
THE PLUGINER – CAPHAW PUN & TAN

35VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

THE PLUGINER – CAPHAW
Micky Pun & Neo Tan

Fortinet, Canada

Email {mpun, ntan}@fortinet.com

ABSTRACT
Often identifi ed by its abilities to spread through Skype and inject
bank pages, Caphaw, also known as Shylock, has been a quiet, yet
persistent player on the botnet scene since 2011. Caphaw is a rare
kind of botnet in that it was released with complete functionality.
It stands in great contrast to most botnet malware that is released
into the wild while still in the testing phase. The bold nature of the
campaign (an easily identifi able entry point code sequence) was
backed up by Caphaw’s intricately designed code structure which
made it hard for analysts to create a complete profi le of its
malicious behaviour with various obfuscation and anti-sandbox
techniques. In this article, we will discuss the technical aspects of
handling the anti-reversing strategies devised by the malware
writer and evaluate how Caphaw could become a permanent
fi xture in the botnet scene in the future.

BRIEF HISTORY OF CAPHAW
Our research team fi rst received a sample of Caphaw in late
October 2011. In this version, the Caphaw client was extracted
from the .data section of a companion memory injector and
written into the memory of explorer.exe. Since every Caphaw
sample includes its build version in order to identify itself to
different instances through a named pipe, we have been able to
build up a decent picture of major developmental milestones (see
Figure 1).

The 1.0.x versions of Caphaw client consisted only of master
mode and slave mode. Some of the modules, namely backsocket
and dllhook, were bundled together with the Caphaw client in
the custom packer. Some other capabilities, such as VNC and
archiver, could be downloaded from the Internet later, after the
confi guration fi les enabled them. Most of the strings were not
encrypted, hence they were visible after unpacking.

In the 1.4.1 version, the memory injector was combined into the
Caphaw client, hence the malware also needed to handle the

situation when the Caphaw DLL client was not invoked by a
memory injector. It also added anti-VM and anti-debug
mechanisms so that the malicious payload would not trigger if it
detected that it was running in a sandbox or debugging
environment. Plug-ins were also introduced in this version to
remove the limitations of the original ‘modules’ system. The
introduction of plug-ins provided a more convenient way to
introduce new functionalities and standardize communication
with the master between different modules. In addition, the
malware author created a test mode in order for the developer to
be able to test the module and plug-in after download without
being bothered by the newly added anti-VM and anti-debugging
features.

Caphaw showed signs of stability when version 1.7.x was
introduced in February 2013. No major structural changes were
made at this point. Even later, in version 1.8.x, there were only
slight changes to the traffi c data pattern and additional code
obfuscation. One obvious change in this version was the
improvement to the custom encryption method of strings to
eliminate wasted spaces (four zero bytes) at each encrypted string.

Other than modifi cations to Caphaw which allow it to run more
stably on an infected host, some small changes can be seen in its
confi guration parsing through different versions. Some older
features (e.g. /hijackcfg/backconnect, /hijackcfg/oskill) have
become obsolete in later versions, while new features (e.g. /
hijackcfg/upload_fi le, /hijackcfg /grabemails/, /hijackcfg/
upload_fi le) have been added in newer clients. Detailed
information on the available confi guration in different versions is
listed in Appendix 2.

BASIC FEATURES
The Caphaw client is a DLL which can easily be identifi ed by its
entry point code where it checks the fdwReason parameter. The
earlier version of Caphaw was packed in a memory injector, so it
would only continue to execute the malicious DLL if it
recognized itself being loaded into the virtual memory space by
the LoadLibrary API. In the later versions, Caphaw used a more
advanced custom packer and integrated the memory injected into
the DLL client. The entry point of the DLL client refl ects the fact
that the malware is also capable of being a standalone
memory-injecting payload based on the fdwReason value.

Newer versions of Caphaw have been improving their condition
checking so that malicious behaviour is not launched in

Figure 1: Caphaw version timeline.

THE PLUGINER – CAPHAW PUN & TAN

36 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

unintended environments. The main idea of the payload starts
with setting up named pipes for inter-process communication,
paving the way for a multi-thread system operating the client.
The older versions consist only of a master mode and a slave
mode, where the master (shown in Figure 2) is responsible for
communication with the C&C server while interacting with the
slaves to run tasks that are enabled by the confi guration fi le.
Later versions also introduced ‘plug-ins’, which have
standardized communication with the master, making plug-ins
compatible with different versions of the master.

Prior to launching the master, Caphaw will determine whether it
has been injected into to a specifi c browser (‘iexplore.exe’ or
‘fi refox.exe’). On hooking a recognized browser, it starts
individual threads on the master to cover four areas of C&C
server communication:

1. Pinging the C&C server

2. Sending back computer information

3. Downloading and parsing the confi guration fi le and
carrying out tasks

4. Logging (errors or master, slave, plug-in messages).

Information sent to the C&C server is encrypted with RC4 using
a key (known as ID here) generated based on the host’s
environment. Then all of the traffi c is encapsulated with the SSL
protocol. A few default C&C server domains are included in the
code and the malware uses a special generator to create a subnet
name assuming that the DNS server will respond with an active
C&C server IP address. When the right condition is reached on
the server side, the C&C server will send back a confi guration
fi le encrypted with base64 and RC4 using the unique ID
mentioned previously as the key.

INFORMATION COLLECTION
To encrypt the data that is sent, the malware author uses a
custom algorithm to create a unique identifi cation number. The
algorithm can be described as follows:

• Data = CustomHashingCpuid [8 bytes] +
VolumeSerialNumber [4 bytes] + ComputerName [? Bytes]
+ SecurityIdentifi er [? Bytes]

• ID = CustomOrderSwapping(MD5sum(Data))

Since executing cpuid with different values stored in EAX
yields different results, the malware author devised a wise plan
to hash important information into eight bytes – see Listing 1.

The malware uses the unique ID to encrypt the other
information sent to the C&C server. Table 1 depicts the
parameters and their request values (e.g. key=a323e7d52d&id=
012F789B3884E1400F7F5D954521F85B&inst=master&net=us
a&cmd=cfg&time=2013.05.15+08%3a02%3a29.421).

The key is generated using the following algorithm:

Byte input[4] = hard-coded_value;
temp = sprintf(‘%u%u%u%u’,input[0],input[1],
input[2], input[3]);
temp = lldiv(temp , 0x3) // long unsigned division
temp = sprint(‘%I64u’,atoi64(temp))
temp = md5sum(temp)
temp = md5sum(temp[0..9])
result = temp[0-4]

The hard-coded value for generating the key is the build time of
the malware.

The malware will also generate a detailed report on the victim’s
computer if the client determines that this is the fi rst time the

Figure 2: Caphaw overview.

THE PLUGINER – CAPHAW PUN & TAN

37VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

Func CustomHashingCpuid
For (i = 0 to 1): ;Get vendor ID and Processor Info and Feature Bits
 CPUID(i)
 Result[0..3] ^= eax

 If i == 1:
 Ebx &= 0xFFFFFFh //store with processor’s additional feature info
 Result[0..3] ^= ebx
 Result[4..8] ^= ecx
 Result[4..8] ^= edx

For (i = 0x80000002h to 0x80000004h): ;Processor Brand String
 CPUID(i)
 Result[0..3] ^= eax
 Result[0..3] ^= ebx
 Result[4..8] ^= ecx
 Result[4..8] ^= edx

 return Result

Listing 1: The malware author devised a wise plan to hash important information into eight bytes.

Parameter Length
(bytes)

Description

key 5 Using a custom algorithm to render a fi ve-byte number from a hard-coded number in the malware binary

id 32 Unique ID generated based on the infected host’s information

Also used as RC4 key

inst 5–8 Installation type which affects how the client parses and executes the downloaded fi le

1. master

2. slave

3. pluginer

net N/A Hard-coded botnet name

cmd 3–4 Command

1. log

2. ping

3. cfg

w N/A Message type

1. fi leupload

2. cmpinfo

3. sols

4. rqt

bt 23 Build time (hard coded)

version 11 Build version (hard coded)

time 23 Current time

jt N/A Job time (in seconds)

Current time minus initial infection time

Table 1: Information sent back to the C&C server.

THE PLUGINER – CAPHAW PUN & TAN

38 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

malware has run on the machine. The report will be encrypted
slightly more simply than the other communications and sent
back to the server with the command ‘cmd=log&w=cmpinfo’.
This contains extended details of the infected host. The list is
surprisingly thorough; we will list just some of the more
interesting parts:

• OS version, serial and CDKey

• CPU, RAM information

• File system structure and available space

• Computer name, user name and privileges

• Code pages – Windows character encoding

• Browser version

• List of anti-malware products (the relationships between the
anti-malware value and the process names are shown in
Appendix 1)

• Whether it is running in a virtual machine

• Certain local executable fi le information, including:
userinit.exe, cftmon.exe, vsdrv.exe, etc.

• List of running services

• List of running processes

• List of installed programs

• Snapshots of register values (EAX, EBX, ECX, EDX)

Figure 3 shows an example of the report. As you can see,
AntiMalware=VMware here, since the bot considers the
sandbox technique to be a kind of anti-virus method. Besides
looking for a sandbox environment, it also scans through every
current process to fi nd matches of other anti-virus products. A
complete list is shown in Appendix 1.

The purpose of this is obviously to draw a detailed description
of the victim for more precise or tailored payloads/plug-ins to
attack.

After the initial report, it also tries to search for a bitcoin wallet
in some known directories and upload it using w=rqt if it fi nds
one. This attack can only affect an unprotected wallet fi le, since
it doesn’t check whether the fi le is encrypted or not.

ANTI-DEBUG/ANALYSIS TRICKS
The following strategy is employed to obstruct reverse
engineering of the malware:

1. Caphaw has demonstrated an effective technique of
obstructing static analysis by encrypting strings such as
library names and condition constants using a custom

encryption routine and encoding API names using their
hashing values. With a low probability of collision on
string name hashes, the API call addresses can easily be
retrieved by generating the hash of each API name in the
import table and retrieving the API call address when a
match is found. This method can avoid revealing the API
name strings. Besides, with all other critical string
information encrypted, the analyst can only predict the
function of the routines by looking at the numeric values
and call follows, thus, static analysis is nearly impossible
(see Figure 4).

2. Table 2 depicts the tests the malware uses to detect virtual
machine (VM) environments. For example, by iterating
the full module name path returned by the
ZwQuerySystemInformation API, it can detect a VM
environment by detecting the existence of a known hash
of a known VM fi lename (such as vmscsi.sys) with the
hashes of all module names. If a sandbox environment is
detected, the malware will delete itself and exit the
process.

3. Unlike most malware, Caphaw has dedicated a huge
amount of code to condition checking to ensure that the
payload is deployed under the exact conditions intended.
Buried in a massive amount of obfuscated code,
recovering all the capabilities of this malware is rather
time consuming and could easily be missed.

In the process of reversing the code, we discovered that the
author had left a few backdoors open for testing the malware.
When executing the malicious routine with these special
arguments, it will execute the client in different modes. The
malware will fi rst check if the local time is within two hours of
the malware build time. If this is the case, it will go further and
check whether the ‘-testing’ and ‘-vm’ arguments are provided
in the command. If these conditions are met accordingly, the
malware will not release any payload, or trigger the anti-VM
detection routine.

COMMUNICATION WITH C&C SERVER
The initial list of C&C server domains is encrypted in the
binary. However, Caphaw uses a special technique to hide the
active server IPs. The life of the domains is usually very short –
it usually ranges from a couple of hours to one or two days –
and on the client side, it generates the full server domains and
request URLs by using the hard-coded ones in the following
format: [random generated prefi x].[hard-coded
domain]?r=[random number]. All of the communication traffi c
goes through C&C server port 443 using the SSL protocol.

Figure 3: A small fraction of the initial report.

THE PLUGINER – CAPHAW PUN & TAN

39VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

Figure 4: Code snippet showing how the API is resolved by using its hash value.

Figure 5: The malware compares the difference between the current time and the build time to two hours (7,200 seconds).

THE PLUGINER – CAPHAW PUN & TAN

40 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

Targeted virtual
environment

Detection method

VMware

Test 1: (system module check)

Use the ZwQuerySystemInformation API to obtain a list of system modules. Iterate through the list and
attempt to match the hash of the system module with the hash of any of the following strings:

• vmhgfs.sys

• vmx_svga.sys

• vmxnet.sys

• vmmouse.sys

• vmscsi.sys

• vmdebug.sys

Test 2: (running process check)

Match the hash of a running process with the hash of the following strings:

• vmwarerray.exe

• vmwareuser.exe

Test 3: (registry value check)

Check if any of the following registry entries exist and contain the string ‘VMware’ at ‘SystemProductName’
and ‘SystemManufacturer’:

• HARDWARE\DESCRIPTION\System\BIOS

• SYSTEM\ControlSet001\Control\SystemInformation

Virtual Box

Test 1: (system module check)

Use the ZwQuerySystemInformation API to obtain a list of system modules. Iterate through the list and
attempt to match the hash of the system module with the hash of any of the following strings:

• vboxvideo.sys

• vbocsf.sys

• vboxdisp.dll

• vboxmouse.sys

• vboxguest.sys

Test 2: (running process check)

Match the hash of a running process with the hash of the following strings:

• vboxservice.exe

• vboxtray.exe

Test 3: (registry value check)

 Check if any of the following registry entries exist and contain the string ‘VirtualBox’ at ‘BIOVersion’ and
‘SystemManufacturer’:

• SYSTEM\ControlSet001\Control\SystemInformation

Virtual PC

Test 1: (system module check)

Match the hash of a running process with the hash of the following string:

• vmsrvc.exe

• vpcmap.exe

Table 2: Sandbox detection methods.

THE PLUGINER – CAPHAW PUN & TAN

41VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

The pseudocode of the sub domain name generation is as
follows:

CHAR_TABLE = {abcdefghijklmnopqrstuvwxyz0123456789};
while (char_count != 0)
{
 generated_sname += CHAR_TABLE[calcRandom(0x24)];
 char_count --;
}
int calcRandom(int char_count_max)//generates
random number under char_count_max
{
 v1 = randomDGASeed;
 if (!randomDGASeed)
 v1 = gettickcount();
 randomDGASeed = 214013 * v1 + 2531011;
 return ((randomDGASeed >> 16) & 32767) / 32767.0
* char_count_max;
}

The char_count is also generated randomly using the
calcRandom() function with char_count_max obtained from the
following function with a fi xed argument: a1 = 0xC and
a2=0x32. Therefore, char_count_max is constrained between
0xC and 0x12.

int generateCharCount (int a1, int a2)
{
 return calcRandom(2 * a2 * a1 / 100) + a1 * (100
- a2) / 100;
}

The thread responsible for communicating keeps generating
domain names and querying them until it gets a response (see
Figure 6).

Then it sends the message to the response IP address in SSL
protocol. A sample message in plaintext is as follows:

key=a323e7d52d&id=012F789B3884E1400F7F5D954521F85B
&inst=master&net=usa&cmd=cfg&time=2013.05.15+08%3a
02%3a29.421

It is then encrypted using RC4 algorithm with the key being the
domain it was querying appended to the fi xed string ‘ca5f2abe’
(e.g. ‘bzdfv2bjw791h.e-protections.suca5f2abe’). However, in

the current version, the initial report is encrypted using a
different RC4 key generated by a simpler format which appends
a hard-coded string to the C&C IP address (e.g.
‘189.127.48.11bzdfv2bjw791h’). Then it is encoded with
base64, and posted to the server with ‘z=’ in front of the
encoded message. If the ‘cmd’ variable is equal to ‘cfg’, the
C&C server will send back the base64 result of the
confi guration message, subsequently encrypted by RC4
algorithm with a different key. The key is the string of the ‘id’
value generated on the victim’s environment. After decryption,
the confi guration is in XML format. Listing 2 (on the next page)
shows a sample confi guration.

As you can see, the root level tag ‘hijackcfg’ suggests that this
confi guration is mainly for the hijacking process. With different
install modes, the bot parses different parts of the confi guration.

Tag Inst = Master Inst = Slaver Inst = Pluginer

Botnet   

Timer_cfg   

Timer_log   

Timer_ping   

Url_server   

Archiver 

Url_update 

Vnc  

Httpinject   

Grabemails 

Plugin 

Table 3: Comparison of parsing tags in different modes.

The XML confi guration is then parsed and saved into the named
pipe. In this example, the ‘botnet’ tag shows the name of the
botnet. The ‘timer’ tags are the retry timeout settings. The
‘url_server’ tag stores the latest C&C server URLs. The
‘archiver’ tag contains a download address of a legitimate
packer tool named ‘RAR 3.00’, which is used to pack the botnet
client into a size of around 500KB with the command line
options ‘a -r -dh -ep2 -v500k’. The ‘url_update’ tag contains the

Figure 6: Retrying generated URLs.

THE PLUGINER – CAPHAW PUN & TAN

42 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

address of the update fi le of this bot. Therefore, the bot has two
ways of updating its C&C server list: one from the url_server
tag, and one from the update of the bot’s binary. This makes
tracking solely the downloading of the cfg fi le meaningless,
because someone could just recompile the bot with a new C&C
server list to get rid of the tracker.

Then there are the download modules. These modules can be
either installed or uninstalled according to whether the ‘value’ is
‘on’ or ‘off’. The ‘vnc’ tag contains the download address of the
vnc module. The ‘httpinject’ tag contains the download address
of the script fi le which is to be injected into the web pages. And
the ‘grabemails’ tag may contain the download address of the
module which can harvest users’ email address books.

The MD5 is for pre-download comparison – if a module already
exists in the system, it will not be downloaded again. The
‘plugin’ tags contain the download addresses of the DLLs to be
loaded into the injected process. To be distinct from the
executable modules, the DLLs are always loaded via the
exported function in order, ‘Init’ then ‘Start’. And the ‘cmd’
values are fed as the command line options of the DLL.

Notice that most of the ‘URLs’ in this confi guration are missing
domain names. The bot generates domains using the same
algorithm as described previously, appends ‘r=[random]’ to the
end of the URL, and sends a Get message to try to download the
fi le (e.g. https://bzdfv2bjw791h.netprotections.cc/fi les/010-
update-2ds5b9dp3db5/msg.gsm?r=1312723419). In the most
recent version of the malware (at the time of writing), the
message is changed to POST with an empty z= value.

For keeping track of the updated C&C servers, the parsed url_
server and the httpinject information is also saved into a local
fi le in %AppData% with a random name (e.g. 1937592302.dat)
and encrypted using the RC4 algorithm with the id (as seen in
Table 1). The following is a sample content of the decrypted .dat
fi le:

botnet=usa
injects=/fi les/010-update-9gdrdhb30/hidden7770777.jpg
server1=https://ehistats.su/ping.html
server2=https://sysinfo.cc/ping.html
server3=https://netprotections.cc/ping.html
server4=https://sysinfonet.cc/ping.html
server5=https://iestats.cc/ping.html
server6=https://ieguards.su/ping.html

INLINE HOOKING AND ANTI-HOOKING
The malware injects itself into other active processes. If it fi nds
out that the host process is either iexplore.exe or fi refox.exe, it
will inline hook the communication APIs used by the browser
processes, then contact the C&C server with the ‘cmd’ value set
to ‘cfg’ in order to get the latest confi guration. Otherwise, if the
host process is not explorer.exe, userinit.exe or rundll32.exe, it
will start to contact the C&C server with the ‘cmd’ value set to
‘ping’ in the message.

The APIs it is targeting in iexplore.exe are the following:

ws2_32.dll:

• send

wininet.dll:

• HttpOpenRequestA

• HttpOpenRequestW

• HttpSendRequestA

• HttpSendRequestW

• HttpSendRequestExA

• HttpSendRequestExW

• InternetReadFile

• InternetReadFileExA

<hijackcfg>
<botnet name=”15aug”/>
<timer_cfg success=”1200”faail=”1200”/>
<timer_log success=”600”fail=”600”/>
<timer_ping success=”1200”fail=”1200”/>
<urls_server>
<url_server url=”https://sysinfonet.cc/ping.html”/>
<url_server url=”https://sysinfo.cc/ping.html”/>
<url_server url=”https://netprotections.cc/ping.html”/>
</urls_server>
<archiver url=”https://netprotections.cc/fi les/rar.exe”cmd=”a -r -dh -ep2 -v500k”/>
<url_update md5=”62b8e4b26b46eb58cb10a00b5ed390ea”url=”/fi les/010-update-2ds5b9dp3db5/15aug_xcv.
exe”updating=”offl ine”/>
<vnc url dll=”/fi les/010-update-2ds5b9dp3db5/vnc.dll”urldll_md5=”456a5739345754ad4af562a0c7d0ab0b”url=”https://
80.86.88.87:8890”value=”off”/>
<httpinject value=”on”url=”/fi les/010-update-2ds5b9dp3db5/hidden7770777.jpg”md5=”5dc90a34b59ea12414bd2923dc72e77d”
/>
<grabemails value=”off”/>
<plugins>
<plugin name=”archbot”url=”https://store-imgs.net/fi les/xmlz.gsm”value=”on”cmd=”https://store-imgs.net”/>
<plugin name=”BackSocks”url=”/fi les/010-update-2ds5b9dp3db5/Bot.dll”value=”load”cmd=”higuards.cc:18365”/>
<plugin name=”DiskSpread”url=”/fi les/010-update-2ds5b9dp3db5/dsp.psd”value=”on”cmd=”usa_xcv.exe”/>
<plugin name=”MessengerSpread”url=”/fi les/010-update-2ds5b9dp3db5/msg.gsm”value=”on”cmd=”astats.su|||15aug_xcv.
exe”/>
</plugins>
</hijackcfg>

Listing 2: A sample confi guration.

THE PLUGINER – CAPHAW PUN & TAN

43VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

• InternetReadFileExW

• InternetCloseHandle

• InternetQueryDataAvailable

• InternetSetStatusCallback

The screenshot in Figure 7 shows that the HttpSendRequestW
API in iexplore.exe is inline-hooked.

Figure 7: The beginning of the HttpSendRequestW API is
hooked.

The APIs it targets in fi refox.exe are the following:

nspr4.dll:

• PR_Read

• PR_Write

• PR_Close

nss3.dll:

• CERT_VerifyCertName

• CERT_VerifyCertNow

The functions hooking these APIs can disable security warnings
and manipulate the sending and receiving of the web pages.
This is the core feature that enables Caphaw’s man-in-the-
browser abilities. And because the bot uses some of these APIs
for communication with the C&C servers as well, it creates a
backdoor table to store the fi rst couple of instructions of the API
call following a push-retn jump back to the original routine.
When contacting the C&C server, it calls these addresses
directly to bypass the inline hooks, which were made by itself.

MODULES AND PLUG-INS

The following is a list of modules and plug-ins that have been
downloaded by Caphaw over the years:

1. Browser cookie stealer (using archiver to archive and
upload)

2. Flash cookies (SOLS) stealer

3. VNC server

4. Video capture and uploader (using archiver to archive
and upload)

5. Message Spreader (via Skype)

6. Disk Spreader (worm)

7. Backsocks (modifi es source code of 3proxy – a
3APA3A simplest proxy server, socks.c precisely).

The cookie stealer has the ability to steal or delete HTML and
Flash cookies to facilitate the HTTP inject. The VNC server can
enable the attacker to gain remote access to the victim’s
computer. The video capture and uploader can be used to
monitor the victim’s interaction with the computer, therefore
drawing an even more complete picture of the target. The last
three plug-ins are the recently active ones. Message Spreader
can send spam messages via Skype to spread itself or other
malware. Disk Spreader can spread the bot via removable
drives. Backsocks can tunnel the attacker’s traffi c through the
victim’s machine into its internal networks, which opens up a
new area of resources for the attacker to gain access to – and
because it uses the back SOCKS protocol, it can also work in a
NAT network.

All of these plug-ins can easily be installed/uninstalled. We
believe the actual list of downloadable plug-ins will be larger
than this. By knowing the user’s information, the bot master can
also tailor the list of plug-ins to be installed on the victim’s
machine.

Figure 8: Pre-defi ned location used to store dummy code, now stores the initial instructions (in red) and a jump to the API.

THE PLUGINER – CAPHAW PUN & TAN

44 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

BOTNET OPERATIONS
Caphaw is known for its ability to steal banking information and
is most active in North America and western European
countries. Figure 9 shows the distribution of active Caphaw
C&C server locations during May 2014. In 31 days we
discovered in total 28 active servers which were mainly located
in North America and western European countries. Note that
North America has alone has 12 C&C servers which are evenly
distributed between the east and west coast.

CONCLUSION
After two years of development, Caphaw has become a
dangerous piece of malware. Unlike other botnets, Caphaw is
meticulous about its targets and extremely cautious in not
launching any malicious activities if the environment is not
deemed ‘safe’. In addition to generating profi t through man-in-
the-browser attacks and occasional bitcoin mining, Caphaw has
also shown great interest in infi ltrating internal networks with
its arsenal of tools (Backsocks, Disk Spreader, video capturing
and VNC server), which seems far beyond the requirements of
simply making money quickly.

Having two ways of updating its C&C server list and utilizing
advanced code obfuscation techniques have benefi ted Caphaw
in its ability to remain undiscovered in a host for a long time.
All of these signs indicate that Caphaw is a competent APT
candidate which is capable of hosting a reliable botnet.
However, taking the time to reverse engineer Caphaw has
proven fruitful as we have uncovered its core module’s code
structure, anti-analysis tricks and communication protocol. This
gives us great leverage in terms of tracking and fi ghting this
threat.

APPENDIX 1: DETECTED ANTI-VIRUS
VENDORS AND TARGETED PROCESS

Anti-malware value Process name

Agava fi rewall Fwservice.exe

AtGuard fi rewall iamapp.exe

Authentium vseamps.exe

Authentium vsedsps.exe

Avast ashServ.exe

Avast AvastSvc.exe

Avast aswUpdSv.exe

Avast ashDisp.exe

Avira avgnt.exe

Avira avguard.exe

Avira sched.exe

AVG avgwdsvc.exe

AVG avgfws.exe

AVG avgemcx.exe

AVG avgrsx.exe

AVG avgchsvx.exe

AVG avgcc.exe

AVG avgemc.exe

AVG avgupsvc.exe

AVG avgw.exe

AVG guard.exe

AVG avgamsvr.exe

BitDefender vsserv.exe

Figure 9: Location of active Caphaw C&C servers in May 2014.

THE PLUGINER – CAPHAW PUN & TAN

45VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

Anti-malware value Process name

BullGuard BullGuard.exe

BullGuard BullGuardBhvScanner.exe

CA caamsvc.exe

CA isafe.exe

CA casc.exe

CA ccEvtMgr.exe

CA ccprovsp.exe

CA ccschedulersvc.exe

Comodo fi rewall cfp.exe

Comodo fi rewall cssurf.exe

Comodo fi rewall cmdagent.exe

Comcast Spyware
Scan

ComcastAntiSpyService.exe

Comcast Spyware
Scan

ComcastAntispy.exe

DeepFreeze deepfreeze.exe

Doctor Web dwengine.exe

Doctor Web drweb32w.exe

Doctor Web frwl_svc.exe

Emsisoft a2service.exe

iS3 SZServer.exe

Kaspersky avp.exe

KERIO winroute.exe

Malwarebytes mbamservice.exe

Malwarebytes mbam.exe

MSEssentials msseces.exe

Nod32 egui.exe

Nod32 ekrn.exe

Nod32 nod32krn.exe

Nod32 nod32kui.exe

NeT fi rewall Firewall.msc

Norton360 ccSvcHst.exe

Norton navapw32.exe

Norton navapsvc.exe

McAfee SSScheduler.exe

McAfee EngineServer.exe

McAfee Mcshield.exe

McAfee mfeann.exe

McAfee mcagent.exe

McAfee VsTskMgr.exe

McAfee myAgtSvc.exe

McAfee McSACore.exe

Anti-malware value Process name

MS Firewall Client FwcAgent.exe

MS Firewall Client FwcMgmt.exe

Lavasoft Ad-Aware AAWService.exe

Lavasoft Ad-Aware AAWWSC.exe

Lavasoft Ad-Aware AAWTray.exe

OnlineArmor fi rewall oasrv.exe

Outpost fi rewall op_mon.exe

Panda avengine.exe

Panda PavFnSvr.exe

Panda PavPrSvr.exe

Panda psksvc.exe

Panda fi rewall pshost.exe

Panda fi rewall ppfw.exe

Rapport rapportservice.exe

Rapport rapportmgmtservice.exe

PC Cleaner PCCleaners.exe

Prevx prevx.exe

PC Tools SSDMonitor.exe

Sophos ALsvc.exe

Sophos almon.exe

Sophos ManagementAgentNT.exe

Sophos RouterNT.exe

Sophos SAVAdminService.exe

Sophos SavService.exe

Sophos swi_service.exe

SoftPerfect Personal
Firewall

fw.exe

Spyware Doctor FGuard.exe

Spyware Doctor pctsGui.exe

SpybotSD TeaTimer.exe

SUPERAntiSpyware SUPERAntiSpyware.exe

Symantec ccApp.exe

Symantec ccSvcHst.exe

Symantec Rtvscan.exe

Symantec DefWatch.exe

Symantec ccEvtMgr.exe

Symantec ccSetMgr.exe

Symantec ccSvcHst.exe

Symantec DoScan.exe

Symantec SPBBCSvc.exe

Symantec SmcGui.exe

Trend Micro coreFrameworkHost.exe

THE PLUGINER – CAPHAW PUN & TAN

46 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

Anti-malware value Process name

Trend Micro PccNTMon.exe

QuickHeal onlinent.exe

QuickHeal SCANMSG.exe

Webroot WRConsumerService.exe

Windows Defender MSASCui.exe

Windows Defender MsMpEng.exe

Virgin Media Fws.exe

Virgin Media RpsSecurityAwareR.exe

Virgin Media ServicepointService.exe

Virgin Media ServiceManager.exe

Virgin Media AVGIDSAgent.exe

ZoneAlarm vsmon.exe

ZoneAlarm IswSvc.exe

APPENDIX 2: RECOGNIZED XML TAG FOR
CONFIGURATION FILE

1.2 1.4 1.6 1.9

/hijackcfg/vnc √ √ √

/hijackcfg/urls_server/url_server √ √ √ √

/hijackcfg/url_update √ √ √ √

/hijackcfg/upload_fi le √ √ √

/hijackcfg/uninstall √ √ √ √

/hijackcfg/timer_ping √ √ √ √

/hijackcfg/timer_inj_log √

/hijackcfg/timer_err_log √

/hijackcfg/timer_log √ √ √

/hijackcfg/timer_dll_cfg √

/hijackcfg/timer_cfg √ √ √

/hijackcfg/solfi les value=%s √ √

/hijackcfg/solfi les √ √ √ √

/hijackcfg/oskill √

/hijackcfg/plugins/plugin √ √ √

/hijackcfg/modules √ √ √

/hijackcfg/httpinject √ √ √ √

/hijackcfg/grabemails √

/hijackcfg/execute √ √ √ √

/hijackcfg/dll_load/dll √ √ √ √

/hijackcfg/cookies value=%s √ √

/hijackcfg/cookies √ √ √ √

/hijackcfg/certfi les √ √ √

/hijackcfg/botnet √ √ √ √

/hijackcfg/backconnect √ √

1.2 1.4 1.6 1.9

/hijackcfg/archiver √ √ √ √

/unit √ √ √ √

/inject √ √ √ √

/end √ √ √ √

/data √ √ √ √

/begin √ √ √ √

