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ABSTRACT

Bootkit threats have always been a powerful weapon in the 
hands of cybercriminals, allowing them to establish a persistent 
and stealthy presence in their victims’ systems. The most recent 
notable spike in bootkit infections was associated with attacks on 
64-bit versions of the Microsoft Windows platform, which 
restrict the loading of unsigned kernel-mode drivers. However, 
these bootkits are not effective against UEFI-based platforms. 
So, are UEFI-based machines immune against bootkit threats (or 
would they be)?

The aim of this presentation is to show how bootkit threats have 
evolved over time and what we should expect in the near future. 
First, we will summarize what we have learned about the 
bootkits seen in the wild targeting the Microsoft Windows 
platform: from TDL4 and Rovnix (the one used by the Carberp 
banking trojan) up to Gapz (which employs one of the stealthiest 
bootkit infection techniques seen so far). We will review their 
infection approaches and the methods they have employed to 
evade detection and removal from the system.

Secondly, we will look at the security of the increasingly 
popular UEFI platform from the point of view of the bootkit 
author as UEFI becomes a target of choice for researchers in 
offensive security. Proof-of-concept bootkits targeting 
Windows 8 using UEFI have already been released. We will 
focus on various attack vectors against UEFI and discuss 
available tools and what measures should be taken to mitigate 
against them. 

INTRODUCTION

The fi rst bootkits started to emerge on the malware scene as 
cybercriminals realized that bootkit development was a way in 
which they could increase the profi tability of a kernel-mode 
rootkit by widening the range of its targets to include users of 
64-bit machines. This resulted in a trend whereby rootkit 
developers began to focus on bootkits. 

The main obstacle to 64-bit development was the need to bypass 
the Microsoft kernel-mode code signing policy for system 
drivers, and this is the rationale behind modern bootkit 
development. However, the history of the bootkit begins much 
earlier than that.

BOOTKIT EVOLUTION
The fi rst IBM-PC-compatible boot sector viruses from 1987 used 
the same concepts and approaches as modern threats, infecting 
boot loaders so that the malicious code was launched even 
before the operating system was booted.

In fact, attacks on the PC boot sector were already known from 
(and even before) the days of MS-DOS, and these have a part to 
play in our understanding of the development of approaches to 
taking over a system by compromising and hijacking the boot 
process. 

The fi rst microcomputer to have been affected by viral software 
seems to have been the Apple II. At that time, Apple II diskettes 
usually contained the disk operating system. Around 1981 [1], 
there were already versions of a ‘viral’ DOS reported at Texas 
A&M. In general, though, the ‘credit’ for the ‘fi rst’ Apple II virus 
is given to Rich Skrenta’s Elk Cloner (1982–3) [2, 3]. 

Although Elk Cloner preceded PC boot sector viruses by several 
years, its method of boot sector infection was very similar. It 
modifi ed the loaded OS by hooking itself, and stayed resident in 
RAM in order to infect other fl oppies, intercepting disk accesses 
and overwriting their system boot sectors with its own code. The 
later Load Runner (1989), affecting Apple IIGS and ProDOS [2], 
rarely gets a mention nowadays, but its speciality was to trap the 
reset command triggered by the key combination 
CONTROL+COMMAND+RESET and take it as a cue to write 
itself to the current diskette, so that it would survive a reset. This 
may not be the earliest example of ‘persistence’ as a 
characteristic of malware that refused to go away after a reboot, 
but it’s certainly a precursor to more sophisticated attempts to 
maintain a malicious program’s presence.

© Brain damage
The fi rst PC virus is usually considered to be Brain, a fairly 
bulky Boot Sector Infector (BSI), which misappropriated the fi rst 
two sectors for its own code and moved the original boot code 
up to the third sector, marking the sectors it used as ‘bad’ so that 
they wouldn’t be overwritten. 

Brain had some features that signifi cantly prefi gured some of the 
characterizing features of modern bootkits. First, the use of a 
hidden storage area in which to keep its own code (though in a 
much more basic form than TDSS and its successors). Secondly, 
the use of ‘bad’ sectors to protect that code from legitimate 
housekeeping by the operating system. Thirdly, the stealthy 
hooking of the disk interrupt handler to ensure that the original, 
legitimate boot sector stored in sector three was displayed when 
the virus was active [2]. 

The volume of boot sector infectors and infection fi rst began to 
decline when it became possible to change the boot order in setup 
so that the system would boot from the hard disk and ignore any 
left-over fl oppy. However, it was the increasing take-up of 
modern Windows versions and the virtual disappearance of the 
fl oppy drive that fi nally killed off the old-school BSI. 

BOOT INFECTION REBOOTED
Windows – and hardware and fi rmware technology – has moved 
on since Brain and its immediate successors, and boot infection 
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has evolved into new types of attack on operating system boot 
loaders, especially since Microsoft started to use a kernel-mode 
code signing policy in its 64-bit operating systems. 

All bootkits aim to modify and subvert operating system 
components before the OS can be loaded. The most interesting 
target components (Figure 1) are as follows: BIOS/UEFI, MBR 
(Master Boot Record) and the operating system boot loader.

The harbinger of modern bootkits is generally considered to be 
eEye’s proof of concept (PoC) BootRoot [4], which was 
presented at BlackHat 2005. BootRoot was an NDIS (Network 
Driver Interface) backdoor demonstrating the use of an old 
vector as a model for modern OS attacks. 

At BlackHat 2007, Vbootkit [5] was released. This PoC code 
demonstrated possible attacks on the Windows Vista kernel by 
modifying the boot sector. The authors of Vbootkit released its 
code as an open-source project, and that release coincided with 
the initial detection of the fi rst malicious bootkit, Mebroot. 

This unusually sophisticated malware offered a real challenge 
for anti-virus companies because it used new stealth techniques 
for surviving after a reboot. The Stoned bootkit [6] was also 
released at BlackHat, apparently so named in homage to the 
much earlier, but very successful Stoned BSI. 

These proof-of-concept bootkits are not the direct cause for the 
coinciding release of unequivocally malicious bootkits such as 
Mebroot [7]. Malware developers were already searching for 
new and stealthy ways to extend the window of active infection 
before security software detected an infection. In addition, in 
2007 Microsoft Windows Vista enforced a kernel-mode code 
signing policy on 64-bit operating systems, regulating the 
distribution of system drivers. This triggered the resurrection of 
stealth implementation by subversion of the boot process, in the 
form of modern bootkits. 

All known bootkits conform to one of two categories. The fi rst 
group consists of proof-of-concept demonstrations developed by 
security researchers, and the second consists of the real and 
unequivocally malicious threats developed by cybercriminals 
(see Table 1). 

Bootkit classifi cation
The main idea behind bootkits is to abuse and subvert the 
operating system in the course of the initial boot process. At the 

Evolution of proof-of-
concept bootkits

Evolution of bootkit 
threats

eEye BootRoot – 2005

The fi rst MBR-based 
bootkit for MS Windows 
operating systems.

Mebroot – 2007

The fi rst MBR-based bootkit in 
the wild.

Vbootkit – 2007

The fi rst bootkit to target 
Microsoft Windows Vista. 

Mebratix – 2008

The other malware family based 
on MBR infection.

Vbootkit x64 – 2009 [8]

The fi rst bootkit to bypass 
the digital signature checks 
on MS Windows 7.

Mebroot v2 – 2009

The evolved version of the 
Mebroot malware.

Stoned Bootkit – 2009

Another example of MBR-
based bootkit infection.

Olmarik (TDL4) – 2010/11

The fi rst 64-bit bootkit in the 
wild.

Stoned Bootkit x64 – 2011

MBR-based bootkit 
supporting the infection of 
64-bit operating systems.

Olmasco (TDL4 modifi cation) – 
2011 

The fi rst VBR-based bootkit 
infection.

DeepBoot – 2011 [9]

Used interesting tricks to 
switch from real-mode to 
protected mode.

Rovnix – 2011

The evolution of VBR-based 
infection with polymorphic 
code.

Evil Core – 2011 [10]

This concept bootkit used 
SMP (symmetric 
multiprocessing) for 
booting into protected-mode

Mebromi – 2011

The fi rst exploration of the 
concept of BIOSkits seen in the 
wild.

VGA Bootkit – 2012 [11]

VGA-based bootkit 
concept.

Gapz – 2012 [12]

The next evolution of VBR 
infection

DreamBoot – 2013 [13]

The fi rst public concept of 
UEFI bootkit.

OldBoot - 2014 [14]

The fi rst bootkit for the Android 
operating system in the wild.

Table 1: The chronological evolution of PoC bootkits versus 
real-world bootkit threats. 

Figure 1: The system booting fl ow.
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very beginning of the bootup process, the BIOS code reads the 
Master Boot Record at the fi rst sector of the bootable hard drive, 
to which it transfers control. The MBR consists of the boot code 
and a partition table that describes the hard drive’s partitioning 
scheme. Modern bootkits can be classifi ed into two groups, 
according to the type of boot sector infection employed: MBR 
and VBR (Volume Boot Record) bootkits (see Figure 2). The 
more sophisticated and stealthier bootkits we see are based on 
VBR infection techniques.

TDL4 and Olmasco

TDL4 [15] and Olmasco [16] bootkits both target the MBR of 
the bootable hard drive – however, they differ in that TDL4 
overwrites MBR code, whereas Olmasco modifi es the MBR’s 
partition table. Both infection approaches have the same result. 
Malicious components are initialized at boot time in order to 
load the malicious kernel-mode driver from the hidden storage 
area, and thus bypass the Microsoft kernel-mode code signing 
policy enforced on x64 platforms. In Table 2, we show the 
modules stored in the hidden fi le system of the TDL4 and used 
in the boot chain.

File name Description

mbr Original contents of the infected hard drive 
boot sector

ldr16 16-bit real-mode loader code

ldr32 Fake kdcom.dll for x86 systems

ldr64 Fake kdcom.dll for x64 systems

drv32 The main bootkit driver for x86 systems

drv64 The main bootkit driver for x64 systems

Table 2: TDL4 boot components.

Figure 3 summarizes the boot process followed by the TDL4 
bootkit on Windows Vista and Windows 7 operating systems.

Rovnix
Win32/Rovnix is the fi rst known bootkit to target the VBR. Its 
infection routine reads the 15 sectors following the VBR, which 
contain the Initial Program Loader (IPL) code. These sectors are 

compressed and appended to the malicious bootstrap code. The 
resulting code is then written to the 15 sectors that follow the 
VBR, as shown in Figure 4. Consequently, on the next system 
start-up, the malicious bootstrap code receives control.

MBR VBR Bootstrap Code File System Data

VBR Malicious 
Code File System DataBootstrap 

CodeMBR

NTFS bootstrap code
(15 sectors)

Before Infecting

After Infecting

Malicious 
Unsigned 

Driver

Compressed
Data

Figure 4: Win32/Rovnix approach to infection.

When the malicious bootstrap code is executed it hooks the 
Int 13h handler in order to patch ntldr/bootmgr system 
components so as to gain control after the boot loader 

Bootkits

MBR VBR/IPL

MBR Code 
modification

Partition Table 
modification

IPL Code 
modification

BIOS Parameter 
Block modification

TDL4 Olmasco Rovnix Gapz

Figure 2: Bootkit classifi cation by type of boot sector infection.

Load Infected MBR

InfectedMBR is loaded
and executed

Load ldr16 from hidden file 
system

Read BCD

ldr16 is loaded
and executed

Load winload.exe

Substitute EmsEnabled option
with WinPE

Load ntoskrnl.exe, 
hal.dll,kdcom.dll,bootvid.dll 

ant etc.

Distort /MININT option

Call KdDebuggerInitialize1 
from kdcom.dll

Spoof kdcom .dll with 
ld32 or ldr64

Load drv32 or drv64

Continue kernel initialization

Hook BIOS int 13h handler and 
restore original MBR

Original MBR code is
loaded and executed

Load VBR

VBR is loaded and executed

Load bootmgr
Bootmgr is loaded 

and receives control

Figure 3: TDL4 bootkit workfl ow.
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components are loaded. After that it decompresses and returns 
control to the original bootstrap code. 

In order to load its malicious unsigned driver into kernel-mode 
address space and bypass the kernel-mode code signing policy, 
Win32/Rovnix employs the following technique. First, in order 
to propagate itself through processor execution mode switching 
(from real mode into protected mode), it uses the IDT (Interrupt 
Descriptor Table). This is a special system structure which is 
used in protected mode and consists of interrupt handler 
descriptors. The malware copies itself over the second half of 
the IDT, which is not used by the system. Secondly, it hooks the 
int 1h protected mode handler and sets hardware breakpoints so 
as to be able to receive control at specifi c points of the OS 
kernel loading process. By using debugging registers dr0–dr7, 
which are an essential part of the x86 and x64 architectures, the 
malware gets control at some point during the kernel 
initialization and loads its own malicious driver manually, thus 
bypassing the kernel-mode code integrity check.

Gapz

Historically, there are two modifi cations of the bootkit 
Win32/Gapz implementing different infection methods. The 
fi rst version of the malware acted like a traditional MBR 
infector, while the other version employed a rather sophisticated 
stealth approach to infecting the VBR. For this reason, in this 
section we will focus on the latter, more interesting approach. 
What is remarkable about this technique is that only a few bytes 
of the original VBR are affected. The essence of this approach is 
that Win32/Gapz modifi es the ‘Hidden Sectors’ fi eld of the 
VBR, while all the other data and code of the VBR and IPL 
remain untouched. 

The fi eld that is targeted by the malware is located in the 
Volume Parameter Block (VPB), which is a special data 
structure located in the VBR and describing the attributes of the 
NTFS volume. The purpose of the ‘Hidden Sectors’ fi elds is to 
provide an offset in sectors to the Initial Program Loader (IPL) 
from the beginning of the volume, as illustrated in Figure 5. 

MBR NTFS File SystemIPLVBR

NTFS Volume
0x200 0x1E00

Number of
“Hidden Sectors”

Number of
“Hidden Sectors”

Figure 5: ‘Hidden Sectors’ fi eld of BPB.

The IPL code is loaded and executed by the VBR: thus, by 
modifying value of the ‘Hidden Sectors’ fi eld, the malware is 
able to intercept execution fl ow at boot time, as shown in Figure 
6. The next time the VBR code is executed, it loads and 
executes the bootkit code instead of the legitimate IPL. The 
bootkit image is written either before the very fi rst partition or 
after the last partition of the hard drive. 

MBR NTFS File SystemIPLInfected 
VBR

NTFS Volume

0x200 0x1E00

Hard Drive

Modified value of number of “Hidden Sectors”Modified value of number of “Hidden Sectors”

Bootkit

Figure 6: Layout of a hard drive infected by Win32/Gapz.

The main purpose of the bootkits considered above is to load 
and pass control to the malware’s kernel-mode module without 
being noticed by security software. The kernel-mode module of 
Win32/Gapz isn’t a conventional PE image, but is composed of 
a set of blocks with position-independent code, each block 
serving a specifi c purpose as described in Table 3.

Block # Implemented functionality

1 General API, gathering information on the hard 
drives, CRT string routines, etc. 

2 Cryptographic library: RC4, MD5, SHA1, AES, 
BASE64, etc.

3 Hooking engine, disassembler engine.

4 Hidden storage implementation.

5 Hard disk driver hooks, self-defence.

6 Payload manager.

7 Payload injector into processes’ user-mode 
address space.

8 Network communication: data link layer.

9 Network communication: transport layer.

10 Network communication: protocol layer.

11 Payload communication interface.

12 Main routine.

Table 3: Win32/Gapz blocks description.

Win32/Gapz: hidden storage implementation

So as to store payload and confi guration information secretly 
Win32/Gapz implements hidden storage. The image is located 
in a fi le named

‘\??\C:\System Volume Information\{XXXXXXXX-XXXX-
XXXX-XXXX-XXXXXXXXXXXX}’

where X signifi es hexadecimal numbers generated based on 
confi guration information. The fi le is formatted as a FAT32 
volume.

To keep the information stored within the hidden storage secret, 
its content is encrypted. The malware utilizes AES with key 
length 256 bits in CBC (Cipher Block Chaining) mode to 
encrypt/decrypt each sector of the hidden storage. As IV 
(Initialization Value) for CBC mode, Win32/Gapz utilizes the 
number of the fi rst sector being encrypted/decrypted. Thus, even 
though the same key is used to encrypt every sector of the hard 
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drive, using different IVs for different sectors results in different 
ciphertexts each time.

Win32/Gapz: network communication

In order to communicate with C&C servers, Win32/Gapz 
employs a rather sophisticated network implementation. The 
network subsystem is designed in such a way as to bypass 
personal fi rewalls and network-traffi c-monitoring software 
running on the infected machine. These features are achieved 
due to customized implementation of TCP/IP stack protocols in 
kernel mode, the implementation being based on the miniport 
adapter driver. According to the NDIS specifi cation, the 
miniport driver is the lowest driver in the network driver stack 
– thus, using its interface makes it possible to bypass 
network-traffi c-monitoring software, as shown in Figure 7.

Miniport adapter driver

Intermediate driver

Protocol driver
(tcpip.sys)

Filter 1 driver

Filter N driver

...
...

...

Security software usually 
operates at the level of

protocol or intermediate drivers

Win32/Gapz communicates 
directly to miniport adapter

Win32/Gapz
Network 
packet

Figure 7: Win32/Gapz custom network implementation.

The malware obtains a pointer to the structure describing the 
miniport adapter by inspecting the NDIS library (ndis.sys) code 
manually. The routine responsible for handling NDIS miniport 
adapters is implemented in block #8 of the kernel-mode module. 
The architecture of the Win32/Gapz network subsystem is 
presented in Figure 8.

Win32/Gapz implementation OSI Model

HTTP protocol
(block #10)

TCP/IP protocol
(block #9)

NDIS miniport wrapper
(block #8)

Application/Presentation 
Layer

Network/Transport Layer

Data Link Layer

Figure 8: Win32/Gapz network architecture.

This approach allows the malware to use the socket interface to 
communicate with the C&C server without being noticed.

Communication with C&C servers is performed over HTTP. 
The malware enforces encryption to protect the confi dentiality 
of the messages being exchanged between the bot and C&C 
server and to check the authenticity of the message source (to 
prevent subversion by commands from C&C servers that are not 
‘authentic’ – a technique often used by security researchers to 
disrupt a malicious botnet). The main purpose of the protocol is 
to request and download the payload and report the bot status to 
the C&C server.

UEFI SECURITY
UEFI stands for Unifi ed Extensible Firmware Interface: the 
specifi cation was originally developed to replace legacy BIOS 
boot software. The boot process in UEFI is substantially 
different from that in the legacy BIOS environment: there is no 
longer any MBR and VBR code, which on older systems 
eventually load bootmgr and winload; these components are 
replaced with the UEFI boot code. Instead of an MBR-based 
partitioning scheme, the GPT (GUID Partition Table) 
partitioning scheme is used as the layout of the hard drive. The 
UEFI bootloader is loaded from the special partition, referred to 
as the EFI System Partition, formatted using the FAT32 fi le 
system (FAT12 and FAT16 are also possible). The path to the 
bootloader is specifi ed in a dedicated NVRAM variable. For 
instance, for Microsoft Windows 8, the path to the bootloader 
looks like this: ‘\EFI\Microsoft\Boot\bootmgfw.efi ’. The 
purpose of this module is to locate the OS’s kernel loader 
(winload.efi  for Microsoft Windows 8) and transfer control to it. 
The functionality of winload.efi  is essentially the same as that of 
winload.exe – that is, to load the OS kernel image.

UEFI bootkit: Dreamboot

As noted in Table 1, Dreamboot is the fi rst public 
proof-of-concept bootkit targeting UEFI and Windows 
8. The bootkit infection results in the replacement of the 
original UEFI bootloader with a malicious substitute. 
When this is executed by UEFI boot code, it looks for the 
original bootloader (bootmgfw.efi ), loads it and hooks the 
Archpx64TransferTo64BitApplicationAsm routine. The hook 
allows it to receive control at the time when the OS kernel 
loader – winload.efi  – is in memory, but before the loader is 
executed. At this point the malware sets up another hook in 
winload.efi  on the OslArchTransferToKernel routine: the name 
is self-explanatory. The latter hook is triggered when the OS 
kernel image has been mapped into system address space and 
Dreamboot patches it in order to disable kernel-mode security 
checks (PatchGuard and so on). Figure 9 summarizes the 
Dreamboot boot process.

FUTURE THREATS AND FUTURE TOOLS 
Implementing forensics procedures for the UEFI platform is a 
problem because popular forensic software is not covered. 
However, proof-of-concept UEFI bootkits have already been 
presented at many security conferences in the last few years, 
some of them with source code. In the previous case of bootkits 
targeting legacy bootstrap code in the MBR, it was two years 
from the release of the fi rst publicly known PoC code to 
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malware samples being seen in the wild. The motivation for 
attacks on UEFI is growing every year because the number of 
PCs and laptops with a legacy BIOS is decreasing year on year. 
The number of people using Microsoft Windows 8 is also 
growing, which means that the number of users with active 
Secure Boot is increasing. 

UEFI malware infection can attack by way of a number of 
different vectors:

• The fi rst type uses the same approach as the Dreamboot 
bootkit, based on replacing the original Windows Boot 
Manager and adding a new boot loader (Figure 10).

• The second approach is by directly abusing the UEFI DXE 
(Driver execution Environment) driver [17] (Figure 11).

• The third method is to patch the UEFI ‘Option ROM’: for 
example, the DXE Driver in Add-On Card (Network, 
Storage …), which isn’t embedded in the fi rmware volume 
in ROM [18, 19] (Figure 12).

The Secure Boot implementation in the latest version of 
Microsoft Windows protects the booting process from malware 

UEFI boot code

UEFI boot loader
(bootmgfw.efi)

Load kernel and boot 
start drivers

winload.efi

Load UEFI boot loader 
(\EFI\Microsoft\Boot\bootmgfw.efi)

Hook 
OslArchTransferToKernel

Hook 
Archpx64TransferTo64BitApplicationAsm

Patch kernel image

Figure 9: Dreamboot boot process.

Figure 11: UEFI infection by abusing DXE driver.

Figure 12: Types of UEFI bootkit infection.Figure 10: UEFI infection by replaced boot loader.
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modifi cations. However, researchers are trying to understand the 
methods attackers could use to bypass Secure Boot exploiting 
vulnerabilities in BIOS/UEFI implementations in order to infect 
the machine, and to mitigate against them [20, 21].

CHIPSEC
Intel has developed a CHIPSEC framework especially for BIOS/
UEFI security assessment. This is an open-source framework for 
analysing the security of PC platforms covering hardware, 
system fi rmware including BIOS/UEFI, and the confi guration of 
platform components. It allows the creation of a security test 
suite, security assessment tools for various low-level components 
and interfaces, as well as forensic capabilities for fi rmware. 
CHIPSEC is a framework developed in Python but with some 
parts coded in C++ for deeper integration with the hardware at 
operating system level. Besides Microsoft Windows and Linux 
operating systems, CHIPSEC can also run from a UEFI shell. 
The framework architecture is presented in Figure 13.

Figure 13: CHIPSEC framework architecture.

The CHIPSEC framework can be used as a security testing tool 
for searching for BIOS and UEFI fi rmware vulnerabilities. Also, 
the functionality of this tool covers forensic approaches for live/
offl ine fi rmware analysis from CHIPSEC modules [22]. This 
tool includes modules for hidden fi le system forensics directly 
from the UEFI shell without the need to boot the operating 
system. In addition, CHIPSEC has basic heuristics for detecting 
BIOS/UEFI bootkit infection.

HIDDEN FILE SYSTEM READER TOOL
Implementing hidden storage makes forensic analysis more 
diffi cult because:

• Malicious fi les are not stored in the fi le system (diffi cult to 
extract)

• Hidden storage cannot be decrypted without malware 
analysis

• Typical forensic tools do not work out of the box.

To tackle the problem of retrieving the contents of the hidden 
storage areas, one needs to perform malware analysis and 
reconstruct the algorithms used to handle the stored data. In the 

course of our research into complex threats, we developed a tool 
some time ago [23] which is intended to recover the contents of 
hidden storage used by such complex threats as:

• TDL3 and its modifi cations

• TDL4 and its modifi cations

• Olmasco

• Rovnix.A

• Rovnix.B

• Sirefef (ZeroAccess)

• Goblin (XPAJ)

• Flame (dump decrypted resource section)

The tool is very useful in incident response, threat analysis and 
monitoring. It is able to dump the malware’s hidden storage, as 
well as to dump any desired range of sectors of the hard drive. 
A screenshot of the tool’s output is shown in Figure 14.

Figure 14: Hidden fi le system reader.

CONCLUSION

Microsoft claimed that the release of the Secure Boot technology 
heralded the end of the bootkit era. In practice, Secure Boot just 
switched the focus of the attackers towards a change in infection 
strategy. There are still many active machines in the world with 
old operating systems where Secure Boot is not supported. For 
non-targeted attacks, just intended to build botnets, 
cybercriminals will continue to use old bootkits and bootkit 
techniques for MBR/VBR infection until a critical mass of users 
have switched to modern hardware and operating systems. 

In targeted attacks on Microsoft Windows 8, however, attackers 
will use vulnerabilities in the most common BIOS/UEFI 
fi rmware. The security life cycle for BIOS/UEFI is totally 
different from that in operating systems or popular software. 
This presents a problem because the BIOS/UEFI fi rmware on 
end-users’ machines has sometimes never been updated since 
the fi rst day they were used. We do not see a unifi ed updating 
process embedded in the operating system because different 
fi rmware vendors use different schemes for the delivery of 
updates. Modern security software does not yet operate at the 
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level of BIOS/UEFI fi rmware protection. In the opinion of the 
authors of this paper [24], an interesting future lies ahead, 
possibly starting with targeted attacks: who’s to say that they 
haven’t already started?
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