
BETWEEN AN RTF AND OLE2 PLACE: AN ANALYSIS OF CVE-2012-0158 SAMPLES BACCAS

25VIRUS BULLETIN CONFERENCE OCTOBER 2013

BETWEEN AN RTF AND OLE2
PLACE: AN ANALYSIS OF
CVE-2012-0158 SAMPLES

Paul Baccas
Independent researcher, UK

Email pobicus@gmail.com

ABSTRACT

Over the last few years, Microsoft Offi ce viruses have become
a thing of the past and now we generally see Offi ce fi les as a
delivery method for targeted attacks via vulnerabilities. File
format features make obfuscating these targeted attacks easy,
and detecting them hard.

Targeted attacks like ‘Red October’ and ‘FakeM’ relied on
three different kinds of Microsoft vulnerabilities. Two of them,
CVE-2009-3129 and CVE-2010-3333, posed challenges for
detection development and have been discussed previously.
However, the third, CVE-2012-0158, is quite different. The
exploit itself could be in either a Word or an Excel document,
but the delivery method could be a Word, Excel or, more
commonly, RTF fi le. Digging through this complexity requires
a strong understanding of RTF and OLE2, as well as all points
in between.

This paper will document some pitfalls of the fi le formats that
make detection problematic, with particular attention placed
on the small percentage (less than 1%) of CVE-2012-0158
associated with high-profi le attacks.

1. INTRODUCTION

After April 2012’s Patch Tuesday, Microsoft reached out to the
author [1] looking for obfuscated/fuzzed fi les exploiting
CVE-2012-0158 (MS12-027) because of work published on
CVE-2012-3333 [2]. At the time, we had not looked at
detection for the exploit, and when we saw that Sophos relied
on detecting exploited fi les purely from within our OLE2
plug-in, we changed the methodology to one that would not
rely on the OLE2 plug-in.

The fi rst requirement for a detection modifi cation was because
the relevant OLE2 stream name had been changed (see
Figure 1).

The second was in order to write detection for the raw RTF.

Future changes to detections were added as the bad actors
modifi ed their samples – either fuzzing the embedded OLE2
or the RTF, or other tricks such as password-protecting fi les
[3]. Even with this dual approach, the detection still required
almost weekly updates. Both fi le formats, RTF and OLE2, are
ripe for fuzzing, partially because of the redundancies within
the fi les. The author has previously talked about RTF
manipulations [2] and OLE2 non-conformance [4] and so will
not go into exhaustive details here.

2. METHODS AND TOOLS

2.1 Overview

A set of Python tools were developed to parse and classify the
RTF and OLE2 fi les, and display the results. Use was made of
the oletools Python package [5], which was useful for some
things and not for others. The author would have liked to have
had more time to help with this project but deadline pressures
made it impossible. Some of the tools were based on the
proprietary Sophos Virus Description Language (VDL)
because modifying the internal tools was faster than using
Python.

2.2 File formats

The OLE2 fi le format has been well documented and this
paper will only cover part of that format. The RTF fi le format
has not been so well documented and is described briefl y
below.

2.2.1 RTF

{\rtf1\ansi\deff0 {\fonttbl {\f0 Times New Roman;}}
\f0\fs60 Hello, World!}

Table 1: My fi rst RTF fi le (Hello.rtf).

A simple RTF fi le, Hello.rtf (see Table 1) [6], is divided into:

<File> ‘{‘ <header> <document> ‘}’

Table 2: General RTF structure.

Splitting the test according to the general RTF structure (see
Table 2 [7]) you would have:

<header> \rtf1\ansi\deff0

Table 3: RTF <header>.

This test RTF header is invalid according to the
spec as it does not have a <defl ang>(image) [7],
and yet it opens in Word 20101.

‘Note: RTF readers can reject input if strongly
illegal data is encountered that is most probably
created maliciously … the RTF reader should
probably reject the fi le.’ [7]

2.2.2 Whitespace
One of the ways in which an RTF can be
manipulated is via the addition of whitespace. To
make the Hello.rtf fi le more readable we could add

Figure 1: ‘contents’ with lower-case C.

1 If a null edit is made, the 75-byte fi le becomes 31KB.

BETWEEN AN RTF AND OLE2 PLACE: AN ANALYSIS OF CVE-2012-0158 SAMPLES BACCAS

26 VIRUS BULLETIN CONFERENCE OCTOBER 2013

some carriage returns (CR), 0x0d, and/or linefeeds (LF),
0x0a:

{\rtf1\ansi\deff0

{\fonttbl

{\f0 Times New Roman;}}

\f0\fs60

Hello, World!

}

Table 4: My second RTF fi le (Hello2.rtf).

Hello2.rtf is functionally the same as Hello.rtf, yet with more
CRLFs you could add N more occurrences of 0x0d or 0x0a.

‘Unlike most clear text fi les, an RTF fi le does not have to
contain any carriage return/linefeed pairs (CRLFs) and
CRLFs should be ignored by RTF readers …’ [8]

Or

‘You can get exactly the same document if you remove all
the newlines in your RTF … Or you can insert many
newlines, in certain places …’ [9]

Also, you can insert spaces and still have no difference in the
displayed RTF.

‘… but insert a space after each \foo command …’ [10]

Where \foo is an example of a generalized RTF control word.

{\rtf1 \ansi \deff0 {\fonttbl {\f0 Times New
Roman;}} \f0 \fs60 Hello, World!}

Table 5: My third RTF (hello3.rtf).

The tricks in Tables 4 and 5 can be combined as many times
as you like – a fact that the bad actors are aware of.

2.2.3 Control word

A control word has the general form of:

/(\\[a-zA-Z]{1,32}(-?[0-9]{1,10})?)[^a-zA-Z0-9]/

more formally:

\<ASCII Letter Sequence><Delimiter>

Table 6: Control word defi nition [7].

Where <ASCII Letter Sequence> can be up to 32 upper- or
lower-case characters. The <Delimiter> can be a space, a
positive or negative number up to 10 digits, or any character
other than a letter or digit.

This form differs slightly from that of Burke’s [11] /\\[a-z]+(-
?[0-9]+)? ?/ with the addition of upper-case characters and
the precision of the matching. It also differs from the regular
expressions derived from analysing samples in Appendix I.

2.2.4 Special characters

There are a number of special characters, or escapes, that can
follow the reverse solidus, or backslash (0x5c):

Ideally, these special characters (see Table 7) need to be
handled within the parser, however, as these characters should
not appear within the hex-encoded data within an \<object>, it
may be considered suffi cient to ignore them within objects.

2.2.5 Objects

‘Microsoft OLE links, Microsoft OLE embedded objects,
and Macintosh Edition Manager subscriber objects are
represented in RTF as objects.’ [13]

The objects consist of some data and a result as well as some
preamble. The data is stored as a hex-encoded binary blob.
The data should only contain hex characters ([0-9a-fA-F]),
however, in almost all samples there are extraneous control
words, special characters, or whitespace within the embedded
object.

2.2.6 OLE2: encryption stream

The encryption stream within an OLE2 is described in various
Microsoft documents [14, 15]. The actual algorithms are
described in [MS-CRYPTO].pdf. SophosLabs have only
encountered fi les encrypted with the RC4 CryptoAPI. The
RC4 CryptoAPI encryption header [16] is in the Table and
Workbook streams of Word and Excel, respectively.

RC4 CryptoAPI encryption header

EncryptionVersionInfo (4 bytes)

EncryptionHeader.Flags (4 bytes)

EncryptionHeaderSize (4 bytes)

EncryptionHeader (variable)

EncryptionVerifi er (variable)

Table 8: RC4 CryptoAPI encryption header.

Special
character

Meaning

\’ Signifi er that the next two characters should be
treated as hex e.g. \’61 -> a.

\- Hyphenation point. If a word could be
wrapped, place the hyphen here.

* If the next control word is not known, ignore
the following group.

\: Specifi es a subentry in an index entry.

\\ An escaped reverse solidus.

_ Non-breaking hyphen. For hyphenated words,
this specifi es that the word cannot be line
wrapped.

\{ An escaped opening brace or curly bracket.

\| Formula character. (Used by Word 5.1 for the
Macintosh as the beginning delimiter for a
string of formula typesetting commands.)

\} An escaped opening brace or curly bracket.

\~ Non-breaking space. For phrases, this specifi es
that the phrase cannot be line wrapped.

Table 7: Special characters [12].

BETWEEN AN RTF AND OLE2 PLACE: AN ANALYSIS OF CVE-2012-0158 SAMPLES BACCAS

27VIRUS BULLETIN CONFERENCE OCTOBER 2013

The EncryptionHeader defi nes which encryption algorithm
and hash are used. Also defi ned is the KeySize, which is
important because:

‘When used with small key lengths (such as 40-bit),
brute-force attacks on the key without knowing the password
are possible.’ [17]

Within Excel, documents can be encrypted using
RC4 CryptoAPI, but as write-protected [18] documents. The
password in this case is:

Hex \x56\x65\x6C\x76\x65\x74\x53\x77\x65\x61\x74\
x73\x68\x6F\x70”.

ASCII VelvetSweatshop

Table 9: Excel write protection password [19].

Upon encountering an RC4-encrypted document, Excel will
try the write protection password fi rst, and if that fails it will
prompt for a password.

2.2.7 Exploit

The information upon which the author’s detections were
initially based was under non-disclosure agreement (NDA)
with Microsoft Active Protection Program (MAPP), however,
the detection logic changed to be based on the samples.
Others were able, without MAPP information, to create a
Metasploit [20] module. Mitre.org describes the CVE as:

‘The (1) ListView, (2) ListView2, (3) TreeView, and (4)
TreeView2 ActiveX controls in MSCOMCTL.OCX in the
Common Controls in Microsoft Offi ce 2003 SP3, 2007 SP2
and SP3, and 2010 Gold and SP1; Offi ce 2003 Web
Components SP3; SQL Server 2000 SP4, 2005 SP4, and
2008 SP2, SP3, and R2; BizTalk Server 2002 SP1;
Commerce Server 2002 SP4, 2007 SP2, and 2009 Gold and
R2; Visual FoxPro 8.0 SP1 and 9.0 SP2; and Visual Basic
6.0 Runtime allow remote attackers to execute arbitrary
code via a crafted (a) web site, (b) Offi ce document, or (c)
.rtf fi le that triggers “system state” corruption, as exploited
in the wild in April 2012, aka “MSCOMCTL.OCX RCE
Vulnerability.”’ [21]

Various hacking websites have had reasonably complete data
on the vulnerability. One of these, bug.cx [22], had a
commented discussion of the exploit:

‘cbsize < 8 ’

According to a colleague at SophosLabs, the Chinese
characters translate as:

‘is supposed to be greater than symbol’

The next comment:

‘ ’

translates as ‘stack overfl ow’.

This site was up on 1 February 2013, but at the time of
writing this paper the site is down.

The Metasploit module contains a stripped down OLE2 fi le
(neither Word nor Excel) which has a Contents stream that
contains the exploit and shellcode. We know from looking at
Flash exploits [23], that Word documents can contain a
Contents stream, and that the Excel equivalent is the Ctls
Stream [24].

3. RESULTS

3.1 Sample set

After fi ltering the samples received from customers, there
were 3,392 fi les left, submitted between 10 April 2012 and
4 April 2013 (359 days). Unfortunately, exact dates can only
be confi rmed for 2,939 of the fi les (Figure 3). There were an
average of 8.2 fi les a day (an increase on CVE-2010-3333
[2]).

The sample set was scanned with a Python script, scan-tree.
py (see Appendix II), to determine whether they were RTF,
encrypted, Word or Excel fi les.

3.2 Types by date

Figure 3: File types by date.

Of the 2,939 fi les, 2,571 (87.5%) were RTFs and the rest a
mixture of Excel and Word OLE2 fi les, with seven being
neither.

In Figure 3 we see that the distribution of RTF samples is
similar to all samples. The Word samples are comprised of
both plain Word fi les and encrypted Word fi les.

Of the 137 Word fi les, there were four encrypted fi les with
known dates.

Figure 4: Word and Excel.

Of the 108 Excel fi les, the majority (71 fi les) were encrypted.

Finally, 17 fi les caused the script to raise an exception; again
the author would have liked more time to investigate why the
fi les caused the tools to error.

Figure 2: Internet history.

BETWEEN AN RTF AND OLE2 PLACE: AN ANALYSIS OF CVE-2012-0158 SAMPLES BACCAS

28 VIRUS BULLETIN CONFERENCE OCTOBER 2013

Figure 5, shows the distribution of the OLE2 fi les per day.
The graph can be split up into time periods of: April 2012 to
June 2012, Word only; July 2012 to April 2013, a mixture of
Word and Excel (mainly Excel password).

3.3 RTF malarkey

In the larger sample set, there were 2,834 RTF fi les. On
running the scan-rtf.py (Appendix I) several pieces of data
were gathered.

3.3.1 Magic header

The majority (59%) of the samples have what we would
consider the correct magic header: ‘{\rtf1’ or
‘0x7b5c72746631’.

Figure 6: Length of OLE2 object.

As we can see from Figure 6, the majority of (mode) samples
contain an OLE2 object of length 0x272c, which is also the
median value. The largest object was 0x033C2F and the
smallest 0x01e0.

The script attempts to parse the OLE2 fi le and looks for the
fi rst occurrence of ‘Cobj’ or ‘436f626a’ and looks at the string
(and represents it as a hex number) eight characters in. One in
10 of the fi les give no results for the script (for various
reasons including encountering the end of the fi le). Of the
remainder, approximately one in 43 give strange results
(0x00000000 or 0xffffffff). This is either because there are
multiple occurrences of ‘Cobj’ within the embedded OLE2 or
because the OLE2 stream has been split or fragmented.
Regardless of these outliers, the variation of this string is
minimal, with the majority being 0x82820000.

3.4 OLE2 fi les

3.4.1 Non-password protected

Looking at the remaining OLE2 fi les, the parsing was
implemented in VDL for ease of coding.

With the smaller set of pure OLE2 fi les (without password
protection) we fi nd that the majority of fi les have the number
0x00300000, with 0x82820000 being relegated to second
position. Due to the inbuilt parsing of OLE2 within the
Sophos virus engine we do not have the issue with
fragmentation. The outlier here is followed by eight nops
(0x90).

The ActiveX type within the document should be one of four
types (ListView, ListView2, TreeView and TreeView2).

Raw
numbers

Percentage
First six

characters
First six

characters hex

1673 59.03% {\rtf1 7b5c72746631

220 7.76% {\rt0{ 7b5c7274307b

181 6.39% {\rta3 7b5c72746133

161 5.68% {\rtX\ 7b5c7274585c

137 4.83% {\rtA1 7b5c72744131

135 4.76% {\rta1 7b5c72746131

46 1.62% {\rtf{ 7b5c7274667b

43 1.52% {\rts1 7b5c72747331

33 1.16% {\rt 7b5c72742020

32 1.13% {\rtXÿ 7b5c727458ff

24 0.85% {\rt## 7b5c72742323

21 0.74% {\rtt{ 7b5c7274747b

21 0.74% {\rtt1 7b5c72747431

19 0.67% {\rtxa 7b5c72747861

15 0.53% {\rt01 7b5c72743031

14 0.49% {\rt.1 7b5c72740031

11 0.39% {\rta\ 7b5c7274615c

8 0.28% {\rtF{ 7b5c7274467b

7 0.25% {\rtf2 7b5c72746632

5 0.18% {\rtX1 7b5c72745831

5 0.18% {\rt0 7b5c7274300d

4 0.14% {\rt\1 7b5c72745c31

3 0.11% {\rt\ 7b5c7274205c

2 0.07% {\rt?? 7b5c72749090

2 0.07% {\rtf\ 7b5c7274665c

2 0.07% {\rtf9 7b5c72746639

2 0.07% {\rta{ 7b5c7274617b

2 0.07% {\rt91 7b5c72743931

1 0.04% {\rtb3 7b5c72746233

1 0.04% {\rt\a 7b5c72745c61

1 0.04% {\rtF1 7b5c72744631

1 0.04% {\rt** 7b5c72742a2a

1 0.04% {\rt i 7b5c72740b69

1 0.04% {\rTF{ 7b5c7254467b

Table 10: Magic header.

Figure 5: Distribution of OLE2 fi les per day.

BETWEEN AN RTF AND OLE2 PLACE: AN ANALYSIS OF CVE-2012-0158 SAMPLES BACCAS

29VIRUS BULLETIN CONFERENCE OCTOBER 2013

In 94.17% of the fi les the ActiveX type has not been fuzzed.
Looking at Table 11, you can see some of the redundancy
within the OLE2 fi le format, the fi les’ ActiveX type should be
the same in ASCII, Unicode and hex, i.e. ‘TreeView’ (in
ASCII and Unicode) and 0xb13cc16a.

TreeView ListView

ASCII 13 203

ASCII percentage 5.83% 91.03%

Unicode 10 201

Unicode percentage 4.48% 90.13%

Table 11: Strings within the OLE2 fi les.

3.4.2 Password protected
Looking into the sample set, some of the fi les were being
reported as ‘Password protected fi le’ by Sophos products, and
as CVE-2012-0158-related by Microsoft. When the fi les were

run they would either prompt for a password or run happily
and malware would be installed. On querying the Microsoft
AV team [25] on their detections, it became apparent that
some of these documents had either the default write protect
password of Excel or simple numeric passwords (see Table 12
and Figure 10).

Password Percentage Keysize

8861 8.41% 80

3849 1.87% 28

123 0.93% 38

4155 0.93% 28

VelvetSweatshop 87.85% 28

Table 12: Passwords vs keysize.

Figure 10: Distribution of passwords.

In fact, 91.26% of the Excel password-protected fi les were
using the default password (see Figure 11).

Figure 11: Passwords by application.

3.5 Case studies

3.5.1 Metasploit fi le
The module ms12_027_mscomctl_bof.rb [20] will by default
create the fi le msf.doc2.

Header
magic

Header magic
(hex)

Length of
OLE2 object

Number
after Cobj

{\rtf1 7b5c72746631 0x272c 0x82820000

Table 13: Metasploit msf.doc.

Figure 7: Number after Cobj.

Figure 8: OLE2: number after Cobj.

Figure 9: ActiveX type.

2 bfc5437c9fe5276e4658676e02909949fc29c269.

BETWEEN AN RTF AND OLE2 PLACE: AN ANALYSIS OF CVE-2012-0158 SAMPLES BACCAS

30 VIRUS BULLETIN CONFERENCE OCTOBER 2013

3.5.2 Contagio fi les [26]

Mila Parkour’s Contagio website is a malware dump that is
frequently useful for its collections of malware – often the
samples hosted there are not shared elsewhere. One of the
collections [26] claimed to be 90 fi les exploiting
CVE-2012-0158, and while not all of them did exploit
CVE-2012-0158, all of them were RTF fi les. The following
results were obtained from their analysis:

Number
of samples

Percentage ASCII
header

Hex header

38 64.41% {\rtf1 0x7b5c72746631

5 8.47% {\rtA1 0x7b5c72744131

3 5.08% {\rtXÿ 0x7b5c727458ff

2 3.39% {\rtt{ 0x7b5c7274747b

2 3.39% {\rtt1 0x7b5c72747431

2 3.39% {\rtX\ 0x7b5c7274585c

2 3.39% {\rt.1 0x7b5c72740031

2 3.39% {\rt 0x7b5c72742020

1 1.69% {\rtf{ 0x7b5c7274667b

1 1.69% {\rt\1 0x7b5c72745c31

1 1.69% {\rt## 0x7b5c72742323

Table 14: Header of RTFs in Contagio dump.

3.5.3 Red October samples [27]

The Red October attacks used several delivery methods and
installed several payloads. Kaspersky Lab provided a list of
known MD5s associated with Red October samples,

exploiting CVE-2012-0158, and provided the fi les where they
had them. Analysing them led to the following results:

Number Percentage ASCII
header

Hex header OLE2
object
length

Number
after Cobj

7 63.64% {\rtf1 7b5c72746631 1411F 0x496F0000

3 27.27% {\rtX\ 7b5c7274585c 2EB1 0x82820000

1 9.09% {\rt0{ 7b5c7274307b 2193 0x81810000

Table 15: Red October sample analysis.

4. CONCLUSION
Security researchers are already aware that the primary OLE2
fi le format readers (Microsoft Word and Excel) are tolerant of
non-conformance to the technical specifi cations of the OLE2
format. Those same OLE2 readers appear equally tolerant of
RTF non-conformance. This is worrying because even
without there being vulnerabilities, all the Red October
samples look to contain ‘strongly illegal data’ [7] – 36.36%
illegal header and 72.71% non-hex data within the object.

Overall, of the RTF samples sent to Sophos, rejecting fi les
based on header alone would have resulted in 40% of attacks
being blocked. Most of the remaining fi les have non-hex
characters within the object and/or other illegalities (not
ending with a closing brace (0x7d) or characters outside [\
x0a\x0d\x20-\x7e] [8, 10]).

The numbers after the Cobj results (Figure 7) suggest that
most of the RTFs were based on the Metasploit fi le (or the
fi les upon which Metasploit based their module).

Within the OLE2 sample set, the evidence (Figure 8) is that
there was more knowledge of the exploit. With the addition of
passwords, the OLE2 space is the more interesting, especially
when you consider the question of how the bad guys
generated password-protected fi les:

• They added a password to vulnerable fi les on a patched
system.

• They used a third-party utility to add passwords.

The author is not currently aware of any embedded Flash
malware (which uses the same streams) delivered in this way.

Sophos has looked for password-protected OLE2 fi les within
RTFs and looked for the exploit embedded in PowerPoint but
has yet to see them. This would be the next logical iteration of
the exploit.

When the author asked ‘Why were machines still vulnerable
to CVE-2010-3333 [2]?’ three reasons were postulated:

• Ignorance

• Laziness/busyness

• Non-licensed software.

To those we can add:

• Cost.

Cost: A consequence of Moore’s Law is that a less-than-$500
computer becomes obsolete within 18 months, and if the
computer runs without problems for 12 months it may be
considered cheaper to buy a new computer than to install
patches, anti-malware software etc. [28]. While intrinsically

Figure 12: Contagio object length.

Figure 13: Contagio number after the Cobj.

BETWEEN AN RTF AND OLE2 PLACE: AN ANALYSIS OF CVE-2012-0158 SAMPLES BACCAS

31VIRUS BULLETIN CONFERENCE OCTOBER 2013

this feels wrong, for a small organization without a
security-focused IT department, the total cost of maintaining
software could be considered too high.

Ignorance: Security is not just a technical problem. Most
APTs, (Assured Penetration Technologies) rely on human
interaction. Verizon’s Data Breach Investigation Report
contains a section entitled ‘The inevitability of “the click”’
[29]:

‘So how many e-mails would it take to get one click?

…

Running a campaign with just three e-mails gives the
attacker a better than 50% chance of getting at least one
click. Run that campaign twice and that probability goes
up to 80%, and sending 10 phishing e-mails approaches
the point where most attackers would be able to slap a
“guaranteed” sticker on getting a click.

…

For example, a user needs to take action AND there needs
to be a vulnerability on the system AND software has to be
quietly installed AND there has to be a communication
path back to the attacker, and, and, and …’

For a dumb Bredo-like spam campaign, we believe that these
numbers are higher by at least a factor of 10 (maybe 100).
However, for a highly targeted attack, the number could easily
be lower by a factor of two. So in an espionage attack, fi ve
emails may well be enough to gain access.

Laziness/busyness: When a patch becomes available it is best
to apply it rapidly [30].

Non-licensed software: This is probably the biggest
contributor to the longevity of this exploit. The areas where
attacks are known to have worked correlate with where
software licensing is an issue. On unlicensed software,
patching is not a click-once-and-forget exercise, leaving the
machines vulnerable. Plus, in situations where you have
unlicensed OS and productivity suites, there is a high
probability that the anti-malware and anti-spam software will
be non-existent, out of date or of poor quality.

REFERENCES
[1] Personal email correspondence with Microsoft

employees in April 2010.

[2] Baccas, P. A time-based analysis of Rich Text Format
manipulations: a deeper analysis of the RTF exploit
CVE-2010-3333. http://www.sophos.com/en-us/why-
sophos/our-people/technical-papers/a-time-based-
analysis-of-rich-text-format-manipulations.aspx.

[3] Baccas, P. When is a password not a password?
When Excel sees “VelvetSweatshop”.
http://nakedsecurity.sophos.com/2013/04/11/
password-excel-velvet-sweatshop/.

[4] Wisniewski, C. How fast fi ngerprinting of OLE2
fi les can lead to effi cient malware detection.
http://nakedsecurity.sophos.com/2011/10/13/how-
fast-fi ngerprinting-of-ole2-fi les-can-lead-to-effi cient-
malware-detection/.

[5] Python-oletools. http://www.decalage.info/python/
oletools.

[6] Burke, S.M. RTF Pocket Guide, p.4. O’Reilly.

[7] Rich Text Format (RTF) Specifi cation Version 1.9.1,
p.12. Microsoft Corporation.

[8] Rich Text Format (RTF) Specifi cation Version 1.9.1,
p.7. Microsoft Corporation.

[9] Burke, S.M. RTF Pocket Guide, pp.4–5. O’Reilly.

[10] Burke, S.M. RTF Pocket Guide, p.6. O’Reilly.

[11] Burke, S.M. RTF Pocket Guide, p.9. O’Reilly.

[12] Rich Text Format (RTF) Specifi cation Version 1.9.1,
p.231. Microsoft Corporation.

[13] Rich Text Format (RTF) Specifi cation Version 1.9.1,
p.154. Microsoft Corporation.

[14] Word (.doc) Binary File Format ([MS-DOC].pdf,
v20121003), p.26.

[15] Excel Binary File Format (.xls) Structure
Specifi cation ([MS-XLS].pdf, v20121003), p.47.

[16] Offi ce Document Cryptography Structure
Specifi cation ([MS-OFFCRYPTO].pdf, v20121003),
p.50.

[17] Offi ce Document Cryptography Structure
Specifi cation ([MS-OFFCRYPTO].pdf, v20121003),
p.96.

[18] Excel Binary File Format (.xls) Structure
Specifi cation ([MS-XLS].pdf, v20121003), p.64.

[19] Excel Binary File Format (.xls) Structure
Specifi cation ([MS-XLS].pdf, v20121003), p.105.

[20] MS12-027 MSCOMCTL ActiveX Buffer Overfl ow.
http://www.metasploit.com/modules/exploit/
windows/fi leformat/ms12_027_mscomctl_bof.

[21] CVE-2012-0158. http://www.cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2012-0158.

[22] http://blog.bug.cx/2012/05/02/ms12-027-poc%E9%8
0%86%E5%90%91%E5%88%86%E6%9E%90/.

[23] Blasco, J. CVE-2012-1535: Adobe Flash being
exploited in the wild. http://labs.alienvault.com/labs/
index.php/2012/cve-2012-1535-adobe-fl ash-being-
exploited-in-the-wild/.

[24] Flash in the Formula! http://nakedsecurity.sophos.
com/2009/08/05/fl ash-formula/.

[25] Personal communication.

[26] CVE-2012-1535 - 7 samples and info.
http://contagiodump.blogspot.co.uk/2012/08/cve-
2012-1535-samples-and-info.html.

[27] “Red October”. Detailed Malware Description 1.
First Stage of Attack. http://www.securelist.com/en/
analysis/204792265/Red_October_Detailed_
Malware_Description_1_First_Stage_of_Attack.

[28] Cluley, G. German ministry replaced brand new PCs
infected with Confi cker worm, rather than disinfect
them. http://nakedsecurity.sophos.com/2013/05/01/
german-replaced-pcs-confi cker.

[29] 2013 Data Breach Investigations Report.
http://www.verizonenterprise.com/DBIR/2013/.

[30] Strategies to Mitigate Targeted Cyber Intrusions.
http://www.dsd.gov.au/infosec/top-mitigations/
top35mitigationstrategies-list.htm.

BETWEEN AN RTF AND OLE2 PLACE: AN ANALYSIS OF CVE-2012-0158 SAMPLES BACCAS

32 VIRUS BULLETIN CONFERENCE OCTOBER 2013

APPENDIX I

CVE-2012-0158 parsing

Written by pob

import sys

from StringIO import StringIO

import re

import hashlib

import numpy

import binascii

def fi nd_fpps(fi le,position,pattern,size):

 “doing a number of fi nd’s so create a function”

 fi le.seek(position)

 buff = fi le.read(size).upper()

 if buff.fi nd(pattern) !=-1:

 return buff.fi nd(pattern)

 else:

 return -1

def rex_fpps(fi le,position,pattern,size):

 “doing”

 fi le.seek(position)

 buff = fi le.read(size).upper()

 if re.search(pattern,buff) != None:

 return re.search(pattern,buff).start()

 else:

 return -1

def clean_buff(fi le,start_pos,size):

 “remove whitespace”

 fi le.seek(start_pos)

 buff = fi le.read(size).upper()

 new_buff = re.sub(r’\\OBJ[WH]\d{4,5}’,’’,buff)

 new_buff = re.sub(r’\\{2}’,’’,new_buff)

 new_buff = re.sub(r’\\[A-Z*]{0,10}[\d\x7d\x7e\
x5b\x7b]?’,’’,new_buff)

 new_buff = re.sub(r’\{[^\}]*\}+’,’’,new_buff)

 new_buff = re.sub(r’\}’,’’,new_buff)

 new_buff = re.sub(r’[\s\x0d\x0a\x00]’,’’,new_
buff)

 print new_buff.__len__(),

 print “,”,

 return new_buff

def main():

 if len(sys.argv) < 2:

 print ‘usage: rtf.py <bad.rtf>’

 return

 else:

 try:

 fi le = open(sys.argv[1], ‘rb’)

 hash = hashlib.sha1()

 hash.update(fi le.read())

 fi lesha1 = hash.hexdigest()

 except Exception:

 print ‘[ERROR] CAN NOT OPEN FILE’

 return

 magic = fi nd_fpps(fi le,0,’\x7b\x5c’,16)

 if magic == None:

 print ‘RTF Signature not found’

 return

 print ‘RTF, ‘,

 print fi lesha1 + “,”,

 buff = fi le.read()

 fi le.seek(0)

 header = fi le.read(6)

 print header + “,”,

 print header.encode(“hex”) + “,”,

 docfi le = rex_fpps(fi le,0,r’(?:\b|[0-9])D\s*?
(?:\\[^0]*?)?0[^C]*?C[^F]*?F[^1]*?1[^1]*?1[^E]*?E[^
0]*?0’,-1)

 if docfi le == None:

 print “DOCFILE not found”

 return

 print ‘DOCFILE,’,

 boundcheck = rex_fpps(fi le,docfi le,’\x7d\s*\
x7d\s*\x7d’,-1)

 if boundcheck == -1:

 boundcheck = len(buff)

 print len(buff) + “,”,

 print boundcheck -1,

 print “,”,

 newbuff = clean_buff(fi le,docfi le,boundcheck)

 docfi le2 = newbuff.fi nd(r’D0CF11E0’)

 newbuff = newbuff[docfi le2:]

 pos = newbuff.fi nd(r’436F626A’) + 16

 print ‘yes,’,

 print newbuff[pos:pos+8] + “,”,

 newbuff = newbuff.rstrip()

 if len(newbuff) % 2 == 1:

 newbuff = newbuff + ‘0’

 hash.update(newbuff)

 print hash.hexdigest()

fname = ‘%40s.bin’ % hash.hexdigest()

open(fname, ‘wb’).write(newbuff.lower().
decode(‘hex’))

if __name__ == ‘__main__’:

 main()

APPENDIX II

import os

import sys

from thirdparty.OleFileIO_PL import OleFileIO_PL

def walk(dir):

 for path, subdirs, fi les in os.walk(dir):

 for fi le in fi les:

 fi le = os.path.join(path, fi le)

 print “Checking ...” + fi le

 checktype(fi le)

def searchlistdir(fi le,pattern):

 ole = OleFileIO_PL.OleFileIO(fi le)

 index = ole.listdir()

 if ole.exists(pattern):

 return 1

 for ind in index:

 if pattern in ind:

 return 1

def checktype(path):

 fi le = open(path, ‘rb’)

 fi le.seek(0)

 buff = fi le.read(16)

 if (buff.fi nd(‘\xd0\xcf’) != -1):

 assert OleFileIO_PL.isOleFile(path)

 try:

BETWEEN AN RTF AND OLE2 PLACE: AN ANALYSIS OF CVE-2012-0158 SAMPLES BACCAS

33VIRUS BULLETIN CONFERENCE OCTOBER 2013

 ole = OleFileIO_PL.OleFileIO(path)

 if ole.exists(‘Workbook’):

 if ole.exists(‘encryption’):

 print “Excel pass: “ + path

 elif searchlistdir(path,’Ctls’) == 1:

 print “Excel Ctls: “ + path

 else:

 print “Excel: “ + path

 elif ole.exists(‘Worddocument’):

 if ole.exists(‘encryption’):

 print “Word pass: “ + path

 elif searchlistdir(path,’Contents’) == 1:

 print “Word Contents: “ + path

 else:

 print “Word: “ + path

 else:

 print “OLE2: “ + path

 except (IOError, RuntimeError):

 print “Exception OLE2: “ + path

 elif (buff.fi nd(‘\x7b\x5c’) != -1):

 print “RTF: “ + path

 else:

 print “Neither: “ + path

if __name__==’__main__’:

 if len(sys.argv) != 2:

 print “Usage: tree.py dir”

 sys.exit(100)

 walk(sys.argv[1])

