ISSN 0956-9979

BULLETIN

CONTENTS

2 COMMENT
EPOCalyspe now!

3 NEWS

20

Obituary: Marek Sell
AV going mobile

VIRUS PREVALENCE TABLE

VIRUS ANALYSES
64-bit Rugrats

Patriot games

TECHNICAL FEATURE

Getting inside Beagle’s backdoor

FEATURE

Anti-virus spamming and the
virus-naming mess: part 2

LETTERS

PRODUCT REVIEW
GDATA AntiVirusKit

END NOTES & NEWS

JULY 2004

IN THIS ISSUE

BITING AT THE ANKLES OF 1A64

Rugrat uses a fairly simple idea: take 32-bit code
and port it to 64 bits — but the devil is in the details.
Péter Szor and Peter Ferrie have the finer details of
W64/Rugrat, the first known virus for the 64-bit
Windows operating system on the /A64 platform.
page 4

FEELING PATRIOTIC

What happens when you get a highly localised
malware attack but most of the users in the country
rely on software produced by the AV vendors for
whom such an outbreak is barely noticeable? Gabor
Szappanos urges the global AV players not to
underestimate localised threats.

page 6

AVK REVIEWED

=] Matt Ham finds that
AVK has been developed
and documented clearly
and concisely, making it
a product that would be
easy to use for a relative
novice.

This month: anti-spam news & events; Terry Sullivan
reveals it’s a small (spam) world; ASRG summary.

VIirus

COMMENT

“The volume of
Win32 threats
seems to be
growing faster
than ever.”

Péter Sz6r

_ Symantec Security
) - Response

EPOCalypse NOW!

The general public may be wondering whether
Microsoft’s repeated rewards for the heads of virus
writers have had any effect on the global virus-writing
landscape in 2004. Others are probably waiting to
experience sweet revenge.

Given that friends will not always act like friends —
especially when it comes to the temptation of a reward
in exchange for information — some might expect virus
writing to have been discouraged by the existence of
such a bounty. On the other hand, conspiracy theorists
might imagine that virus-writing groups encourage
worm-writing contests just to collect the rewards — or
even attempt to raise the rewards in order to demonstrate
that they are the real bad guys, just like in the old

Wild West.

So what has happened to the virus-writing landscape in
2004? Well, the number of Win32 virus threats this year
grew by a whopping 300% over the same period last
year, resulting in almost 4,500 variants this year so far.
That said, there were a total of 5,500 Win32 creations in
2003. I am not going to get into the ‘good old days’ talk,
but in 2001 (the year of CodeRed and Nimda) there were
741 new Win32 variants during the entire year. In
contrast, there were over 700 new Win32 variants during
just the first two weeks of June 2004. Thus, the volume

Editor: Helen Martin
Technical Consultant: Matt Ham
Technical Editor: Morton Swimmer

Consulting Editors:
Nick FitzGerald, Independent consultant, NZ
lan Whalley, IBM Research, USA

Richard Ford, Florida Institute of Technology, USA
Edward Wilding, Data Genetics, UK

of Win32 threats seems to be growing faster than ever,
and virus writers do not appear to be afraid of creating
more. The question is: would the situation be even worse
without Microsoft’s reward announcements?

Where does the quick growth come from, you might ask.
The answer is in the Gaobot, Randex and Spybot
families that have all reached beyond the triple ‘A’
variations — there are over 1,200 variants in each family.

Recently, the media reported that ‘the author’ of Gaobot,
as well as someone ‘associated’ with Randex, had been
arrested as a result of successful police raids. However,
even weeks after these reports the number of new
variants belonging to these families showed no decline.
In fact, Gaobot is widely distributed in source form,
resulting in a situation that is worse than the effects of
the popular use of virus construction kits. Indeed,
Gaobot variants have more than a dozen exploits, stealth
and some primitive polymorphism as well, not to
mention that they are packed sometimes even five times
if not more. Clearly, Gaobot variations have been
developed by a number of people. In addition, the
distributed source code suggested that newer editions of
Gaobot were offered for sale via PayPal payments.

In fact, Gaobot variants introduced the exploitation of
the LSASS vulnerability before Sasser appeared. Once
Sasser came out using the same exploitation, Gaobot
introduced a vampire attack against Sasser by hijacking
its propagation routine, forcing it to propagate the
Gaobot code. Next, Dabber variants exploited the
vulnerability in the ‘FTP server’ code of Sasser. The
worm war is far from over.

So what is the situation in the virus labs? Some of us
think it is too difficult to get through a paradigm shift to
handle Win32 from now on. Others attempt to measure
up to the challenge, but the expectations are so high
that they quickly decide to get involved in something
different instead.

And what if there were MSIL EPO and metamorphics,
64-bit Windows viruses on IA64 or even mobile phone
worms that spread via Bluetooth? Where would you
hide? And what if this were all for real?

Working in the anti-virus industry has always required
dedication, and this is what we all need even more now.
Be dedicated to prevent the EPOCalypse!

[See p.4 for Péter Szor and Peter Ferrie’s analysis of
W64/Rugrat, the first known virus for the 64-bit Windows
operating system on the IA64 platform. Next month’s
Virus Bulletin will contain the Peters’ analysis of

Cabir, the first virus capable of spreading via mobile
phone - Ed]

NEWS

OBITUARY: MAREK SELL

On 12 June 2004 Marek Sell, creator
of the Polish MkS_Vir anti-virus, died.

I met Marek somewhere around 1990,
two years after he released the first
public version of MkS_Vir. There are
very few people in the AV industry
who have stayed around for so long. If
you remember the days of PC XT,
debug, Periscope and Quaid Analyzer
you’ll know exactly how ancient this history is. MkS_Vir
survived the switch from communism to capitalism, and
MES as a company evolved without any venture capital or
outside investments — again, something that is unusual in the
AV industry. All of this happened as a result of Marek’s
vision, deep knowledge and unquestionable ethics.

But that was only the business-side of Marek and his
company. On the personal side, he was a great friend,
always looking for new challenges and always ready to
help anyone who asked. I loved chatting with him about
assembly language issues and internal designs of MkS — in
fact, you could speak with Marek about any subject, and he
would always know some fascinating facts. He was one of
very few people I know of who, in the days of Windows XP,
was still writing tools for his work in assembly language.

Since 1997, Marek and I met every year at the Virus Bulletin
Conference. Marek Sell attended all the VB conferences
from the very first one. Only a few weeks ago — when
Marek was going for a final treatment at the hospital — we
made arrangements to travel to Chicago for VB2004. Now
Marek is on a very different journey. His death is a huge
loss to the whole AV community and especially to the
Polish IT security community. Personally, I have lost great
friend, but I am happy that I had a chance to meet Marek
and be his friend. Marek, we will miss you.

Aleksander Czarnowski

AV GOING MOBILE

Following the appearance of SymbOS/Cabir.A, the first
virus capable of spreading via mobile phone, mobile
providers have been clamouring to become the first to offer
anti-virus protection for mobile phones. SK Telecom
announced the development, in cooperation with AhnLab, of
V3Mobile anti-virus software, while 7SG Pacific claimed to
have its anti-virus solution ready and waiting — a spokesman
said: “We anticipated this type of virus nearly two years
ago.” Meanwhile, mobile security company Jamanda has
made a fix for Cabir available free of charge on its website.
All this despite the fact that, to date, there are no confirmed
reports of Cabir in the Wild.

VIRUS BULLETIN

Prevalence Table — May 2004

Virus Type Incidents Reports
Win32/Netsky File 248,490 83.63%
Win32/Bagle File 34,677 11.67%
Win32/Sober File 8,657 2.91%
Win32/Dumaru File 2,109 0.71%
Win32/Klez File 658 0.22%
Win32/Lovgate File 269 0.09%
Win32/Mimall File 184 0.06%
Win32/Funlove File 178 0.06%
Win32/Fizzer File 150 0.05%
Win32/Swen File 136 0.05%
Redlof Script 134 0.05%
Win32/Bugbear File 114 0.04%
Win32/Valla File 110 0.04%
Psyme Script 96 0.03%
Win32/Sobig File 86 0.03%
Win32/Parite File 82 0.03%
Win32/Hylbris File 77 0.03%
Win32/Yaha File o 0.03%
Win95/Spaces File 70 0.02%
Win32/Mydoom File 66 0.02%
Win32/MyWife File 65 0.02%
Win32/Nachi File 63 0.02%
Win32/Magistr File 58 0.02%
Fortnight Script 49 0.02%
Win32/Mylife File 42 0.01%
Win32/BadTrans File 37 0.01%
Win32/Elkern File 35 0.01%
Win32/Sasser File 29 0.01%
Win32/Gibe File 27 0.01%
Win32/Nimda File 27 0.01%
WYX Boot 23 0.01%
Laroux Macro 21 0.01%
Others!! 47 0.07%
Total 297,115 100%
The Prevalence Table includes a total of 240 reports across
47 further viruses. Readers are reminded that a complete
listing is posted at http://www.virusbtn.com/Prevalence/.

®

VIRUS BULLETIN

VIRUS ANALYSIS 1
64-BIT RUGRATS

Peter Ferrie and Péter Szér
Symantec Security Response, USA

On 26 May 2004, we received the first known virus for the
64-bit Windows operating system on the Intel Itanium
platform. We decided to call it W64/Rugrat.3344.A.

Just like some of its predecessors (specifically W32/Chiton
—see VB, June 2002, p.4), Rugrat is aware of Thread Local
Storage, helping it to make the first successful tiptoe
towards painless infection of Windows DLLs — at least in
the .B variant of the virus.

BLAST FROM THE PAST

As might be expected, the text in the virus body suggests
that Rugrat and Chiton share the same author: ‘Shrug - roy
g biv’, who is now a member of the notorious 29A
virus-writing group.

W64/Rugrat uses a fairly simple idea: take the 32-bit code
and port it to 64 bits — but the devil is in the details.

Writing assembly for the /tanium is not simply a case of an
everyday port of a 32-bit C application to 64-bit, which
even your grandmother could do with a little advice. This is
in contrast to the impression we were given when Microsoft
introduced the platform with a demonstration: “Here is
Larry who ported a million lines of C code in two weeks!”.

Obviously Larry was not the kind who used to cast his
pointers with DWORD:s in front. Larry probably did not
need to port a GUI either, and he obviously was not
interested in writing a memory scanner to scan the 64-bit
address space for virus code. Larry needed just one thing:
earplugs to reduce the ventilation noise coming out of the
strange box that he first mistook for an atomic reactor. But
the earplugs were disposed of a long time ago, along with
the beta boards, and nowadays it is the beautiful Itanium2
that resides under Larry’s desk.

While Larry did not care to open the guide for the Itanium
instruction set, ‘roy g biv’ did. One question comes to mind:
might ‘roy g biv’ have owned an /A64 box? He probably
did, but he could equally have used an emulator on a bulked
up PC.

Intel’s IA64 assembly code is designed for explicit
parallelism, so coding well in JA64 assembly code requires
the ability to ‘think in parallel’. Unfortunately, when this is
done well, the resulting code can be very difficult to read,
especially when the virus code is further obfuscated. So, in
turn, we started to think in parallel to share the fun of the
analysis of this new kid on the block.

ROUND AND ROUND

The first time Rugrat is executed, it checks the event that
caused its execution. The virus replicates only during the
DLL_PROCESS_DETACH event, which occurs when an
application is exiting. The reason that Rugrat does this
could be because an application taking an extended period
of time to terminate is far less noticeable than an application
taking an extended period of time to start.

During Thread Local Storage events, it is NTDLL.DLL
(the NATIVE API) that calls the Thread Local Storage
entry point. That call leaves in the BO register of Itanium
processors a pointer into the NTDLL.DLL address space.
The virus uses this fact to gain access to NTDLL.DLL,

in order to retrieve the addresses of the API functions that
it requires.

The virus uses a CRC method to match the API names. The
use of the CRC method means that the API names are not
visible in the virus code, while also reducing the size of the
virus code.

The virus uses a few Win64 APIs from three different
libraries: NTDLL.DLL, SFC_OS.DLL and
KERNEL32.DLL. From NTDLL.DLL it picks
LdrGetDIIHandle(), RtIAdd VectoredExceptionHandler()
and RtlRemove VectoredExceptionHandler(). The virus
supports vectored exception handling to avoid crashing
during infections. The use of LdrGetDIllHandle() makes it
simpler to gain access to other modules. From
SFC_OS.DLL, Rugrat uses the SfclsFileProtected()
function to avoid infecting executables that are protected by
the System File Checker (SFC).

The following 16 functions are used from KERNEL32.DLL
to implement a standard direct action file infection of an
IA64 Portable Executable image using file mapping:

CreateFileMappingA() GlobalAlloc()

CreateFileW() GlobalFree()
CloseHandle() LoadLibraryA()
FindFirstFileW() MapViewOfFile()
FindNextFileW SetCurrentDirectoryW()
FindClose() SetFileAttributesW()
GetFullPathNameW() SetFileTime()
GetTickCount() Unmap ViewOfFile()

As expected the virus will set the host’s time/date stamp
back after each infection, as well as its attributes, which it
clears before infection.

Rugrat shows one major functional difference from Chiton
— Rugrat uses only Unicode functions, and does not support
ANSI functions, perhaps because 64-bit Windows is based
on Windows NT, which is entirely Unicode under the hood.

o

The virus searches for files in the current directory and all
subdirectories, using a linked list instead of a recursive
function. This is important from the point of view of the
virus author, because the .B variant of Rugrat infects DLLs,
whose stack size can be very small.

FILTERS

Files are examined for their potential to be infected,
regardless of their suffix, and will be infected if they pass a
very strict set of filters. The first of these filters is the
support for the System File Checker that exists in Windows
XP/2003 (Note the SFC_OS module name — while SFC
exists in earlier versions of Windows the filename was
changed in XP). The remaining filters include the condition
that the file being examined must be a character mode or
GUI application for the Intel IA64 CPU, that the file must
have no digital certificates, and that it must have no bytes
outside of the image.

The IA64 CPU introduces the concept of ‘predication’ to the
execution flow, which allows a programmer to remove
certain branches from the code, and to replace a block with
a predicate check instead. A sample check for the file type
might look like this:

1d2 r30 = [r32]

mov r3l1 = 0x5A4D;;

cmp.eq pl = r30, r31
(pl) 1d4 r30 = [r8]
(pl) mov r31 = 0x4550;;
(pl) cmp.eqg pl = r30, r31

The first ‘cmp’ instruction sets the P1 register only if the
condition is met. If it is not met, any instruction that is
predicated by the P1 register will be ignored by the
processor. The filtering code could be considered
‘predication abuse’, since it contains more than 30
predicated instructions in a row, including predicated
compares, which reuse active predicate registers. The
infection code contains several such blocks.

TOUCH AND GO

When a file that meets the infection criteria is found, it will
be infected. If relocation data exist at the end of the file, the
virus will move the data to a larger offset in the file, and
place its code in the gap that has been created. If there are
no relocation data at the end of the file, the virus code

will be placed here. For the .A variant of Rugrat, which
does not infect DLLs, the relocation data check is almost
never used, since the majority of executable files do not
contain relocation data (a ‘global pointer’ is used instead,
see below). The .B variant of Rugrat infects DLLs in the
same way as for applications, meaning that even

VIRUS BULLETIN

‘resource-only’ DLLs that have no main entry point can still
be a source of infection, since the Thread Local Storage
entry point will still be called.

The virus carries its own Thread Local Storage directory,
which will be used if the target file contains no directory

at all. The virus carries its own callback array for those
hosts whose Thread Local Storage directory contains

no callbacks. When it encounters a host that already has a
Thread Local Storage directory containing callbacks, the
virus will save the address of the first callback and replace it
with the address of the virus code.

Once the infection is complete, the virus will calculate a
new file checksum, if one existed previously, before
continuing to search for more files.

When the file searching has finished, the virus will allow
the application to exit by forcing an exception to occur. This
technique appears twice in the virus code, and is an elegant
way to reduce the code size, in addition to functioning as an
effective anti-debugging method.

Since the virus has protected itself against errors by
installing a Vectored Exception Handler, the simulation of
an error condition results in the execution of a common
block of code to exit a routine. This avoids the need for
separate handlers for successful and unsuccessful code
completion. The Vectored Exception Handling is a
heap-based dynamic exception-handling mechanism of
newer Windows releases, which provides an alternative to
the Structured Exception Handling, a stack-based
mechanism. SEH is more vulnerable to exploitation (see
VB, September 2001, p.4) than VEH, and VEH has some
other benefits such as up-front exception control.
Nonetheless, the exploitation of VEH by attackers is also
becoming common in the field.

EXCEPTION TO THE RULE

The cause of the exception is more subtle in Rugrat than in
Chiton. On the x86 CPU, exception-causing instructions
such as INT 3 can appear anywhere in the code, without
restriction. On the /A64 CPU, though, instructions are
placed in ‘slots’, and collected in ‘bundles’ that execute in
parallel, so an exception-causing instruction in a bundle that
contains other instructions could cause those instructions to
be interrupted. Additionally, when resuming from an
exception handler, execution continues from the slot in
which the exception occurs, which results in the instructions
in the earlier slots of the same bundle not being executed.

These two restrictions are the likely reason why the virus
author chose an instruction that is always placed in the first
slot of a bundle. The instruction itself, LD1 R8 = [RO], also
looks legitimate, until it is understood that the RO register

o

VIRUS BULLETIN

always contains the value 0, and attempting to access the
Oth byte of memory always causes an exception.

GLOBALISATION

The IA64 uses a global pointer to access variables. This
avoids the costly application of relocation items when a file
is loaded to an address other than its default virtual address.
This also makes the /A64 code a little more compact,
although it still appears large to eight-bit eyes.

The global pointer value can be retrieved from the Portable
Executable GlobalPtr header field. Every structure —
exported function addresses, Vectored Exception Handlers,
even the Thread Local Storage Callback itself — is required
to be in the form of a virtual address followed by a global
pointer value, and the virus supplies these structures
correctly. This structure is called a PLABEL_DESCRIPTOR,
and the compiler and the debugger do a perfect job of
hiding it, so guys like Larry need not worry about it.

CONCLUSION

The adoption of JA64 machines appears to be slow. The
lack of IA64 machines restricts the scope of any potential
outbreak, and this virus was simply a proof that it was
possible. What can we expect next? A 32-bit and 64-bit
cross-infector seems obvious.

Additionally, the news of AMD64 is spreading, and systems
are sold for as little as $700, “introducing the only
‘Windows-compatible 64-bit processor and the smooth
transition to 64 bits”. Microsoft will be ready with the
AMDG64 release by the end of this year. How much smoother
could the transition be for the virus writers?

Chuckie: “So, we got a baby now.”

Lillian DeVille: “I wished we’d a talked about it first. 1
don’t know if I'm ready.”
Rugrats, Klasky Csupo Inc.

Let’s hope that this baby doesn’t grow up.

W64/Rugrat.3344!|1A64

Type: Direct-action parasitic
appender/inserter.

Infects: Windows IA64 PE files.
Payload: None.
Removal: Delete infected files and restore

them from backup.

VIRUS ANALYSIS 2
PATRIOT GAMES

Gabor Szappanos and Tibor Marticsek
VirusBuster, Hungary

It is generally accepted that email worms know no
geographical border, and spread all over the world within
hours, showing homogeneous activity. But there are
exceptions. One of these exceptions was Zafi.A: probably
the fastest spreading email worm ever to be experienced in
Hungary, but showing no impact at all outside the country.

To illustrate the impact of Zafi.A in Hungary, our email
gateway captured about one virus per minute in the days
before the appearance of this bug (this was in the middle of
the Netsky-Bagle misery). This changed to the capture of
one Zafi.A per second. Some impact. Even though it didn’t
appear until the second half of April, Zafi.A easily made it
to the top of our virus prevalence list for that month.

As far as the number of infected messages is concerned,
Zafi.A was the top virus in April 2004. Most of the messages
are sent to non-existent email addresses, but in other gateways,
which reject these messages, Zafi was still in the top five. In
other countries this virus was not even noticeable.

At first glance, Zafi.A seems to be just another mass-mailer,
however a closer look reveals some interesting details: this
worm was definitely not written by a beginner. The worm
code seems to be unfinished. More precisely, some code
parts provide more functionality than is actually used by the
worm. So further versions are to be expected. [Zafi.B has
appeared since this article was written and will be covered
in detail in a future issue of VB - Ed.]

ANALYSIS

The virus was written in assembly language, which is
unusual for contemporary email worms. Even more unusual
is the fact that there are three self-check calls in the code.
These calls check three separate data areas by calculating a
checksum of the appropriate string areas. If the areas have
been changed (e.g. a message or a filename tampered with
by a wannabe virus writer), Zafi aborts execution. This
leads to the impression that the virus was written by an
experienced assembly programmer. This assumption is
further supported by the fact that some of the subroutines
used in the worm provide a lot more functionality than is
used by the worm. Either the author copied them from
somewhere (but some of these subroutines are rather
special), or the programmer was highly disciplined, going
for a general solution. If the latter is true, we will hear from
the ‘SNAF team’ (to whom the text in the worm’s email
message is attributed) in the future.

o

The first samples of Zafi.A arrived on the morning of 19
April 2004. The worm was written in assembly language,
packed with UPX. It arrives in an email as an attachment,
with a deceptive name:

link.matav.hu.viewcard.index42ADR4502HHJeTYWYJDF334
GSDEv25546.com

The worm spoofs the sender email address. The subject of
the messages is:
kepeslap erkezett!

which translates: ‘e-card arrived!’.

The message text (translated into English) reads:
Dear User!
You have received a virtual card!
The sender of the card: {sender}
The card is accessible on the following address:

http//matav.hu/viewcard/
index=p4uo5683535GSb0123fhhf578840£0623cv2

or by clicking on the attached file.

Regards: Matav e-card!

http//www.netezz.matav.hu/

% Jkepeslap erkezett! - Di jon - Central European (1S0) [BE=]
selPost Reply | B0 48 | & DY X |+ -w- @ .

Fle Edit Yiew Insert Format Tools Actions Help

From: — Posted: Mone
Posted To: e @vinushuster.hu
Conversation: kepeslap erkezett!

Subiect: |kepeslap srkezett!

Tisztelt felhasznaldl

Onnek képeslapja érkezetil

A kepeslap feladdjz & s

A lapot az alabbi cimen tudja megtekinteni

httpsfmatav. hufviewcard/inde x=p4 uo5683535 5001 23thhfa7 88400623 cv2
wagy a mellékelt internetlink kattintasdval.

Udvizlettel: Matay e-card!
httpffeeew. netezz.matav. huf

finkmat . hu;
| vie... (373B) |

Categories... ||

The message camouflages itself as a virtual greetings
card, offering a link with the card. The link points to a
non-existent web page. As an alternative, the virus offers
the attachment to view the card — thus fooling the user into
running the file.

The worm does not hide itself from the Task Manager list,
and has no protection against running multiple copies of
itself on the same computer.

When executed, the worm checks the system date. If the
date is 2004.05.01, a MessageBox is displayed. Given the
political attitude of the virus, this date was probably chosen
because this was the day when Hungary became a member
of the European Union. The message is political, a rough
translation is as follows:

VIRUS BULLETIN

uzenet x|

Emberek! Magyarok szazezrei, millioi elnek naprol - napra, halnak ehen - szomjan,

5 szegenysegben hazankban! Mikozben jonehany felso parlamenti gazember

millios vagyonokra tesz szert, mitsem torodve velunk,

Latszat emberek iranvitanak, kik emelik fizetesunk, s ketszer annyi adot vonnak le,
kik igazsagszolgaltatasrol regelnek, mikor a bunozoket es a novekyo agressziok vedik
torvenveikkel, kik inkabb Formal-re pocsekoliak a penzt, mialatt hajlekkalanok
halmak meq naponta utcainkon, s korhazi betegek szenvednek szukseges muszerek nelkul.
Hogy - hogy nem latja ezt senki 7277 Miert nincs egy igaz magyar, ki vegre

mar nem sajat erdekeit, hanem az orszag sulyos problemait helvezne eloterbel 1t
Mem eleq akarni, s beszelni, meg szonoklatni a szepet, s jot,

tenni-tenni-tenni kell, egyarant mindenkinek - mindenkiert!

== HAZAFI == [Pecs,2004, (SHAF Team)/

Folks! Hundreds of thousands of Hungarians are
starving and living in poverty. In the meantime, a
handful of bastards in the parliament are making
millions not caring about them.

These people are raising our salaries, while

taking away double in taxes, talking about justice
while protecting the criminals and the increasing
aggression with their laws; wasting money on Formula
1 while homeless people are dying on the streets
every day and the hospitals are in need of necessary
instruments.

How come nobody sees it? Why isn’t there a righteous
Hungarian, who would take care of the problems of the
country instead of his personal interests?

It is not enough to wish and talk about the good, it
has to be done by everyone and for everyone.

== HAZAFI == /Pecs,2004, (SNAF Team)/
(HAZAFI translates to patriot, Pecs is a city in Hungary).

If the month is any other than April, the worm stops. If it is
still April, the worm terminates the following processes:

zonalarm.exe navdx.exe nprotect.exe fssm32.exe

vbsntw.exe navstub.exe ntvdm.exe fsm32.exe

vbcons.exe navw32.exe ostronet.exe fsbwsys.exe

pccguide.exe nc2000.exe vsmain.exe fsgk32.exe

outpost.exe ndd32.exe vsmon.exe dfw.exe

regedit.exe netmon.exe vsstat.exe tnbutil.exe

regedit32.exe netarmor.exe vbust.exe taskmgr.exe

navapw32.exe netinfo.exe mcagent.exe winlogon.exe

pcciomon.exe nmain.exe fsav32.exe fvprotect.exe

The virus code finishes with an endless loop which (waiting
three seconds between each loop) calls the same routine to
terminate these processes.

If the virus is executed without a command line (i.e. it is not
executed via the startup registry key, where a random
command line parameter is appended), it opens a randomly
picked web page form the typed URL cache stored in one of
the ‘HKCU\Software\Microsoft\Internet Explorer\
TypedURLs\url?” keys, where ‘?” is picked randomly in the

0..9 range.

VIRUS BULLETIN

The page is opened in the assumed default web browser,
determined from the https web page assignment
‘HKCU\Software\CLASSES\https\shell\open\command’.

If the selected key does not contain a location, the browser
will not be opened.

The worm tries to create the registry key
‘HKEY_LOCAL_MACHINE\Software\Microsoft\Hazafi’.
Under this key it creates the following values:

“RA" =
set to dword:00000100 after email addresses have been
collected.

“R17 =
“RegisteredOwner” (from registry key: Software\Microsoft\
Windows NT\CurrentVersion or Software\Microsoft\
Windows\CurrentVersion) if the former is not found.

“R2" =
“SMTP Email Address” (from Software\Microsoft\Internet
Account Manager key)

“R37 =
path for created .exe virus name in the %System%
directory.

“R4" =
path for created .dll virus name in the %System% directory.

“R57 =
path for the file in the %System% directory that contains
the collected email addresses.

“R6”, “R7”, “R8” and “R9” may also store pathnames of
email addresses, but are not used by the virus.

In the registry key ‘HKEY_LOCAL_MACHINE\Software\
Microsoft\Windows\CurrentVersion\Run’, the worm creates
a value, for virus.exe file in the %System% directory. The
registry entry has a random one- or two-character command
line parameter appended, to avoid displaying a web page in
the web browser during startup.

The worm creates a separate thread, which collects email
addresses from files with the extension .htm, .wab, .txt,
.dbx, . tbb, .asp, .php, .sht, .adb, .mbx, .eml and .pmr on C,
D, E, F, G, and H fixed drives. It also extracts the addresses
from the Windows Address Book, accessing it by the value
of the registry key ‘HKCU\ Software\Microsoft\ WAB\
WAB4\Wab File Name’.

It will reject addresses that contain the following substrings:
microsoft f-prot anti avp gov
vir hotmail panda trendmicro norton

As the worm’s message is in Hungarian, it will avoid
sending itself outside Hungary by rejecting the addresses
that do not end with ‘“.Au’.

It also rejects addresses that have the following ‘domain
parts’:

Ink dll wav wmyv gif avi

swp vxd zip cab bmp exe

ico mp3 rar pk3 mpg jpg

This is most likely to discard the incorrect address-like
filenames that were collected.

Apart from the collected addresses, the virus creates random
usernames for each domain. These usernames are put
together in pieces using a rather complicated algorithm
from one- or two-byte fragments. The algorithm makes sure
that the generated address is pronounceable (e.g. there are
no consonants next to each other), and consists of between
three and ten characters.

The first two characters are always selected from the list: vi,
el, mo, ke, ka, en, ha, pa, sz, mi, ep, ho, em, cs, he, ko, ja, al,
s, ta, no, ad, os, or, pe, ut, po, ma, fi, am, fo, id, eg, fe, le,
tu, gy, el, ki, jo, do, me, ny, to, ve, kr, ta, te.

After that the worm appends random characters in one to
four steps. Before each step it checks whether the already
generated address ends with a, e, i, o, or u. If not, it appends
either one of a, e, i, 0, u, or one of the fragments: ek, og, at,
er, it, og, en, an, in, el, is, im, ik, ol, ak, eb, ad, az, as, ab, et,
em, ed, ok, ot, nk.

If the already generated address ended with a vowel, the
next part of the address will be selected randomly from
either of the following lists:

ka, ra, va, za, be, re, li, di, mi, ca, ni, ti
or
b,c,d, f, g, h,j,k I, m,n,p,r,s,tu,v,z

The efficiency of the algorithm is questionable, it was most
likely borrowed from a spammer’s code. It is very unlikely
to generate a valid email address — most of the messages
bounce at the email gateways.

Before sending the messages, Zafi.A checks whether the
web page google.com is accessible (i.e. whether its name
resolves). If no active connection is present, the worm waits
for it in an infinite loop.

When it gathers the outgoing message, Zafi fills in the user
name (from the “R1” key), the spoofed sender address
(from the “R2” key) and the current date (if it fails to query
it, it uses “04/20/04” instead).

At this point there is another self-defence measure: the
worm checks the size of the DLL copy in the Windows
directory (from the “R4” key). If it is anything other than
11,776 bytes (either a tampered-with or an unpacked sample
is executed), the worm aborts the execution without

sending itself.

o

The entire mail propagation code is then transferred to an
allocated block in memory, and then a new thread is created
and added onto this block. To make it work, the offsets of
global variables in the code have to be fixed. This is done
properly; the worm has a table of these offsets, and the
offsets are relocated before the transfer of execution.

For each target address the worm tries to send itself via the
target SMTP server, probing the following prefixes for each
domain part:

fmx4. relay. domser. suli2. goliat2.
mail. fmx. fmx2. mailb. webmail.
fmx3. mailO1. gate. mail2. postman.
smtp. gold. mx. matav-4. huasmtpOl.
fmx1. fmx5. mxO0. WWW.

matav-1. matav-2. mxl. gemini.

Some of those prefixes are widely used; others (matav-4,
huasmtp01, matav-1, suli2) are specific to Hungary. If

none of the servers work, the worm will not send the
message to that address. Interestingly, it will not attempt

to use the locally defined SMTP server or a predefined
server. It might have been expected that this would slow its
spread, but it seems that the prefix list was sufficient for the
virus to work.

The worm uses its own SMTP engine to send the messages.

CONCLUSION

It is relatively easy to convince users in non-English
speaking countries not to open messages in a language that
they don’t understand (well, not that easy, many of them
will open them and run the attachments without
understanding). But these users are completely unsuspecting
if they receive messages in their native language. We
learned this from the success of the Magold variants (see
VB, August 2003, p.4) and Zafi (and what Germany
experienced with Sober). The situation is further
complicated by the fact that what we experienced as a huge
outbreak in Hungary, was only experienced as a minor
disturbance by the major AV vendors — thus they did not
rush to release the updates as much as they would with a
multi-country outbreak.

Many years ago local AV companies allegedly provided
better protection against local viruses. Is this situation
returning? I hope not. In Hungary, as in many other
countries, the global AV companies have a large market
share. In the case of these local threats, if the major players
in the AV industry underestimate the threat, because it does
not show up significantly on global levels, a large
percentage of local users will be unprotected.

VIRUS BULLETIN

TECHNICAL FEATURE

GETTING INSIDE BEAGLE’S
BACKDOOR

Michael Venable, Prashant Pathak, Arun Lakhotia
University of Louisiana at Lafayette, USA

This article presents a detailed analysis of a backdoor
contained within the W32/Beagle.J worm (for a full analysis
of W32/Beagle see http://www.virusbtn.com/resources/
viruses/indepth/beagle.xml). The focus is on the capabilities
and protocol of the backdoor, as well as the process used to
uncover these capabilities.

Released in March 2004, Beagle.J propagates by emailing
itself as an attachment to email addresses found in the
address book and files of the infected host. The worm also
spreads by placing a copy of itself in shared folders that are
used by file-swapping programs such as Kazaa. The worm
modifies the Windows registry so that it will run at each
system startup. It even has code to remove itself from the
infected system on or after 25 May, 2005.

The most interesting aspect of Beagle.J is the backdoor it
opens. The backdoor allows an attacker to upload programs
to an infected computer and execute them. These programs
can be anything from simple keystroke loggers to more
sophisticated backdoors, like kernel-mode rootkits, that
provide complete dominance of the compromised machine.

As part of the ‘Malware Analysis’ course at the University
of Louisiana at Lafayette, the students were given the task
of discovering the protocol of the backdoor, which has not
yet appeared in public, and were also required to write a
client program capable of communicating with the worm.
The results of this analysis are outlined in this article.

BEAGLE’S COMMANDS

The Beagle.J backdoor makes it possible for an attacker to
remotely upload and execute arbitrary programs. The
programs can be delivered in either of two ways: they can
be uploaded from the attacker’s computer or downloaded
from a URL. Once on the victim’s computer, the programs
are stored in the victim’s Windows folder (C:\Winnt,
C:\Windows, etc.) and given the name ‘iupld<x>.exe’,
where <x> is a randomly generated string.

The worm can execute a downloaded program either with
no arguments or with the -upd argument.

In addition to uploading programs, the worm supports a
command that tells it to remove itself from the victim’s
machine. Removal involves ending any running processes
that belong to the worm and deleting the registry entry that

causes the worm to run during Windows startup.

VIRUS BULLETIN

Altogether, the worm supports five different commands:
1. Upload and run a program.
2. Upload and run a program with -upd argument.
3. Download a program from a URL and run.
4

. Download a program from a URL and run with -upd
argument.

5. Remove the worm.

PROTOCOL

After successfully infecting a new system, the worm begins
listening on port 2745. To communicate with the worm, a
client connects to this port and sends a message containing
three items: an initialization sequence (four bytes), a
command number (one byte), and a password (up to 200
bytes, terminated by null). If an incorrect password is
submitted, the backdoor will end the connection without
sending any message back and without downloading the
file. Assuming the password is correct, the worm sends an
eight-byte response. At this point, the client can send any
remaining data related to the chosen command. This process
is illustrated in Figure 1.

1. Send Init Sequence, Command, & P azanord

2. Receive Acceptance Response

Remate

Adtacker

Beagle-

Irfected

3. Send Remaining Data
System

Figure 1. Communication between attacker and worm.

The initialization sequence is always 43 FF FF FF (hex) and
the acceptance response received after submitting the
password appears always to equal 03 00 00 00 B9 0A 00 00
(hex). The password, too, may be held constant (though
multiple valid passwords exist), thus the only varying data is
the command number and the remaining data related to the
command. The following is a listing of each command and a
description of the syntax of the remaining data.

Upload and run a program. To upload and run a program
without the -upd argument, the command number should be
2. To run the program with the -upd argument, the
command number 3 is required. When uploading a file, two
pieces of information are needed as the remaining data. The
first is a four-byte number in little-endian format
representing the size of the file to be uploaded, and the
second is the contents of the file.

Download a program from a URL and run. The command
numbers for downloading a program from a URL are 8 (to
run without -upd argument) and 10 (to run with -upd
argument). In both cases, the remaining data should be a
null-terminated string containing the URL from which to
download the file.

Remove the worm from the victim’s computer. The final
option is to deactivate the worm. To do this, the command
number needed is 4 and nothing need be submitted in the
remaining data section. Hence, when comparing this
command’s syntax to Figure 1, step three can be omitted.

ANALYSIS OF THE BEAGLE.J BACKDOOR

We set up our analysis platform using the method described
by Lenny Zeltser (http://www.zeltser.com/). The platform
consists of a virtual environment package and a suite of
static and dynamic analysis tools.

‘We used the virtual environment package available from
VMware at http://www.vmware.com. This package is
capable of running multiple operating systems, called guest
systems, on top of the host operating system. The guest
systems are capable of communicating with each other, but
are isolated from the host operating system. By using this
configuration, we are free to execute the malicious software
without any significant risk of infecting production systems.
VMware also contains a snapshot feature that makes it
possible to save a (clean) state and then revert to that state
should the system have been contaminated by the malware.
We configured VMware with two operating systems:
Windows 2000 and Red Hat Linux. Figure 2 shows the setup.

Guest OS Guest OS
(Windows 2000) (Red Hat Linux)
Host Operating System

Figure 2. VMware configuration.

For the static analysis, we used tools such as a freely
available UPX compression program available from
http://upx.sourceforge.net/ to unpack the Beagle worm,
which transmits itself in a compressed format. We used
BinText, available from Foundstone, Inc., to extract strings
from the unpacked worm. For dynamic analysis, we used
Olly Debug, a free debugger available online at
http://home.t-online.de/home/Ollydbg. We also used tools
such as TCPView and RegShot, available at
http://www.sysinternals.com/ and http://regshot.yeah.net/,
respectively. TCPView continuously monitors any network
activity and RegShot monitors any registry and file access.

FINDING THE INITIAL BYTE SEQUENCE

We began analysis of the backdoor with the Olly Debug
debugger. After setting breakpoints at all statements related

o

to network communication, we started the worm inside the
debugger and initiated a connection to it from the Linux
system via a simple client program capable of transmitting
characters received from the standard input. Using the
client, we were able to send characters to the worm and
trace its execution to see how it processed the characters.
We found that the worm checks the first four bytes for
equality with 43 FF FF FF. If they do not match, the worm
closes the connection.

We modified our client so that it sends the initial series of
bytes correctly, allowing us to get past the first check
performed by the worm. Using the same technique as above,
we were able to deduce the next input expected by the
worm, which is a single-byte number representing the
command to perform. The worm checks to ensure that the
command number is greater than 0 and less than 11. We
modified our client again, choosing to send an arbitrary
number within that range, since we did not know the exact
command numbers at this point.

THE PASSWORD

The third check the worm imposes is the password. The
worm reads 200 bytes or until the null character is read,
whichever comes first. The bytes read make up the
password. This password is then hashed and compared

to the hash of the password. If the two hash values match,
execution continues. Otherwise, the connection is closed.
Using this technique, the author of the worm was able

to avoid storing a plaintext copy of the password within
the executable.

To assist in the analysis, we extracted the hashing function
from the worm’s assembly code and converted it to an
equivalent C++ function. The new high-level hashing
function is shown below.

void Hash(

const unsigned char* buffer, // IN

int size, // IN: size of buffer
int& r_eax // INOUT: register EAX
int& r_edx) // INOUT: register EDX
{

for(int 1 = 0; 1 < size; i++)

{
r_edx += buffer([i];
if (r_edx >= 0x0FFF1)
r_edx -= O0xOFFF1;

r_eax += r_edx;
if(r_eax >= Ox0FFF1)
r_eax -= 0x0FFF1;
}
}

When performing the hash, the worm calls this function
three times. On the first call, the buffer is set equal to the
password and r_eax and r_edx are initialized to OxFFFF. For

VIRUS BULLETIN

the second and third call, the buffer is 01 02 10 03 04 05 30
06 20 40 and 53 56 33 D2 33 DB 66 8B DO, respectively,
and r_eax and r_edx are left unchanged from the previous
call’s return value. An example of the three calls is

shown below.

r_eax = r_edx = OxFFFF;
Hash(password, strlen(password), r_eax, r_edx);

Hash(“\x01\x02\x10\x03\x04\x05\x30\x06\x20\x40", 10,
r_eax, r_edx);

Hash(“\x53\x56\x33\xD2\x33\xDB\x66\x8B\xD0"”, 9,
r_eax, r_edx);
After the three calls, the worm validates the password by
comparing r_eax to 0x9C02 and r_edx to 0x09C4. If the
two match, the password is correct.

CRACKING THE PASSWORD

By carefully analysing the hashing function, we were able
to derive two equations (for a complete derivation of the

equations, see the appendix):
P, + D, + . +Dp_, +Dp = 0x484
np, + (n-1)p, + .

where 1 <p <255 is the value of the i byte in the

password and n < 200 is the length of the password in bytes.

+ 2p,, + p, + n'OXxE = 0x291E

We then constructed a program to pick each p, randomly,
such that the sum of all p, = 0x484 and the sum of all
(n-i+1)xp, = 0x291E, which matches the two equations
discovered earlier. We chose to approximate the true values
of the summation in order to decrease the time required for
finding each p,, as it would have been very difficult to guess
the value of each p, such that the sum equalled the value we
needed exactly.

Within seconds, the program generated an approximation,
and by manually adjusting the values of different p,, we

were able to determine a valid password for use with Beagle.J.

BRUTE FORCE PASSWORD CRACKING

While searching for a password using the above method, we
were also tackling the problem from a different angle. We
noticed that the hashing algorithm that is used maps an up
to 199-byte password to a four-byte number. Thus, many
different passwords can potentially be hashed to the same
number, introducing a potential avenue of attack in our
attempt to find a password.

To take advantage of this weakness, we constructed a
program that would use a brute-force approach to cracking
the algorithm, hoping that we would stumble upon one of
the duplicate correct passwords. After running this program
for several days, we realized it was unlikely to succeed and
changed to a different approach. We modified the program

o

11

VIRUS BULLETIN

so that, instead of using a sequential brute force attack, it
would randomly choose a large range of inputs and hash
each value in that range to see if any hash to the right
number. If none of the inputs in the range produced the
correct value, a new range was selected. The idea was that
by trying randomly chosen ranges of passwords, we would
improve our chances of finding a valid password. Maybe
this new approach was a good idea or maybe we were just
extremely lucky, because after running for just a couple of
hours, the program began to output a list of valid passwords.

THE COMMANDS

With the password out of the way, we were able to turn our
attention to the commands. By stepping through the code
with the debugger, we were able to uncover each of the
valid command numbers: 2, 3, 4, 8, and 10. We analysed the
code that reads input from the connection and determined
the size and format of the expected input. By observing the
function calls made by the worm, we were able to learn the
purpose of each command.

THE CLIENT

Using the information obtained from the analysis, we
constructed a client program capable of communicating
with the Beagle.J worm. The client contains the initial byte
sequence and the password hard-coded into the code, so the
user only needs to supply the IP address of the beagle-
infected machine and select a command. Using this client
we were able to successfully execute all the commands on
an infected machine in our laboratory environment.

CONCLUSION AND FUTURE WORK

Beagle.J’s backdoor allows a remote user to upload and
execute arbitrary programs. While, on the surface, this may
appear limiting, it is actually all that an attacker needs to
acquire control of a system. By uploading more powerful
programs, the attacker can perform nearly any desired task,
assuming the proper privileges are acquired. By
understanding backdoors such as Beagle.J, we better equip
ourselves with the knowledge needed to prevent such
attacks in the future.

The analysis techniques we used consist of a combination of
static and dynamic analysis. As viruses become increasingly
easy to create and require less time to propagate, it becomes
even more important for individuals to understand these
analysis techniques and to know how to deploy them
quickly. This paper presents one approach to doing so.

We have analysed another variant of Beagle, commonly
known as Beagle.X. Like Beagle.J it also opens a backdoor

but instead listens on port 2535. It has the same
initialization, command, and password sequence as
Beagle.J. But in this new variant, the set of instructions
generated after validating the password is a function of the
password itself. Hence, in order to execute the generated
instructions correctly the original password is required. The
author of the worm might have used this technique to make
it harder for analysts to discover the password using a brute
force approach. Our future work would involve analysing
more viruses and worms to understand these kinds of
intricacies. We would then develop techniques to counteract
the viruses based on our experience.

APPENDIX

The following shows how to derive the two equations from
the decompiled version of Beagle.J’s hashing function.
Assume the password is p,p,...p, ,p,» Where n <200 and

1 <p,<255. By tracing through the hashing routine, we see
that after the first call to Hash, the values of r_edx and
r_eax are:

riedxlzp1+pz+..4+p +pn+E

r_eax, = np, + (n-1)p, + ..
The letter E is the hex number OxE, written without the ‘0Ox’
to reduce clutter. In the following discussion, all numbers
are in hex and are obvious from context. Also, in order to
keep the equations as simple as possible, we have assumed
the conditional “if(r_eax >= OxOFFF1)” will evaluate to true
during the first iteration of the loop and never again. This is
a valid assumption as long as n < 17.

+2p,, +p, +0nE + E

After the second call:
]fiedx2 =]fiedx1 + B5
r_eax, = r_eax, + A-]f7e<i><1 + 234
Finally, after the third call:
r_edx, = r_edx, + 47D
r_eax, = r_eax, + 9-]?78(1){2 + 136F
As stated, r_edx after the third call must equal 09C4, thus
]fiedx3 =]fiedx2 + 47D =09C4
= rfedxL +B5+47D=09C4
=p,+p,+.+P, , +P +E+BF+47D=09C4
=p,+p,+..+D, , +p =484
Similarly,
r_eax, =r_eax, + 9-r7edx,/ + 136F =9C02
=r_eax, + A»r_edx1 +234 +9- (r_edx1 +B5) + 136F =9C02
=nxp, + (n-1)p,+..+2p +p +0E+E+
9 (p,+P,+ . +pP, _, +P +E+B5) +136F =9C02
Butp, +p,+... +p , +p, =484, therefore

= np, + (n—l)-p,/+..4+2p,h +p, +NE+E+
9-(484 + E+ B5) + 136F =9C02

=np + (n-1)p, +..+2p +p +0E+72E4=9C02
=nxp, + (n-1) D, + ..+ an_l +p +NnE= 291E

o

FEATURE

ANTI-VIRUS SPAMMING AND
THE VIRUS-NAMING MESS:
PART 2

Dr Vesselin Bontchev
FRISK Software International

In the ‘good old days’ (i.e. until the mid-90s), when there
were ‘only’ a couple of thousand known viruses, the
anti-virus researchers responsible for maintaining the
CARO Virus Naming Scheme used to get together at
conferences, examine how each virus was named by the
main anti-virus products, and agree upon what should be the
‘proper’ name for it. Sadly, nowadays, when there are
probably more than 100,000 known viruses (and when
nobody can tell you the exact number with a margin of error
smaller than 10,000), this is no longer possible.

While tools like VGrep (for cross-referencing virus names
across the different anti-virus products; see [1]) are a
significant improvement on what we had in the old days, the
glut of new viruses has overwhelmed our capabilities. It is
simply unrealistic to expect that a standard agreement can
be reached over the name of every single virus in existence.

A useful idea would be to reach an agreement at least on the
names of the viruses that are known to be in the wild.
However, this author believes that, as argued in [2], the
so-called WildList is nothing of the sort. Worse, those who
maintain it have consistently failed to stick to the existing de
facto virus-naming standard for the viruses listed within it.

IMPORTANCE UNKNOWN

When a new virus appears, it is usually impossible to
predict whether it will spread successfully. Certainly, a virus
which spreads by email bursts is more likely to become
widespread than a non-memory-resident COM-file-only
infector. However, for every mass-mailing worm that
sweeps the world, there are scores that never see the light of
day outside specialized virus collections. When a new virus
appears, it is impossible to determine immediately whether
it will be one about which everybody will be talking (and,
therefore, is worthy of an agreement upon a standard name)
— or whether it will disappear into the virus collections
among hundreds of thousands of other viruses, the names of
which nobody remembers or cares about.

A solution to this problem would be to agree on a single
standard name for every new virus. Unfortunately, the sheer
number of new viruses means that this is no longer humanly
possible. Alternatively, we could postpone this agreement
until we know for sure that the virus is in the wild.

VIRUS BULLETIN

However, as mentioned previously, there is no reliable
source of such information. Furthermore, it is often
unacceptable to postpone such an agreement.

The reader should not be left with the impression that the
situation is totally hopeless and that the anti-virus
community is too stupid to do anything about it. The truth is
that we are doing something about it. There are specialized
forums (e.g. AVED, VCircle, VTech, etc.) where we report
the new viruses which, in our estimation, are likely to
become ‘problematic’ (i.e. widespread). We use these
forums to send each other samples of the viruses, discuss
what their names should be, and so on. The point is, that,
too often, this is not sufficient to solve the naming mess.

RUSH TO PUBLISH

Gone are the days when a new computer virus took months
to spread from one country to another. In fact, gone are the
days of the Melissa virus, when they needed a couple of
days to spread all over the world. Nowadays, viruses often
need just hours (and, in rare cases, just minutes) to spread
like wildfire from South Korea to the USA and back.

When such a virus appears, the anti-virus producers have
very little time before the support phones start ‘smoking’
with calls from all over the world — both from people
infected with the virus and from people who are just
concerned about it and want to ask whether we detect it. In
this short time, we have to:

1. Figure out how to detect the virus — this can be
problematic if the virus uses extreme levels of
polymorphism, entry point obfuscation, or weird tricks
like spreading itself in password-protected archives or
not residing in files at all (e.g. CodeRed).

2. Replicate the virus — this is often a non-trivial and
time-consuming task. Viruses which have no problems
spreading in the wild are often capricious and refuse
to replicate in a controlled laboratory environment.

3. Figure out how to remove the virus — this is often
much more difficult (although usually less urgent)
than detecting it, especially when it involves
precarious modifications to the Registry and some of
the system DLLs. Sometimes a detailed analysis of the
virus is required, in order to figure out how to perform
this task properly.

4. Publish an update of our scanner that can handle the
new virus properly. Sometimes publishing a
detection-only update is good enough and proper
identification and removal can be made available later.

5. Analyse the virus. Gone are the days of small, elegant
viruses written in assembly language which were fun

@ 13

14

VIRUS BULLETIN

to analyse. Nowadays the problematic viruses tend to
consist of tens of kilobytes of some compiled obscure
high-level language (often additionally compressed
with some sort of executable file compressor).

6. Publish a description of the virus on our website and
sometimes send an alert to our users.

7. Send a sample of the virus to other anti-virus
researchers. In some cases this might be unnecessary —
because, by the time we get around to doing it, the
other anti-virus companies have already received a
sample. Thousands of them, in fact.

Many of these tasks (e.g. detecting the virus, describing the
virus) require that we pick a name for the virus. In the rush
to perform all these tasks, we are forced to pick some
acceptable name for the virus quickly. We simply cannot
afford the time to discuss the issue with other anti-virus
producers, to agree on a common name.

Of course, we are doing some things to alleviate this
problem. The CARO Virus Naming Scheme gives a set of
guidelines about how to pick the name for a new virus (and
especially how not to name it). We have an informal
agreement that the first researcher who sends a new virus to
the rest of us under an acceptable name (i.e. one which does
not violate the naming guidelines and which properly
classifies the virus in the right family) has ‘priority’ — the
other producers have to accept ‘his’ name and use it in their
products. We run a set of scanners, in order to see whether
there is a majority (or at least a high percentage) of products
that already report the virus under a common name — or that
recognize it as a variant of a known virus family.

However, in many cases, our best efforts simply fail. We
sometimes have cases when several researchers pick equally
acceptable but different names for the same virus and send
them almost simultaneously. In the rush, we don’t have the
time to resolve what the proper name should be before we
have to publish something that uses a name for the new virus.

One of the ideas that has been advanced to help alleviate
this problem, is to have some kind of list of pre-approved
names for future viruses — in the same way that
meteorologists keep a list of names for the future
hurricanes. When a virus appears, it should be given the
name that is next in order on this list. In order to reduce the
size of such a list and the work involved, this should be
done only for the viruses that spread in the wild.
Unfortunately, this idea has many deficiencies.

Hurricanes develop over multiple days and weeks, and there
is plenty of time to name them. When a hurricane appears,
there is little doubt that it is, indeed, a hurricane (or at least
a major tropical storm) that is deserving of a name —
whereas, when a new virus appears, we generally have no

clue whether it will become widespread or not.
Furthermore, nobody is likely to misuse a list of known
future hurricane names for marketing reasons or for
personal fame. However, if such a list of virus names is
established and becomes public knowledge, the anti-virus
companies will be under pressure from their marketing
departments to pick from it the name of any obscure new
virus they discover — because the mere fact that its name
comes from the list will gain it (and, by association, them)
wide press coverage. Likewise, virus authors are likely to
design their viruses in such a way that naming them after
one of the names on the list is the obvious thing to do — even
if the virus doesn’t become widespread.

DIFFICULT TO CHANGE

For many anti-virus producers, once they have picked a
name for a virus in their products, it is extremely difficult
(sometimes nearly impossible) to change it at a later stage.
The original name is most likely already present in
published press releases, in the virus description on the
company’s website and in the virus definition files for the
scanner. If the name is suddenly changed (e.g. to the
standard name agreed upon for that virus), there will be a
lot of confusion among the users of that product. They will
call the technical support department and ask why the virus
is suddenly no longer listed as detected by the product or
described on the website. These additional support issues,
especially in the middle of a virus epidemic, are certainly
something the anti-virus producers could do without!

In some circumstances, the original (inappropriate) virus
name will already have been added to the printed manuals
of the anti-virus product. Changing it would not only cause
confusion and be difficult and time-consuming — but would
also be rather expensive. For such reasons, at least some
anti-virus producers have a policy never to change the name
they have given to a virus.

THE STAND-APARTS

There are a few anti-virus producers who simply refuse to
comply with a virus-naming standard. It does not matter
what their reasons for non-compliance might be. If a
standard is not followed, it cannot hope to be of much help.

LEVELS OF (IN\COMPETENCE

Another problem is that the anti-virus researcher who
receives the new virus has to be sufficiently competent to
implement handling (detection, recognition, identification
and disinfection) of it — but does not necessarily have to be
competent enough to name and classify it properly. Since

o

adding handling of many new viruses is the main thing that
our virus labs do, we have invested significant efforts in
simplifying the process and in training people who can
perform this task.

With the current state of the art in our company, the author
of this article can train a reasonably intelligent new
employee how to implement handling of at least the
simplest kinds of new virus in a couple of days. In contrast,
learning how to analyse a virus and how to classify and
name it properly requires years of experience and hundreds
(if not thousands) of analysed viruses. There are few
researchers with the required level of competence for this,
and they might not be available when a new, explosively
spreading virus appears — this is why virus names are
sometimes picked by people who are not qualified for the task.

NO AUTOMATIC CLASSIFICATION

For most kinds of virus, we simply do not have the
necessary tools for identifying and classifying them
automatically. Macro viruses are a fortunate exception. We
have excellent identification tools for macro viruses — in
fact, these tools are so good that they allow us to share data
that allows us to implement full handling of a new virus
without even having seen it! By sharing such data on our
internal discussion lists we can determine quickly whether a
particular virus is a known one — and whether we’re all
talking about the same virus.

Furthermore, we have an excellent tool for classifying
macro viruses. It uses a neural network, and while it cannot
be relied upon blindly, it is often good enough to pinpoint
the family in which a new variant should be classified, and
even report the known variant in this family to which the
new one is the most closely related. With such tools it is
relatively easy to teach even a beginner how to classify and
name macro viruses properly. Unfortunately, we do not have
such tools for other kinds of virus.

WHAT’S IN A NAME?

The virus name that makes the most sense from a scientific
point of view is not necessarily the one that is the most
appealing or the easiest for the general public to remember.
Consider the name ‘virus://VBS/VBSWG.J@mm’. To a
competent anti-virus researcher, this name is quite
informative. It tells them that the malware is a virus, that it
is written in VBScript, that it has been generated by the
VBSWG virus construction kit, that this is the tenth virus
generated by this virus-construction kit to have been
discovered, and that this is a mass-mailing virus. For some
unfathomable reason, the general public finds the name
‘Anna_Kournikova’ more appealing and easier to remember!

VIRUS BULLETIN

The virus-naming scheme in current use requires that we
classify viruses into families, according to the code
similarity of their replication part — so, we’re forced to
classity this virus in the VBSWG family. Of course, a
reasonable question is: why didn’t we name the family
something less obscure than ‘VBSWG’ in the first place?
The no less reasonable answer is that, when this virus-
construction kit was first discovered, it was nothing more
than yet another obscure, slightly buggy and, in general,
remarkably unremarkable virus-construction kit. So, we
gave it an obscure name and forgot about it. Nothing, at the
time, indicated that the tenth virus generated with it would
become a problem. We cannot afford the time and effort to
pick memorable names for every new silly virus that appears.

Which leaves us with the problem that some anti-virus
producers follow the agreed-upon virus-naming scheme and
use the ‘proper, scientific’ name for the virus, while others
use the name that is being used by the press and about
which the users are likely to ask. Both approaches have pros
and cons — but the end result is a virus-naming mess.

Worse still, new viruses are often detected automatically by
some generic virus definition designed to handle a particular
virus family. As a result, the scanners report these viruses as
belonging to that family. In some cases this is a mistake —
the virus should be classified into a different family.
However, the producer of the scanner that detects the virus
(albeit under an incorrect name) is usually happy that his
product does so before anyone else’s and is not in a hurry to
change the reported name. In time, some products would
choose to classify the virus properly — while others will use
the ‘incorrect’ name under which the virus is already
detected by another product. Sometimes, officially, the virus
will be ‘forced’ into the (improper) known family, which
creates a precedent and increases the virus-naming mess
when new variants appear.

CONCLUSION

The aim of this article was not to provide any neat solutions.
Its goal was simply to explain why the problems exist and to
point out that, no matter how good a virus-naming standard
we agree on, and no matter how well we design our products
in respect of sending (or not) email warnings (see part 1 of
this article — VB June 2004, p.9), these problems are likely
to continue plaguing the users for the foreseeable future.

REFERENCES
[1] Project VGrep, http://www.virusbtn.com/resources/
vgrep/index.xml.

[2] Vesselin Bontchev, ‘The WildList — Still Useful?’,
Proc. 9" Int. Virus Bull. Conf., 1999, pp. 281-287.

o

15

16

VIRUS BULLETIN

LETTERS

AV SPAMMING - A WORKABLE SOLUTION

Dr Bontchey is right to criticise the irresponsible spamming
behaviour of some email scanning products, and email
filters using anti-virus products (see VB, June 2004, p.9),
but I think there is a workable solution in RFC2821. The
problem arises because most scanners accept the message
for delivery before they have examined the content. Thus,
by RFC2821, they must send a notification if they are
unable to deliver for any reason. When the receiver-SMTP
sends the ‘250 OK’ response to the completion of the
DATA, it is accepting responsibility for delivery.

The solution is not to accept the responsibility until the
message is known to be acceptable. Delay responding to the
<CRLF>.<CRLF> until the anti-virus scanner has
completed. If the message is infected, the response should
be ‘550’ instead of ‘250’. The sender-SMTP then knows
that the message has been rejected, and has the
responsibility of reporting the failure to the sender. If the
sender-SMTP is, in fact, a virus, then it has gained the
information that a server is protected, but how can it exploit
that information? The challenge, particularly in a high-load
environment, is whether scanning can be completed and the
appropriate code returned before the connection times out.
The simple store-and-forward approach to email scanning is
obsolete, email anti-virus products must now become a
real-time component of the email infrastructure.

Allan Dyer, Yui Kee Computing Ltd, Hong Kong

A LEAP IN THE WRONG DIRECTION

Rob Rosenberger’s comment (see VB, June 2004, p.2) takes
a Sophos press release and makes a logical leap in quite the
wrong direction. Sophos is not recommending customers
update their AV software 8,760 times a year as Rob
suggests, but instead recommends that companies set their
anti-virus software to poll to see if an anti-virus update is
available on an hourly basis. Quite a different thing.

The vast majority of the time AV software polls to see if
detection for new viruses is available it will be told that no
update is required. But when an update has been made
available it surely makes sense that the customer be given
access to it sooner rather than later. Especially if later is the
next scheduled update in, say, a couple of days time.

Combined with a small download size and no need for
restarting updated computers, this is the appropriate way for
AV vendors to protect customers when worms like Netsky
can travel around the world in a matter of hours. Sophos
agrees with Rob that AV updates alone are not the way to
defend against viruses, and we continue to recommend

businesses adopt a layered approach to their virus protection.

Graham Cluley, Sophos Plc, UK

PRODUCT REVIEW
GDATA AntiVirusKit

Matt Ham

GDATA’s AntiVirusKit (AVK) has been reviewed numerous
times by VB, and has an admirable track record over several
years. During this period the scanning engines used by the
product have varied — currently they are supplied by
SOFTWIN (BitDefender) and Kaspersky (KAV). Products
that use engines supplied by other companies can be divided
roughly into two varieties: those which are in effect no more
than a rebadge, with GUI functionality that is almost
identical to that of the other company’s product, and those
which have clearly been constructed independently, making
use of APIs from the engines but with no visual similarities.
AVK is an example of the latter.

Although close to linguistic perfection in its English
language version, AVK is most popular in Germany and
GDATA is primarily a German company. Thus a much wider
range of products is offered through GDATA’s German
website than through the English-language versions of the
site. However, the products of the AVK family are available
on both sites, as is a selection of DVD-related software. The
German site offers such additional applications as German-
language technical dictionaries (for which, admittedly, the
potential international market must be vanishingly small).

Versions of AVK are available for Windows platforms,
SMTP and POP3-based mail gateways under Windows or
Linux and both Samba and SendMail servers. On this
occasion the Windows XP version was reviewed. Since the
detection abilities of AVK were investigated in Virus
Bulletin’s most recent comparative review (see VB, June
2004 p.12), these were not retested except in an ad hoc
fashion when comparing different scanning modes.

INSTALLATION AND UPDATE

There are two main methods of installation for AVK —
depending on whether an electronic or physical version is
available. In the case of the physical medium, the process
begins with a bootable Linux CD, with which the target
machine can be pre-scanned for viruses. This is one of the
more secure methods of determining that a machine is not
infected prior to installation, though it is likely that many
users will have downloaded the electronic version where
this is not a feasible first step.

Installation of the electronic version is by means of an
InstallShield application, thus being very familiar to those
who have installed any significant number of PC
applications during this century. The version used was

16 MB in size, with demo versions and German language

o

versions being of similar size. As expected, a licence
agreement and installation location are followed by the
choice of installation options: Typical, Compact and
Custom. The Custom installation allows deselection of the
on-access monitor component, right-click scanning, Outlook
scanning, POP3 and IMAP scanning and the creation of a
boot CD. At this stage there is no indication of how the
Typical and Compact installations vary. The Typical
installation option was selected for testing.

Next in the installation process are the options to disable
weekly virus definition updates and a weekly scheduled
scan. Neither is particularly advisable to miss in the real
world, but for the purposes of testing the scheduled scan
was disabled. After these options have been chosen,

the installation process completes with file transfers,

taking a negligible period of time and with no reboot
required. Under XP a message bubble appears on the
taskbar when the monitor is installed. Monitor activity is
indicated by a shield and ball icon on the task bar; the
monitor may be configured or simply disabled by right-
clicking on the icon. The fact that the monitor is disabled is
clearly indicated graphically — a small detail, but one which
is often neglected.

In addition to the taskbar, program menu entries are added
for the main scanner, manual, boot CD creation, uninstall,
the GDATA website and the ‘antiviruslab’ website. Although
the default URLSs resolve to German language pages, there
is a clear link to the English language versions
(‘International versions’) from each of these areas. The
application for boot CD creation may be used to create the
physical medium described earlier, allowing for installation
to and scanning of machines elsewhere in the organisation.
This bootable CD should be of great use where machines
are suspected to be infected.

Updates and upgrades are treated separately within the
program, though the means of obtaining them is close to

VIRUS BULLETIN

identical. When first updating, user information must be
entered, including a registration number. When this
information has been processed a login and username are
available, to allow future updates and upgrades. Proxy
servers are fully supported and where dial up connections
require a username and password, these may also be stored
here for ease of update.

WEB PRESENCE AND DOCUMENTATION

As mentioned above, an electronic manual is included with
AVK, in addition to web-based resources. To complete the
documentation, context-sensitive help is available within the
main application.

The main website of GDATA is http://www.gdata.de/ — an
extensive site in German. The English content is much less
extensive and lacks a surprising amount of information —
any form of downloads and support, for example. The
resources here are limited to short product overviews, on-
line purchase of the software and a company profile. Claims
on the site that AVK holds a record for the anti-virus
software with the most awards in the last 18 months may
raise a few eyebrows elsewhere.

The usual additional security-related information is located
at http://www.antiviruslab.com/. This contains virus
descriptions, simple anti-virus advice, product demo
versions and updates. When viruses are detected by AVK,
the virus descriptions may be retrieved from here
automatically for inspection. For machines without a direct
Internet connection this is something of a problem — it
would be a more useful tool if it could be redirected to a
locally replicated version of the database. The reality behind
such a simple convenience, however, might be too great or
complex a task for simple implementation.

The manual is a very good example of a translated technical
document which retains both meaning and readability. The
details of day-to-day operation of AVK are described in
detail, as is the use of a boot CD for installation. Steps
within the InstallShield application are not completely
covered by the manual, however, with the difference
between the Typical and Compact installations remaining a
mystery after having read through the PDF. The ‘How To ..’
section at the end of the manual will be particularly useful
to new users of anti-virus software, while the manual itself
remains clear and concise with little extraneous
information. The PDF nature of the manual has been used
well, with hyperlinks and occasional small graphics being
used to aid in organisation and explanation.

The online context-sensitive help is very much a clone of
this PDF manual, even having the same hyperlinks between

related areas.

17

18

VIRUS BULLETIN

FEATURES

Akin to the manuals, the interface for AVK has a certain
degree of simplicity and a lack of distractions in the areas
where interaction will usually occur. If the main application
is started with outdated virus definitions or without a recent
check for new software functionality, this will be made clear
— this warning can be disabled, although the process for
doing so, a simple check box, is perhaps a little too simple.

Of note in the main GUI is the distinct lack of any drop
down menu on the top of the interface and the presence of
only one Options icon. Links are available to the help
functions and virus descriptions site, and version
information may be inspected, but the lack of duplicated
view and control options is a welcome one. However, users
who rely purely on a keyboard for navigating their scanner
might be less impressed by this.

The views available — Status, Actions, Schedule, Quarantine
and Protocol — are selected by the use of icons on the left-
hand pane. The Protocol section is concerned with report
files, the use of such a unique descriptor being one of the
very few language oddities present.

Status is the default starting point, and gives an overview of
current operation. The on-access scanner and email scanner
status includes information as to which engines are
operating. Program update and virus definition dates are
also given here. The quarantine status and an overall
Security/Performance rating are also displayed in this view.
In each case double-clicking on the appropriate information
enables the editing of related settings. As an example, the
on-access scanner may be set from the default of scanning
all files, to scanning only Office 2000 files — the control here
is not full by any means.

Of the Status settings, the Security/Performance area is
perhaps the most interesting for the insight it gives into
what measures may be used to streamline overheads. At
the very lowest setting the Kaspersky engine alone is used
— with only program data and documents scanned.
Heuristics are still used on this setting. Increasing the
security setting adds scanning of other file types, scanning
on writing of data, scanning with both engines and scanning
of archives (with various sizes scanned at different levels).
These levels use predefined settings — though further
tweaking is available via the Options icon.

The Actions view is that where on-demand scanning is
performed. The areas for scanning are the usual selections
offered — with updates and upgrades also accessible

here though one click. Scanning over a network is fully
supported.

Schedule holds few surprises, the only item of note being
that updates and upgrades may be scheduled here, with a

weekly definition update being the default. This seems a
little infrequent by modern standards and it is slightly odd
that no application upgrade checks are made. Since this lack
of scheduling will cause the upgrade warning to be
triggered regularly, it would seem more sensible simply to
settle for a default upgrade as well as update schedule.
Quarantine and Protocol are even less remarkable.

A certain lack of control over the internal workings of AVK
will have been noted so far, enabling the views to be
remarkably simple to operate. Such control may be
exercised through the Options icon, though this should not
be needed by an average user. When invoked, the Options
icon produces a set of tabbed interfaces, through which
more detailed control may be exerted.

The tabs present cover Monitor, Virus check, Internet
Update, email protection, E-mail check and Status. The
features available here are mostly self explanatory. Of most
interest are the three scanning mode controls — the Monitor,
Virus check and E-mail check tabs, covering on-access, on-
demand and email scanning respectively.

The greatest interest here lies in the treatment of objects,
since two engines are available and heuristics may or may
not be used, as the user sees fit. It is also possible to select
all files to be scanned, scanning by file type or scanning
only of subsets of potentially infectable objects.

This means there are a great number of possible
permutations as far as scanning is concerned. For example,
on-demand scanning may be instructed to use both engines
optimised, both engines with most files checked twice, or
either of the engines in isolation. Added to these choices,
there are four choices for file types to be scanned, three for
priority and for on/off selections available. This amounts to
over 750 available combinations, with the reasons for making
each choice not being within the grasp of an average user.

3

a Wi ¢ hachk

Sistixs Eeckearcad depley = I Carnel

Dkt LE [ClAuschresd B £ E—

fegiad = DF'IIII:\I'! caramd

ETE Dot 1] [| Pospand paoieoied mokies

Elnhis] Fie Dissoiney &

-lm:umd-u windd Fund e 07 . FLIHLOST Ca0 FARTHEWLWATIL

Wi desoied Wl Funloee 07 FUHLIV-1SDR FARTHEWLSATOL

o delectad wWindd Funlovedd?. FUHLOW-ZESE FANTHEWLWATOL

Wl v descted W Frlove D7 FUMLIV-ESIR FANTHEWL'ATOL

e calactarl PtamkabwaniF . FAE-ALHTA FARTHEWLWATOL

W vns dessoied HTML Secustplins . FAE-A1 HTM FAMTHEWLATOL

& celectad FtamHapy T | YESHAFTAHTH FARMTHEWL T 2

W vns dessored FatwHgeTiss | VESHAPTAVEE FAMTHEWLYMTIZ

& e celsctard Pl abiar . VESLYLAS VB FARTHEWL T 2

4"-‘---» dedsoied Pt Lol stier | VEELY] _&WEE FAUNTHEWLWMT OZ

Wi celected oLl atiar [WHELW [WHE FART HEWL T 2

Wi dessied VAE Confi[KAN engi. VAERDLFADLL FANTHEWILWMTOZ

& delectad VEIE Aol w [FH VEEFDLFAHTH FARMTHEWL T 2

4"-‘---» [] VHE Bl AV e . VBESLINIVEE FAMTHEWL T OZ -
i ¥
FAHTHEWILW TOS W SFRETF EXE

o

The centralisation of all these controls is something of a
double-edged sword. Although the remainder of the
application is certainly rendered simpler by the absence of
any great choices except where to scan, the concentration of
options in one place is likely to stun any hapless ‘average
user’ who happens to stumble across them. Labelling them
as ‘advanced options’ is not, in all cases, appropriate giving
the developers something of a quandary as to where to place
the Options icon. Its current position does not seem ideal,
yet no better position springs to mind.

SCANNING

With such a plethora of scanning options available, there
was considerable latitude for investigation of the effects of
these on detection and on scanning speeds. Since both of the
underlying engines are robust, however, the tests of
throughput were considered more likely to be of interest.

First, the VB infected test sets were used for scanning. The
default settings were used, with each change of scanning
option being made in isolation. The options tested were:
both engines using double-checking; only the KAV engine,
only the BitDefender engine, no heuristics and scanning of
all files. In each case logging only was selected as the action
on infection.

The results were remarkable in that the differences were so
small as to be negligible where throughput was concerned.
With viral files it seems that the addition of an additional
engine to the mix does not add appreciable overheads to the
scanning process, even when double checks are specified.
Likewise, the overhead of testing for file type (in a set
where virtually all files are to be scanned) did not add an
appreciable duration to the scans.

Where detection was concerned, all scans gave the same
number of files scanned and detected, apart from the
instance where the BitDefender engine alone was used for
scanning. Here some files were detected by heuristics and a
small number missed. Considering infected files alone, it
would seem, however, that there is no advantage to be had
in not using both engines.

The tests were repeated, this time on a clean install of
Windows XP Professional. This was intended to supply a
mix of file types, some infectable and others not, with a
suitably real-world distribution. On this occasion the
detection rates were all identical at zero, as would be expected.
As far as scanning speeds were concerned, double-checking
was marginally less speedy than optimised double

scanning — though, taking only around 10 per cent longer,
not to an appreciable extent. Removing heuristics from the
equation also operated as expected, with the scanning in this
case taking only 90 per cent of the original time.

VIRUS BULLETIN

Selecting only one engine, however, was the greatest
change. Although the two engines were of similar speed in
scanning, each was able to scan the files in some 60 per cent
of the time taken for both in an optimised combination.
Scanning all files, rather than selecting file type recognition,
added 10 per cent to scanning time — less than might have
been expected given the number of non-executable files
present in a typical Windows XP installation.

CONCLUSION

As has been mentioned, AVK has been developed and
documented remarkably clearly and concisely, making the
product as a whole easy to use for a relative novice. There is
also the degree of control available that will suit the
purposes of a more advanced user.

How to exercise this control, however, is still a matter of
some debate. While the standard settings of the software
may be altered in many ways, most of these have little in the
way of impact on performance. As a more paranoid user, for
example, I would be tempted by the use of double-checking
of all files, rather than the optimised scanning of actively
detected file types. The debate comes over the decision of
whether to use one or two engines, since this is the area in
which there is the greatest impact on scanning performance.
In the most recent VB comparative review either engine
alone would have earned a VB 100% award for AVK.
Neither Kaspersky nor SOFTWIN are infallible, however,
and the double layer of protection afforded by the use of
both is probably a good thing if a user’s hardware can
obviate the increased overheads.

Technical details
Product: GDATA AntiVirusKit.
Test environment: Identical 1.6 GHz Intel Pentium machines

with 512 MB RAM, 20 GB dual hard disks, DVD/CD-Rom and
3.5-inch floppy drive running Windows XP Professional.

Developer: G DATA Software AG, Konigsallee 178 b, D-44799
Bochum, Germany; email b-vertrieb@gdata.de; website
http://www.gdata.de/.

ERRATUM: WINDOWS XP COMPARATIVE

JUNE 2004
I Jume 2004 I

Due to a misinterpretation of the
submittal procedures, an incorrect
version of SOFTWIN’s BitDefender
was submitted for testing in the June
2004 Windows XP comparative review.
Retesting of the correct product
resulted in a VB 100% award for the
product, not the near miss as noted in that review.

weanw,virusbtn.com

20

VIRUS BULLETIN

END NOTES & NEWS

The Black Hat Training and Briefings USA take place 24-29 July
2004 in Las Vegas, NV, USA. See http://www.blackhat.com/.

The 13th USENIX Security Symposium will be held August 9-13,
2004, in San Diego, CA, USA. For details see http://www.usenix.org/

The National White Collar Crime Center’s Economic Crime
Summit takes place 17-18 August 2004 in Dallas, TX, USA. A
federally-funded non-profit organization, NW3C has existed for the
past 23 years to support state and local law enforcement efforts to
prevent, investigate, and prosecute economic and cyber crimes. See
http://www.summit.nw3c.org/.

The 19th IFIP International Information Security Conference
(SEC 2004) takes place 23-26 August 2004, in Toulouse, France.
Topics include intrusion detection, security architectures, security
verification, multilateral security and computer forensics. For more
information see http://www.laas.fr/sec2004/.

The High Technology Crime Investigation Association
International Conference and Expo 2004 takes place 13-15
September 2004 in Washington, D.C., USA. The conference
aims to provide training for all levels of the cyber-enforcement
community from security specialists to law enforcement personnel.
See http://www.htcia2004.com/.

The ISACA Network Security Conference will be held 13-15
September 2004 in Las Vegas, NV, USA and 15-17 November
2004 in Budapest, Hungary. Workshops and sessions will present
the program and technical sides of information security, including risk
management and policy components. Presentations will discuss the
technologies, and the best practices in designing, deploying, operating
and auditing them. See http://www.isaca.org/.

FINSEC 2004 will take place in London, UK on 15 and 16
September 2004, with workshops taking place on 14 and 17
September. Case studies and discussion groups will cover a range of
topics including: Basel II/ IAS and IT security, prevention of online
fraud and phishing scams, integrating technologies into a secure
compliance framework, virus and patch management, and outsourcing
IT security. For full details see http://www.mistieurope.com/.

The 14th Virus Bulletin International Conference and Exhibition,
VB2004, takes place 29 September to 1 October 2004 at the
Fairmont Chicago, IL, USA. For more information about the
conference, including online registration, the full conference
programme (complete with abstracts for all papers and panel
sessions), and details of exhibition opportunities, visit
http://www.virusbtn.com/.

Compsec 2004 will take place 14-15 October 2004 in London,
UK. The conference aims to address the political and practical
contexts of information security, as well as analysing leading edge
technical issues. For details see http://www.compsec2004.com/.

RSA Europe takes place 3—-5 November 2004 in Barcelona, Spain.
For details see http://www.rsaconference.com/.

The 31st Annual Computer Security Conference and Expo will
take place 8-10 November 2004 in Washington, D.C., USA.

14 tracks will cover topics including wireless, management, forensics,
attacks and countermeasures, compliance and privacy and advanced
technology. For details see http://www.gocsi.com/.

The 7th Association of anti-Virus Asia Researchers International
conference (AVAR2004) will be held 25-26 November 2004 in,
Tokyo, Japan. Those wishing to submit papers for the conference
should do so before 30 June 2004. See http://www.aavar.org/.

Infosec USA will be held 7-9 December 2004 in New York, NY,
USA. For details see http://www.infosecurityevent.com/.

Computer & Internet Crime 2005 will take place 24-25 January
2005 in London, UK. The conference and exhibition are dedicated
solely to the problem of cyber crime and the associated threat to
business, government and government agencies, public services and
individuals. For more details see http://www.cic-exhibition.com/.

The sixth National Information Security Conference (NISC 6)
will be held 18-20 May 2005 at the St Andrews Bay Golf Resort and
Spa, Scotland. For details email caroline.davison @nisc.org.uk or
register your interest at http://www.nisc.org.uk/.

ADVISORY BOARD

Pavel Baudis, Alwil Software, Czech Republic
Ray Glath, Tavisco Ltd, USA

Sarah Gordon, Symantec Corporation, USA
Shimon Gruper, Aladdin Knowledge Systems Ltd, Israel
Dmitry Gryaznov, Network Associates, USA

Joe Hartmann, Trend Micro, USA

Dr Jan Hruska, Sophos Plc, UK

Jakub Kaminski, Computer Associates, Australia
Eugene Kaspersky, Kaspersky Lab, Russia
Jimmy Kuo, Network Associates, USA

Costin Raiu, Kaspersky Lab, Russia

Péter Sz6r, Symantec Corporation, USA

Roger Thompson, PestPatrol, USA

Joseph Wells, Fortinet, USA

SUBSCRIPTION RATES

Subscription price for 1 year (12 issues) including
first-class/airmail delivery: £195 (US$310)

Editorial enquiries, subscription enquiries,
orders and payments:

Virus Bulletin Ltd, The Pentagon, Abingdon Science Park,
Abingdon, Oxfordshire OX14 3YP, England

Tel: +44 (0)1235 555139 Fax: +44 (0)1235 531889
Email: editorial@virusbtn.com www.virusbtn.com

No responsibility is assumed by the Publisher for any injury and/or
damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any
methods, products, instructions or ideas contained in the material
herein.

This publication has been registered with the Copyright Clearance
Centre Ltd. Consent is given for copying of articles for personal or
internal use, or for personal use of specific clients. The consent is
given on the condition that the copier pays through the Centre the
per-copy fee stated below.

VIRUS BULLETIN © 2004 Virus Bulletin Ltd,The Pentagon, Abingdon
Science Park, Abingdon, Oxfordshire OX14 3YP, England.

Tel: +44 (0)1235 555139. /2004/$0.00+2.50. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted in any
form without the prior written permission of the publishers.

V)

@Spam supplement

CONTENTS

S1 NEWS & EVENTS

S2 FEATURE
It's a small (spam) world, after all

S4 SUMMARY
ASRG summary: June 2004

NEWS & EVENTS

AOL EMPLOYEE COLLUDES WITH
SPAMMERS

An AOL employee was arrested last month and charged with
selling the company’s customer email list to spammers.
24-year-old AOL engineer Jason Smathers is accused of
stealing at least 92 million screen names from AOL’s
database and selling the information to an associate,
21-year-old email marketer Sean Dunaway. Dunaway, who
was also arrested, is accused both of using the screen names
to promote his own business and of selling the information
on to other spammers — an initial list for $52,000 and a
subsequent updated list for $32,000.

AOL said it discovered the theft during an investigation it
carried out as part of legal action the company was taking
against another large-scale spammer earlier this year. A
statement from the company read: “We deeply regret what
has taken place and are thoroughly reviewing and
strengthening our internal procedures as a result of this
investigation and arrest.”

The news comes only shortly after AOL — as one of the
members of the Anti-Spam Technical Alliance — put forward
a joint proposal aimed at reducing spam, which stated that
spam cannot be stopped unless ISPs take responsibility for
the problem. The Alliance recommends that all ISPs should
run spam filters on outbound mail and prevent their
customers from sending out more than 500 messages per
day, or 100 per hour. Any suspicious accounts, the Alliance

says, should be suspended immediately (as, one assumes,
should employees found to be in cahoots with spammers).

SMS SPAMMER ARRESTED

Russian student Dmitry Anosov made history last month
when he became the first Russian to be sentenced for
sending spam — even though Russia does not currently have
any anti-spam legislation. Anosov was found guilty of
sending unsolicited (and ‘unquotable’) SMS messages to
mobile phones. He has been put on probation for one year
and ordered to pay a 3,000 rouble fine (approx. $100).
Anti-spam legislation is still at the discussion stage in Russia.

7 STEPS TO A SPAM-FREE EXISTENCE?

Email security firm Vircom has issued a seven-step guide to
avoiding spam, after its six-month study revealed (shock,
horror) that responding to spam is the worst thing end users
can do if they wish to avoid clogging their inboxes. Vircom’s
SpamBuster team spent six months analysing the results of
various levels of response to spam, from clicking the links in
the messages, to sending back aggressive responses by
return of message. The “stunning” results of the study
showed that not only is there a dramatic increase in spam
activity in accounts responding to spam, but “aggressive
responses sent to spammers will actually trigger up to a

300 per cent increase in the junk you will get from them!”
No kidding ...

EVENTS

The ISIPP’s International Spam Law & Policies Conference
takes place on 29 July 2004 in San Francisco, CA, USA. For
details see http://www.isipp.com/events.php.

The first Conference on Email and Anti-Spam (CEAS) will
be held 30 July to 1 August 2004 in Mountain View, CA,
USA. For more details see http://www.ceas.cc/.

A meeting of the ASRG will take place during the 60th
IETF, which takes place 1-6 August, 2004 in San Diego,
CA, USA. See http://asrg.sp.am/about/meetings.shtml.

Ferris Research will present a ‘“Webinar’ entitled “Spam
Vendor Shakeouts: Who’s Surviving & Who’s Leading”, on
18 August 2004. The relative strengths and weaknesses of
the leading anti-spam vendors and service providers will be
discussed. See http://www.ferris.com/.

JULY 2004 @

$1

SPAM BULLETIN www.virusbtn.com

FEATURE

IT’"S A SMALL (SPAM) WORLD,

AFTER ALL

Terry Sullivan
QAQD.com, USA

One of the most hotly contested pieces of conventional
wisdom regarding spam centres on the number of unique
spam sources. Some authorities assert that “90 per cent of
spam comes from 200 spam operations” [1], while other
authors decry this as the “#1 Myth” regarding spam [2].

Since few spammers ‘sign’ their messages, it is impossible
to achieve an accurate count of how many spammers are
active at any given moment. However, the number of active
spammers is at least broadly estimable based on
approximately valid spammer-surrogates, such as the URLs
contained within spam messages. Although such an estimate
is necessarily indirect, and therefore somewhat imprecise, it
is sufficient basis for a serviceable approximation.

Somewhat more precise, and potentially much more
interesting, is the question of how spam is distributed
among an arbitrary number of unique sources. An uneven
distribution pattern would imply that, even if the number of
spammers were ‘large’ (arbitrarily defined), then a
disproportionately large amount of spam must necessarily
originate from a disproportionately small number of sources.

Thus it is possible, in some sense, to idealize the problem,
and imagine two extreme scenarios regarding the origins of
spam. At one extreme, the distribution of spam is
approximately uniform, with each spammer accounting for
aroughly equal percentage of total spam sent. In this
scenario, having a precise estimate regarding the number of
spammers is critical to any analysis. At the other extreme, a
comparatively small number of highly prolific spammers
accounts for the bulk of spam received, thus mitigating the
need for a precise estimate regarding their exact number.

Ultimately, three distinct lines of evidence all strongly
support the conclusion that the number of unique spam
sources is indeed relatively small (numbering in the
hundreds, not thousands) and that only a few dozen spam
sources account for the vast majority of spam worldwide.

URL FREQUENCY

Most spam messages are directed at motivating the recipient
to visit a website to place an order. Thus, the URLs
advertised in those messages, and the domain names in
particular, serve as a potentially fruitful and approximately
valid surrogate for spam source. While no one expects an
exact one-to-one correspondence between domain name and

s2 @ JULY 2004

spammer, it is reasonable to expect the distribution of
‘spamvertised’ URLs to mirror approximately the
distribution of spammers.

One of the more intriguing recent entries into the anti-spam
movement is Jeff Chan’s Spam URI Realtime Block List
(SURBL) [3]. Among its various data sources, SURBL
extracts domain names from URLs contained in messages
submitted by SpamCop users. Any domain with at least 20
individual reports is included in the SURBL block list. The
inherent diversity of reporting sources helps both to ensure
breadth of coverage and to minimize systematic sampling
bias. Recently, SURBL has initiated a ‘rollup’ procedure that
all but eliminates the effects of spammers’ inclusion of
random subdomains within the URL.

For analytical purposes, some 326 domain names meeting
the SURBL inclusion criteria during a four-day ‘window’
in the second week of June 2004 were examined. The
most striking thing about the distribution of domains is
that it is profoundly non-uniform. The distribution of
spam domains exhibits a marked power-law characteristic.
Power-law distributions (most often known as Zipf or
Pareto distributions) share one feature in common: the
product of frequency (in this case, spam volume) and rank
(most-prolific to least-prolific) is approximately constant.
A log-log plot of frequency-by-rank describes an
approximately straight line.

Figure 1 shows just such a log-log plot of the SURBL data,
confirming an approximately linear relationship between
frequency and rank. While that relationship is not perfectly
linear, the distribution of spam URLSs in no way resembles a
uniform distribution (shown in the figure as a dotted line).
In this sample, barely five per cent of the URLs account for
over 25 per cent of spam messages reported, and less than
20 per cent of the URLs, numbering just a few dozen in all,

J0 DS DUTon Of 'SpEm .I-L*.-l

10

00 FeGuercy]

" X s
0 ng 1030

00 (rark)

Figure 1: Log-log plot of the SURBL data, confirming an approximately
linear relationship between frequency and rank.

account for over half the total spam. To the extent that many
of these domain names are simple variations on a single
‘root’ name, the number of actual spammers is almost
certainly smaller still.

‘SMALL-WORLD’ PATTERNS

When two strangers meet at a party, and discover during
the course of conversation that they share a friend in
common, it is commonplace for one or both to exclaim,
“Wow, small world!” In reality, there is a less exotic
explanation: the two ‘strangers’ are members of a common
extended social network (which explains how they both
came to be invited to the same party). Discovering ‘small
world’ connections within such locally-organized networks
is dramatically more likely than within a network of truly
random connections.

It is not surprising that ‘small world’ patterns are
commonplace in spammer behaviour and activities.
Consider as an example: domains A through M are all bulk
registered on the same day, through the same registrar, by
the same registrant, and all are subsequently used to
advertise a single product. The obvious (and almost
certainly correct) inference is that all of this activity
originates from a single spammer. Just a few days later,
domains N through Z are similarly bulk registered together
(perhaps via a different registrar) and all are used to
advertise a different product. Taken at face value, this
pattern suggests a maximum of two spammers.

But now imagine that the ‘whois’ data for the registrant of
domains N—Z points to an email address in domain_A. Even
if the address itself is bogus, the use of domain_A requires
knowledge of the existence of domain_A. Thus, two highly
clustered but seemingly unconnected sub-nets ‘join’ to form
a single, interconnected whole. Such examples of
connectedness between clustered nodes is common, even
ubiquitous, among domain names used in spam.

FEATURE EVOLUTION

The 2004 MIT Spam Conference included an empirical
study of the evolution of spam features [4]. Perhaps the
most striking result of that study is that changes to spam
features strongly resemble ‘punctuated equilibrium’ from
evolutionary biology. When analysed in aggregate, spam
features remain remarkably consistent for months at a time,
but then are subject to sudden and dramatic change. (These
results have since been replicated multiple times, with
different feature sets, different time windows, and different
test corpora. Although small fluctuations in the exact values
of the observations inevitably occur, the ‘punctuated
equilibrium’ phenomenon remains unchanged.)

SPAM BULLETIN www.virusbtn.com

A sudden, wholesale shift in spam features is utterly
incompatible with a large number of spam sources. It is
difficult to imagine how a large number of spam sources
would independently and simultaneously come to alter their
tactics in virtually identical ways. However, such a
wholesale shift is entirely consistent with a relatively small
number of spammers, and the observed power-law
distribution of spam origin. Stated differently, if a few
spammers are responsible for the majority of spam, then a
shift in tactics among a few individuals will inevitably result
in a sudden, large variance in spam features.

CONCLUSION

Arguably, none of these lines of evidence alone is sufficient
to support a definitive inference regarding the number of
spammers. When taken together, however, these three sets
of data converge on a single conclusion: that the number
of spammers worldwide is at most a few hundred, and
most spam originates from a maximum of a few dozen
highly prolific sources. For the observed results to reflect
a uniform distribution among a large number of sources,
it would be necessary to posit extraordinary coordination
(and amazingly effective enforcement) among a diverse,
diffuse, globally distributed group. These results are
consistent with the patterns predicted by an uneven
distribution of spam, originating from a relatively small
number of unique sources.

These results have specific implications for the fight against
spam. The uneven distribution characteristic of spam
suggests that great benefits may be obtainable from tightly
focused anti-spam efforts that specifically target the most
prolific sources of spam. Technologically, these results help
to explain the disproportionate success of a computationally
simple project such as SURBL — and suggest that similarly
focused legal remedies, whether civil or criminal in nature,
may also prove effective. Finally, these results illuminate
potentially fruitful avenues for technology R&D efforts. In
particular, robust author-identification technologies have the
potential to provide broad support to both technical and
forensic efforts in the fight against spam.

REFERENCES

[1] Registry of Known Spam Operations,
http://www.spamhaus.org/rokso/.

[2] The 10 Biggest Spam Myths, http://www.clickz.com/
experts/brand/buzz/article.php/3112021.

[3] Spam URI Realtime Block List, http://www.surbl.org/.

[4] The Myth of Spam Volatility, http://www.qaqd.com/
research/mit04sum.html.

JULY 2004 @ S3

SPAM BULLETIN www.virusbtn.com

SUMMARY

ASRG SUMMARY:
JUNE 2004

Helen Martin

The start of this month marked the end of an era as Yakov
Shafranovich announced that, due to increasing time
constraints, he would be stepping down from his position as
ARSG co-chair. This leaves John Levine as sole ASRG
chair. In his final message as co-chair, Yakov posted

a link to the CallerID Internet draft, http://www.ietf.org/
internet-drafts/draft-atkinson-callerid-00.txt.

Phillip Hallam-Baker drew the group’s attention to news of
a spammer who has been given a seven-year prison sentence
for sending 850 million unsolicited emails. Phillip felt that
this case would be the first of many and said that, while this
would not discourage existing spammers, it might help to
slow the rate at which new spammers come to the fore.

Having declared himself to sit firmly in the camp that
believes that the digital signing of the entire bytes of an
RFC2822 message body is too fragile an approach to be of
value, Bob Atkinson revealed his own draft document for
email postmarking. In his own words, this is a draft for
“non-user-level signing of email that supports the ability to
affix domain-related or other signed information to a
message while taking pragmatic steps to be robust in the
face of transformations that occur to messages as they flow
in the Internet.” A long discussion on the proposal and on
the ins and outs of email signing followed. Bob’s draft can
be found at http://www.lessspam.org/EmailPostmarks.pdf.

Jim Fenton pointed the group to a new Internet Draft for a
message-signing protocol, not dissimilar to DomainKeys.
Like DomainKeys the body and selected headers of the
message are signed, with the signature appearing in the
message header. However, in this case the public key
associated with the signature is included as part of the
message and the authorisation of that key is checked with an
element called a Key Registration Server found through the
DNS. The full draft can be viewed at http://www.ietf.org/
internet-drafts/draft-fenton-identified-mail-00.txt.

Jeff Silverman has been getting his family in on the act — he
reported that, while on vacation, his father came up with a
proof that it is not possible to build a 100 per cent effective
spam filter based purely on the content of messages. Jeff
concluded that, since it is impossible to solve the spam
problem by content analysis, some sort of white/black/grey
list solution is required. der Mouse questioned the
mathematical validity of Mr Silverman’s proof, but
concurred with Jeff’s conclusion because, in some cases,
“the only difference between a spam and a ham lies in the
domain of human intent and consent, which are not part of

@ JULY 2004

the content of a message.” Other respondents indicated that,
while ‘spaminess’ cannot depend only on the message
content, the content analysis that is currently deployed has
its place, and that, ultimately, the solution is a broad
combination of mechanisms (including white/black/grey
lists) which will force up the cost of spamming.

Barry Shein had read the FTC’s report on the (non)viability
of a national ‘do not email registry’ (see http://www.ftc.gov/
reports/dneregistry/report.pdf) and found it to be a well-
written summary of current thinking about spam and
spammers and worthy of recommendation for anybody
wanting to get a good idea of “what the nature of the spam
beast really is.” However, he was disappointed by what he
felt was the document’s “defeatist tone” and disagreed that
message authentication is what is needed, laying the
responsibility instead at the feet of the ISPs — “those who
already know who is using their resources”.

After testing the water for potential interest, John Levine
announced a new subgroup for Identity, Accreditation, and
Reputation (iar@asrg.sp.am). The first item of business for
the group will be to create a short charter — John was keen
to point out that the goals of the group are not to build an
IAR system, but to work out what current IAR systems have
in common as a basis for standardisation.

Markus Stumpf provided some food for thought with a post
relating to the speed of deployment of anti-spam strategies.
Markus had asked Peter Koch (who compiles a regional
hostcount of DE domains for RIPE) for some figures —
specifically, a count of MX records normalised to unique IP
addresses. The numbers were: 7,600,000 second-level DE
domains, compared with 144,582 genuine IP addresses used
as MX hosts. Markus made the point that, assuming that
MX hosts and MTAs are of the same order of magnitude,
any anti-spam strategy that attempts to authorise MTAs with
records in domain zones will be considerably more time-
consuming than a scheme that manages to authorise MTAs
per se.

Philip Miller noted that, while the New York Times was
running an article reporting that the ‘big 4’ ISPs (AOL,
Earthlink, MSN, Yahoo!) are lining up to test SPF, CallerID,
and DomainKeys by the end of this year, the article made no
mention of the IETF or the MARID working group that is
moving these specifications forward.

The final quote this month is from Andreas Saurwein,
whose advice was: “Never underestimate what people are
able to believe. Otherwise we would not have people
sending emails to Bill G. in the hopes to receive US$ 50, or
to cellular handset manufacturer X to receive their brand
new free cell phone ... or reply[ing] to spam.”

[As always, an archive of all ASRG postings can be found at
http://wwwl.ietf.org/mail-archive/web/asrg/current/.]

