impressive
indeed.

There is always one curmudgeonly, contrary Broadway
critic, however. That would be me. My view is that Stuxnet
is really not that interesting at all, and is at best yet another
unfortunate illustration of the fact that the security emperor
has no clothes. Let me explain why.

CHANGING GAMES AND SHEDDING
WATER
As in history, key events and developments in computer
security are best judged in the fullness of time. It is only

OPINION

http://www.scmagazineus.com/good-passwords-are-no-joke/article/204675/
http://amitay.us/blog/files/most_common_iphone_passcodes.php
http://amitay.us/projects/big%20brother.php
http://macviruscom.wordpress.com/2011/06/15/passcodes-and-good-practice/
http://nakedsecurity.sophos.com/2011/06/14/the-top-10-passcodes-you-should-never-use-on-your-iphone/
http://ojs.lib.swin.edu.au/index.php/ejap/article/viewPDFInterstitial/182/220
http://www.zyra.info/phonedial.htm

VIRUS BULLETIN www.virusbtn.com

15SEPTEMBER 2011

then that we have the luxury of hindsight and a surer
understanding of the ramifi cations of a particular event.

If history repeats itself, however, then we can learn some
general lessons that can be applied to the present, when
hindsight is not an option. That would seem to suggest that
there might be some general lessons we can learn about
computer security, too. Can we identify a game-changing,
watershed event when it occurs?

I propose the following tests. A security threat that meets at
least one of the following criteria may be well on its way to
becoming a watershed event:

1. Do defences have to be changed in a substantial way
to respond to the threat?

2. Does the threat constitute a major shift in motivation
for the adversary?

3. Is the adversary using a new business model?

The fi rst test is the most important indicator of a
noteworthy threat. Being unable to effectively respond to
a threat without a substantive change in defences is a clear
sign that something signifi cant has occurred. The latter
two tests can be seen as precursors: a change in motivation
or modus operandi likely indicates that users are to be
targeted in some new ways, that will eventually demand
new defences.

Applying these tests, the fi rst game-changer was the
computer virus. Not the fi rst known virus in the wild
in 1969 [1, 2], not Apple II viruses in 1982 [3, 4], and
not Fred Cohen’s research in 1983 [5], though. The
game-changer was the growing glut of PC viruses in
the late 1980s – including Brain, Stoned and Jerusalem
– that necessitated the development of anti-virus software,
a substantial change in defence. The virus is still the
embodiment of malicious software to the media and
general public.

The next game-changing threat was polymorphism in the
early 1990s. Simply put, a polymorphic virus changes its
appearance to one of millions or billions of new forms
on each new infection. Looking for static signatures is
no longer suffi cient for detecting polymorphic viruses
because it is infeasible to enumerate all possible ways the
virus may manifest itself. This led to another major shift in
defence, anti-virus emulation, where suspect code is coaxed
to run in a safe environment, in the hopes that it reveals
any malevolent intentions or (ideally) a unique signature.
This nontrivial change in defences involved a ‘painful
rearchitecting’ of anti-virus software [6, p.264].

Moving forward to the mid-1990s, we come to macro
viruses. While a proof-of-concept macro virus existed in
1989 [7], they went mainstream in 1995 with the release

of Concept – which, ironically, was inadvertently shipped
by Microsoft on a Windows 95 compatibility test CD-ROM
[8]. A macro virus is a virus written in a macro language,
a programming language whose code can be embedded,
in this case, in Microsoft Word documents. Macro viruses
changed the security game because defences could no
longer focus solely on executable fi les. Even data fi les could
now be a threat, and defences had to adjust accordingly.

The second test, a major shift in motivation, leads to the
next game-changer: money. Money made by stealing
people’s data, to be precise. For reference, phishing started
in the mid-1990s, and spyware started ramping up through
the 2000s. The coming together of four factors set the stage
for this shift in motivation. To start with, there had to be
a lot of computers connected to the Internet. Then, online
banking and online commerce services needed to appear,
followed by people using them (simply building a service
doesn’t guarantee that people will use it – just ask any
dotcom startup). Finally, the adversary needed to realize
that there was money to be made. Users were no longer
just bystanders, owners of the computers on which viruses
and worms happened to be spreading. Users and their data
became a target; this led to defences such as anti-phishing
toolbars and anti-spyware programs.

The fi nal game-changing example is the botnets that
started appearing in the early 2000s, compromising
computers connected via the Internet that can be
controlled by an adversary from afar. The necessary
condition was the appearance of a large pool of vulnerable,
always-on, always-connected computers. These computers
have been repurposed by adversaries, unbeknownst to
their owners, for stealing information, sending spam
and conducting distributed denials of service. Effective
defences now have to look beyond a single computer,
beyond a single network, and beyond a single country.
Maliciousness scales.

An important observation is that none of the examples
above are singular. It is not one virus or one worm or one
Trojan horse that is noteworthy by itself. In computer
science terms, this makes perfect sense. One thing is a
special case, and can be dealt with as a special case; a
group of like things, on the other hand, demands a general
solution.

HONOURABLE MENTIONS
Some threats looked promising as game-changers, yet didn’t
quite make the cut.

The Internet worm, aka the Morris worm, is an obvious
contender and perhaps the closest parallel to Stuxnet.
Released in 1988 by Robert Morris, Jr. (now a faculty

VIRUS BULLETIN www.virusbtn.com

16 SEPTEMBER 2011

member at MIT), the worm pounded the prehistoric
Internet. It was a singular instance of malicious software,
and not a watershed moment according to the above criteria.
If anything, the worm was an indictment of programming
and system administration practices, but these poor
practices were not news.

In Hamlet, Shakespeare wrote ‘the lady doth protest
too much,’ and it is interesting to note that the tenor
of some worm analyses was not only technical, but at
times laced with disdain and derision; Spafford belittling
the worm author’s programming skills comes to mind
[9]. Certainly the worm did cause disruption, but the
security community was caught with its proverbial
pants down, and it’s not inconceivable that some
psychological projection was in play. The Cornell
Commission investigating the worm found that ‘At least
one of the security fl aws exploited by the worm was
previously known by a number of individuals, as was
the methodology exploited by other fl aws’ [10, p.707].
In fact, the buffer overfl ow technique used by the worm
was known as far back as the Anderson report in 1972, 16
years previously [11]. The Internet worm was not a turning
point, it was an embarrassment.

The causal chain of other potential game-changing events
is too long to claim any real impact. The inclusion of
a TCP/IP stack in Windows 95, for example, went a
long way towards creating a large pool of vulnerable
machines. It was hardly a security threat in itself, though.
And where is the line drawn – could the fi nger not be
pointed as easily at the development of the Arpanet? It’s a
slippery slope.

Some would-be security game-changers are simply too
early in their lifecycle. Cellular (smart) phones and social
networking have undeniably transformed our lives, yet
there are no radical, widespread new security threats
from them. There are threats, yes, but for the time being
they are old threats, repackaged for new platforms.
Unfortunately, this is bound to change. The smartphone as
an e-wallet, for example, dangles a tantalizing target for
adversaries.

HOW STUXNET STACKS UP

Stuxnet doesn’t fare well as a game-changer when reason,
rather than rhetoric, is used. There are eight key features of
Stuxnet (see the analysis in [12]):

• Stuxnet is large and complicated.

 If being a large and complex piece of software was a
valid criterion, then every release of Microsoft Offi ce
would be a game-changer.

• Stuxnet is a targeted attack.

 Targeted attacks have been a concern for years – long,
long before Stuxnet appeared.

• Stuxnet spreads in multiple ways.

 Again, Stuxnet is unoriginal, as a web search for
‘multipartite virus’ will attest.

• Stuxnet targets industrial control systems.

 The poor security of industrial systems comes as no
surprise, and in fact Stuxnet isn’t the fi rst example of
an attack against them (the 2000 sewage incident in
Australia is a good example [13]).

• Stuxnet uses multiple exploits, some of which are
zero-day.

 Stuxnet isn’t the fi rst threat to use zero-day exploits,
and having several of them deserves some kudos but
does not require any different defence.

• Stuxnet contains rootkits to hide itself.

 While having two rootkits (one for Windows, one for
the programmable logic controller) is an interesting
idea, rootkits themselves aren’t new.

• Stuxnet misused code-signing certifi cates.

 This would be most distressing if certifi cates hadn’t
been abused or wrongly issued before (they have), and
if signed code really provided the safety and security
guarantees that people want (it doesn’t).

• Stuxnet’s motivation was espionage and/or sabotage.

 This is not a new motivation for malicious software.
I would argue that Stuxnet could be considered a
failure in some sense, because it was discovered (with
the possible exception of Bond-esque antics, covert
operations ideally remain surreptitious).

While Stuxnet is impressive in terms of the effort and
investment it took to create, it is just not the dawning of a
new age. There is nothing new to see here, there is nothing
that security professionals haven’t seen before. Especially
telling is that fact that so much of the Stuxnet hullabaloo
is focused on its analysis, ignoring the fact that, once its
existence was known, anti-virus products could pick it off
without diffi culty. Or, as is phrased in Symantec’s threat
assessment of Stuxnet, ‘Removal: Easy’ [14].

MALICIOUS MONOTONY

As a long-time observer of malicious software trends, the
lack of game-changers is disappointing, in a perverse way.
It is also understandable: the adversary is now typically a

VIRUS BULLETIN www.virusbtn.com

17SEPTEMBER 2011

businessperson, whose goal is to make money. If this goal is
being met, i.e. enough malicious software is making it past
anti-malware defences, then that’s suffi cient.

One example is the rapid repacking of malicious software.
A packer is a relatively small investment, and can be
bought from a third party then used to evade defences by
overwhelming them with ‘new’ (or at least new-looking)
samples of what is actually the same malicious software.

In contrast, Stuxnet is a bad investment. In general, there
is no business case for one-shot, complicated, novel
malicious software. The only exception is where a widely
deployed defence is too good. Then, and only then, does the
business-oriented adversary have the incentive to innovate.
This back-and-forth was seen clearly with early spam and
anti-spam, and arguably the success of early anti-virus was
an impetus for polymorphic code.

This implies that security is not only risk management.
‘Good’ defences are the ones that keep adversaries in a
sweet spot, where the adversary succeeds enough to be
satisfi ed but doesn’t fail enough to evolve. It’s a strange
notion, that losing the security game once in a while might
be necessary to strike a healthy balance overall.

It could also be argued that malware like Stuxnet and
the Morris worm has an educational value. Thanks to
them, the issues are now in the public eye; they are
prominent examples that can be used to justify funding
for security, designing security into systems and
additional security measures. But the sword slashing into
popular consciousness is double-edged. Overwhelming
evidence from the last decade suggests that hysterics
over large-scale security events may lead to an unnatural
obsession with the last attack, rather than promoting
activity of any real benefi t.

The education argument is fair, however, in that a
game-changer must be considered relative to a particular
audience. To the public, Stuxnet is a game-changer,
without a doubt. To the security professionals charged
with safeguarding everything from smartphones to critical
infrastructure, Stuxnet and its successors should have been
imagined long ago. Stuxnet should be little more than
validation of security professionals’ fears, not a surprise.

ACKNOWLEDGEMENTS

An early version of this paper was presented at the
University of Glasgow as a SICSA Distinguished Visitor
Talk. The author’s work is supported in part by the Natural
Sciences and Engineering Research Council of Canada.
Thanks to Darcy Grant, Mike Locasto and Tim Storer
for their insightful comments. The names of the security

professionals mentioned in the introduction have been
purposely omitted.

REFERENCES

[1] Benford, G. Worlds Vast and Various. EOS, 2000.

[2] Benford, G. Catch me if you can. Commun.
ACM, 54(3):112-111, 2011.

[3] Dellinger, J. Re: Prize for most useful computer
virus. Risks Digest, 12(30), 1991.

[4] Skrenta, R. Elk cloner. http://www.skrenta.com/
cloner.

[5] Cohen, F. Computer viruses: Theory and
experiments. Computers & Security, 6(1):22-35,
1987.

[6] Ször, P. The Art of Computer Virus Research
and Defense. Addison-Wesley, 2005.

[7] Highland, H. J. A macro virus. Computers &
Security, 8(3):178-188, 1989.

[8] WinWord.Concept. Virus Bulletin, October
1995, p.3. http://www.virusbtn.com/pdf/
magazine/1995/199510.pdf.

[9] Spafford, E. H. The Internet worm program: An
analysis. Technical Report CSD-TR-823, Purdue
University, Department of Computer Sciences,
1988.

[10] Eisenberg, T.; Gries, D.; Hartmanis, J.; Holcomb,
D.; Lynn, M. S.; Santoro, T. The Cornell
commission: On Morris and the worm. Commun.
ACM, 32(6):706-709, 1989.

[11] Anderson, J. P. Computer security technology
planning study: Volume II, Oct. 1972. ESD-TR-
73-51, Vol. II.

[12] Falliere, N.; O’Murchu, L.; Chien, E. W32.
Stuxnet dossier (version 1.4). Symantec, February
2011. http://www.symantec.com/content/en/us/
enterprise/media/security_response/whitepapers/
w32_stuxnet_dossier.pdf.

[13] Slay, J.; Miller, M. Lessons learned from the
Maroochy Water breach. In Goetz and Shenoi,
eds, Critical Infrastructure Protection, pp.73–82.
Springer, 2008.

[14] Shearer, J. W32.Stuxnet. Symantec Security
Response, 2010. http://www.symantec.com/
security_response/writeup.jsp?docid=2010-
071400-3123-99.

http://www.virusbtn.com/pdf/magazine/1995/199510.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
http://www.symantec.com/security_response/writeup.jsp?docid=2010-071400-3123-99

SEPTEMBER 2011

VIRUS BULLETIN www.virusbtn.com

END NOTES & NEWS

18

ADVISORY BOARD
Pavel Baudis, Alwil Software, Czech Republic

Dr Sarah Gordon, Independent research scientist, USA

Dr John Graham-Cumming, Causata, UK

Shimon Gruper, NovaSpark, Israel

Dmitry Gryaznov, McAfee, USA

Joe Hartmann, Microsoft, USA

Dr Jan Hruska, Sophos, UK

Jeannette Jarvis, McAfee, USA

Jakub Kaminski, Microsoft, Australia

Eugene Kaspersky, Kaspersky Lab, Russia

Jimmy Kuo, Microsoft, USA

Costin Raiu, Kaspersky Lab, Russia

Péter Ször, McAfee, USA

Roger Thompson, Independent researcher, USA

Joseph Wells, Independent research scientist, USA

SUBSCRIPTION RATES
Subscription price for Virus Bulletin magazine (including

comparative reviews) for one year (12 issues):

• Single user: $175

• Corporate (turnover < $10 million): $500

• Corporate (turnover < $100 million): $1,000

• Corporate (turnover > $100 million): $2,000

• Bona fi de charities and educational institutions: $175

• Public libraries and government organizations: $500

Corporate rates include a licence for intranet publication.

Subscription price for Virus Bulletin comparative reviews

only for one year (6 VBSpam and 6 VB100 reviews):

• Comparative subscription: $100

See http://www.virusbtn.com/virusbulletin/subscriptions/ for
subscription terms and conditions.

Editorial enquiries, subscription enquiries, orders and payments:

Virus Bulletin Ltd, The Pentagon, Abingdon Science Park, Abingdon,
Oxfordshire OX14 3YP, England

Tel: +44 (0)1235 555139 Fax: +44 (0)1865 543153

Email: editorial@virusbtn.com Web: http://www.virusbtn.com/

No responsibility is assumed by the Publisher for any injury and/or
damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods,
products, instructions or ideas contained in the material herein.

This publication has been registered with the Copyright Clearance
Centre Ltd. Consent is given for copying of articles for personal or
internal use, or for personal use of specifi c clients. The consent is
given on the condition that the copier pays through the Centre the
per-copy fee stated below.

VIRUS BULLETIN © 2011 Virus Bulletin Ltd, The Pentagon, Abingdon
Science Park, Abingdon, Oxfordshire OX14 3YP, England. Tel: +44
(0)1235 555139. /2011/$0.00+2.50. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

The 8th Annual Collaboration, Electronic messaging, Anti-Abuse
and Spam Conference (CEAS 2011) will be held in Perth,
Australia 1–2 September, 2011. See http://ceas2011.debii.edu.au/.

(ISC)2 Security Congress takes place 19–22 September 2011 in
Orlando, FL, USA. The fi rst annual (ISC)2 Security Congress offers
education to all levels of information security professionals, not just
(ISC)2 members. For more information visit http://www.isc2.org/
congress2011.

Cairo Security Camp takes place 30 September to 1 October
2011 in Cairo, Egypt. This annual event targets the information
security community of the Middle East and North Africa. IT
professionals and security practitioners from throughout the region
are invited to attend. See http://www.bluekaizen.org/cscamp.html.

VB2011 takes place 5–7 October 2011
in Barcelona, Spain. The organizers are
now seeking submissions for ‘last-minute’
technical papers dealing with up-to-the-

minute specialist topics (deadline for submissions 8 September). For
full details and online registration see http://www.virusbtn.com/
conference/vb2011/.

RSA Europe 2011 will be held 11–13 October 2011 in London,
UK. For more information see http://www.rsaconference.com/2011/
europe/index.htm.

The MAAWG 23rd General Meeting takes place 24–27 October
2011 in Paris, France. See http://www.maawg.org/.

The Hacker Halted Conference takes place 25–27 October 2011 in
Miami, FL, USA. The conference is preceded by the Hacker Halted
Academy (a range of technical training and certifi cation classes)
21–24 October. For more information about both events see
http://www.hackerhalted.com/2011/.

The CSI 2011 Annual Conference will be held 6–11 November
2011 in Washington D.C., USA. See http://www.CSIannual.com/.

The sixth annual APWG eCrime Researchers Summit will be
held 7–9 November 2011 in San Diego, CA, USA. The summit will
bring together academic researchers, security practitioners and law
enforcement to discuss all aspects of electronic crime and ways to
combat it. For more details see http://www.antiphishing.org/
ecrimeresearch/2011/cfp.html.

The 14th AVAR Conference (AVAR2011) and international
festival of IT Security will be held 9–11 November 2011 in Hong
Kong. For details see http://aavar.org/avar2011/.

Ruxcon takes place 19–20 November 2011 in Melbourne,
Australia. The conference is a mixture of live presentations,
activities and demonstrations presented by security experts from the
Aus-Pacifi c region and invited guests from around the world. For
more information see http://www.ruxcon.org.au/.

Takedowncon 2 – Mobile and Wireless Security will be held 2–7
December 2011 in Las Vegas, NV, USA. EC-Council’s new technical
IT security conference series aims to bring industry professionals
together to promote knowledge sharing, collaboration and social
networking. See http://www.takedowncon.com/ for more details.

Black Hat Abu Dhabi takes place 12–15 December 2011 in Abu
Dhabi. Registration for the event is now open. For full details see
http://www.blackhat.com/.

2011
BARCELONA

http://ceas2011.debii.edu.au/
http://www.isc2.org/congress2011
http://www.bluekaizen.org/cscamp.html
http://www.virusbtn.com/conference/vb2011/
http://www.rsaconference.com/2011/europe/index.htm
http://www.maawg.org/
http://www.hackerhalted.com/2011/
http://www.CSIannual.com/
http://www.antiphishing.org/ecrimeresearch/2011/cfp.html
http://aavar.org/avar2011/
http://www.ruxcon.org.au/
http://www.takedowncon.com/
http://www.blackhat.com/
http://www.virusbtn.com/virusbulletin/subscriptions
http://www.virusbtn.com/
mailto:editorial@virusbtn.com

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

